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This note is intended to present some fundamental results about submodular functions
and their applications in discrete optimization (with special interest in machine learning
applications). Most results are taken from various sources, with some occasional improvements.
The algorithm section is expected to go through a large update soon.
Page 38 – 43 are not available currently, due to conflict with some ongoing work.
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1 Distributive Lattice

1 Distributive Lattice
Alert 1.1: Skipping this section

If one is willing to restrict himself to the full domain 2Ω, the power set of Ω, then this section can be
skipped without much harm. Nevertheless, it is recommended to read at least Theorem 1.1 so that
one understands how to deal with general (distributive) lattices.

Let (L,≤) be a partially ordered set. For any pair x, y ∈ L, its least upper bound (or the join operator
w.r.t. the order ≤), if exists, is denoted as x ∨ y, and its greatest lower bound (the meet operator), if
exists, is similarly denoted as x ∧ y. When all pairs have least upper bound (supremum) and greatest
lower bound (infimum), we call (L,≤) a lattice—the central domain for us. We will focus on distributive
lattices—those enjoy the distributive law: for all x, y, z ∈ L,

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

For the product set of ordered sets, we equip it with the natural pointwise order. It is a (distributive)
lattice if the factors are.

Example 1.1: Not all lattices are distributive

Let L = {⊥,>, x, y, z} where > is largest, ⊥ is smallest, and {x, y, z} are not directly comparable.
Then x ∨ (y ∧ z) = x ∨ ⊥ = x while (x ∨ y) ∧ (x ∨ z) = > ∧> = >.

Remark 1.1: Lattice operators characterize the order

It is clear that the lattice operators ∧ and ∨ are completely determined by the underlying order,
with the following properties:

• Idempotent: ∀x ∈ L, x ∧ x = x, x ∨ x = x;

• Symmetric: ∀x, y ∈ L, x ∧ y = y ∧ x, x ∨ y = y ∨ x;

• Absorptive: ∀x, y ∈ L, (x ∧ y) ∨ x = x, (x ∨ y) ∧ x = x;

• Associative: ∀x, y, z ∈ L, (x ∧ y) ∧ z = x ∧ (y ∧ z), (x ∨ y) ∨ z = x ∨ (y ∨ z).

On the other hand, given two operators ∧ and ∨ on some set L with the above four properties, we
can define an order on L: x ≤ y ⇐⇒ x∧ y = x (or x ≤ y ⇐⇒ x∨ y = y), and the lattice operators
associated with the defined order are exactly the ∧ and ∨ that we begin with.

Perhaps the most important example for a distributive lattice is the power set, denoted as 2Ω, of a
nonempty ground set Ω, ordered by the set inclusion. A bit surprisingly, the converse is also true. Recall
that two lattices L1 and L2 are isomorphic if there exists some bijective function f : L1 → L2 such that
f(x ∧ y) = f(x) ∧ f(y) and f(x ∨ y) = f(x) ∨ f(y). We say L′ ⊆ L a sublattice if L′ is itself a lattice with
the inherited lattice operators. Note that it is possible for L′ to have different lattice operators than L, in
which case we call L′ a lattice subspace.

Example 1.2: Not all lattice subspaces are sublattices

Let L = C([0, 1]) be the set of continuous functions on the interval [0, 1], equipped with the pointwise
order. It is clearly a lattice. Take L′ to be all affine functions. Again L′ is a lattice, but its own
lattice operators are different from those of L.

Theorem 1.1: [Birkhoff, 1948, p. 140]

Any distributive lattice is isomorphic to a sublattice of 2Ω for some ground set Ω.
Proof: Proof will be added.
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1 Distributive Lattice

More definitions. We call a lattice L bounded if it has a largest element > and a smallest element ⊥;
complete if any subset has infimum and supremum; complemented if for any X ⊆ L there exists Y ⊆ L
such that X ∨ Y = >, X ∧ Y = ⊥; finite if the cardinality |L| <∞. Moreover, the product set is bounded,
complete, complemented if the factors are, and finite if we only have finitely many factors which themselves
are finite. A bounded, complemented, distributive lattice is called a Boolean algebra.

Proposition 1.1: Finite lattices are nice

Any finite lattice is bounded and complete.

Remark 1.2: A special ordered set

We consider decomposing a complete sublattice L ⊆ 2Ω with ∅,Ω ∈ L. Let I[x] :=
⋂
x∈X∈LX be the

smallest element in L that contains x ∈ Ω. I[x] is well defined since Ω ∈ L and L is complete. Clearly,
y ∈ I[x] ⇐⇒ I[y] ⊆ I[x]. Define the equivalence class [x] = {y : I[y] = I[x]}. Then P = {[x] : x ∈ Ω}
is a partition of Ω, and we order its elements by [x] � [y] ⇐⇒ I[x] ⊆ I[y]. Note that the cardinality
of P may be strictly smaller than that of Ω. The resulting ordered set (P,�) will freely appear
many times in our later development.

Alert 1.2: Notation

Following set theory, when I = {Aj : j ∈ J} is a set of sets, we use
⋃
I as a shorthand for

⋃
j∈J Aj .

Recall that for an ordered set (O,≤), I ⊆ O is called an (lower) ideal if x � y ∈ I =⇒ x ∈ I, i.e., an
ideal contains all of its dominated elements. Similarly I is called an upper ideal if I 3 x � y =⇒ y ∈ I.
We verify that I ⊆ O is a lower ideal iff O \ I is an upper ideal. Besides, all ideals themselves, under the
inclusion order, form a lattice whose join and meet operators are simply the set union and intersection,
respectively. An ideal in the form of {x ∈ O : x � y} for some y ∈ O is called the principal ideal and
denoted as Iy. The collection of all principal ideals form a lattice subspace (not necessarily sublattice!) of
the set of all ideals, in fact, it is isomorphic to the original ordered set O under the identification x 7→ Ix.
Every ideal in a finite ordered set is a union of principal ideals, and an ideal remains to be an ideal after
removing any of its maximal elements (which always exists for a finite set).

Theorem 1.2: Distributive lattices correspond to ideals

Let L ⊆ 2Ω be a complete distributive sublattice that contains ∅,Ω. Consider the ordered set (P,�)
constructed in Remark 1.2. Then for each ideal I ⊆ P,

⋃
I ∈ L. Conversely, for any X ∈ L,

I := {I ∈ P : I ⊆ X} is an ideal of P that forms a partition of X.
Proof: Suppose I is an ideal in P. Fix x ∈ X :=

⋃
I. Thus [x] ∈ I. For each y ∈ I[x],

I[y] ⊆ I[x] =⇒ [y] � [x] =⇒ [y] ∈ I since I is an ideal in (P,�). Therefore y ∈ X and
consequently X =

⋃
x∈X I[x] ∈ L due to the completeness of L.

Conversely, let X ∈ L. Then for any I ∈ P, either I ⊆ X or I ∩ X = ∅. Since
⋃
P = Ω,

I := {I ∈ P : I ⊆ X} forms a partition of X. Clearly, if P 3 J � I ∈ I, then J ⊆ X hence J ∈ I,
meaning that I thus defined is indeed an ideal of (P,�).

In other words, any complete distributive lattice (L,≤) consists of merely the union of each ideal
of a potentially different set P equipped with a potentially different order �.

Theorem 1.3: Maximal increasing sequence determines the partition

Let L ⊆ 2Ω be a finite distributive sublattice that contains ∅,Ω. Let

∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sk = Ω
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2 Submodular Functions

be any maximal increasing sequence in L. Then

P = {Si \ Si−1, i = 1, . . . , k}. (1)

In particular, all maximal increasing sequences are equally long.
Proof: According to Theorem 1.2, each Si is the union of an ideal in (P,�), i.e., Si =

⋃
Ii, Ii =

{I1, . . . , Iji} ⊆ 2P . Let I be a maximal element in Ii \ Ii−1 (w.r.t. the order �). Clearly I is also
maximal in Ii since Si ⊃ Si−1. Let I = Ii \ {I}. By the maximality of I, I is again an ideal and
I ⊇ Ii−1. Thus by the maximality of {Si} we must have I = Ii−1, i.e., I = Si \ Si−1 ∈ P. This
proves that {Si \ Si−1, i = 1, . . . , k} ⊆ P. Since S0 = ∅, Sk = Ω and |Si \ Si−1| = 1 we must have
k = |P|, i.e., the equality in (1).

From the proof it is clear that for any j > i we cannot have Sj \ Sj−1 � Si \ Si−1.

Therefore we can deduce the set P from any maximal increasing sequence in L. For the extreme case
where P = Ω, we say the lattice L is simple. Pleasantly, the simple lattice (L ⊆ 2Ω,≤) is just the collection
of all ideals of the ordered set (Ω,�). On the other hand, the collection of all ideals of a finite set (Ω,�),
equipped with the set inclusion order, is a simple lattice: Successively adding minimal elements one by
one in the remaining ground set we arrive at a maximal increasing sequence. Besides, the lattice L (simple
or not) is a Boolean algebra iff the order � is trivial, i.e., no two elements are comparable.

Remark 1.3: “Simplification”

Let F : L→ R be a function defined on the finite distributive lattice L. If L is not simple, then we
construct the simple lattice L̃ that is consisted of all ideals (without taking union) of the ordered set
(P,�). Define F̃ : L̃ → R by F̃ (I) = F (

⋃
I). Conveniently, many good properties of F , such as

monotonicity or submodularity defined below, transfer to F̃ . Note that the ground set for L̃ is P,
potentially a collection of subsets of Ω. By simplification, a Boolean algebra can be taken simple.

There is a beautiful theory on vector lattices (those compatible with a linear structure), Banach lattices
(also compatible with a norm), and Boolean algebras, but we shall not need any of such knowledge.

2 Submodular Functions
Thanks to Theorem 1.1 and Proposition 1.1, we know any finite distributive lattice is a complete sublattice
of 2Ω for some ground set Ω, with ∅,Ω ∈ L. Thus from now on, the following convention should be kept
in mind.

Alert 2.1: Notation

Our domain L is a sublattice of 2Ω for some nonempty finite ground set Ω, with always ∅,Ω ∈ L.
We use 1X to denote the characteristic function of the set X, i.e., 1X(x) = 1 if x ∈ X, otherwise
1X(x) = 0. The shorthand 1 := 1Ω (all ones) is also adopted whenever the ground set Ω is clear
from context. All empty sums, unless stated otherwise, are understood to take value 0. As usual, R
denotes the real line (although many results extend immediately to any totally ordered vector space)
and {ei}i∈Ω denotes the canonical basis in RΩ.

We start with the definition of submodularity.

Definition 2.1: Submodular function

The set function F : L→ R is called submodular if

∀X ∈ L, ∀Y ∈ L, F (X ∪ Y ) + F (X ∩ Y ) ≤ F (X) + F (Y ). (2)

Similarly, we can define supermodular functions by reversing the inequality in (2). Clearly, F is
supermodular iff −F is submodular, which allows us to focus exclusively on submodularity.
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2 Submodular Functions

Alert 2.2: Domain

To verify submodularity, one must first check whether or not the domain is a lattice.

Proposition 2.1: Minimizers constitute a sublattice

For a submodular function F : L → R, its minimizing set
{
Y ∈ L : F (Y ) = min

X∈L
F (X)

}
is a

sublattice of the domain L. �

Let us illustrate the ubiquity of submodularity through a few examples, each of which can be verified
directly from Definition 2.1.

Example 2.1: Maximal element is submodular

Consider a weight function w : Ω→ R and define for any A ⊆ Ω

F (A) =

{
max
a∈A

wa, A 6= ∅
c, A = ∅

. (3)

As long as c ≤ min
a∈Ω

wa, F is easily verified to be submodular.

Example 2.2: Entropy is (increasing) submodular

Consider a collection of random variables Xi, i ∈ Ω := {1, . . . , n}. For any nonempty subset A ⊆ Ω,
let us denote XA as the set {Xi : i ∈ A} and define

E(A) := H(XA) := E(− log p(XA)), E(∅) ≤ 0. (4)

The submodularity of E follows from the nonnegativity of the conditional mutual information:

E(A) + E(B)− E(A ∪B)− E(A ∩B) = E

(
log

p(XA∪B)p(XA∩B)

p(XA)p(XB)

)
= E

(
log

p(XA, XB | XA∩B)

p(XA | XA∩B)p(XB | XA∩B)

)
= I(XA;XB | XA∩B) ≥ 0.

Note also that E is increasing since the conditional entropy is nonnegative as well.

Example 2.3: Graph cut is (strictly) submodular

Let G = (V, c) be a complete directed graph, with vertices V , and the capacity function c : V × V →
R+ ∪ {∞}. The graph cut for any subset X ⊆ V is defined as

Cut(X) =
∑
u∈X

∑
v∈V \X

c(u, v). (5)

Note that Cut(X) = Cut(V −X) if c(u, v) = c(v, u) for all u, v ∈ V . Simple algebra yields

Cut(X) =
∑
X∩Y

∑
Y \X

+
∑
X∩Y

∑
V \(X∪Y )

+
∑
X\Y

∑
V \X

Cut(Y ) =
∑
Y∩X

∑
X\Y

+
∑
Y∩X

∑
V \(Y∪X)

+
∑
Y \X

∑
V \Y

Cut(X ∩ Y ) =
∑
X∩Y

∑
Y \X

+
∑
X∩Y

∑
V \(X∪Y )

+
∑
X∩Y

∑
X\Y
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2 Submodular Functions

Cut(X ∪ Y ) =
∑
X∪Y

∑
V \(X∪Y )

therefore

Cut(X) + Cut(Y )− Cut(X ∩ Y )− Cut(X ∪ Y ) =
∑
X\Y

∑
V \X

+
∑
X∩Y

∑
V \(X∪Y )

+
∑
Y \X

∑
V \Y

−
∑
X∪Y

∑
V \(X∪Y )

≥
∑
X\Y

∑
V \(X∪Y )

+
∑
X∩Y

∑
V \(X∪Y )

+
∑
Y \X

∑
V \(X∪Y )

−
∑
X∪Y

∑
V \(X∪Y )

= 0,

meaning that the cut function, when restricted to the lattice {X : Cut(X) <∞}, is submodular.
Observe that the nonnegativity of the capacity is needed in deriving the inequality.
If the weights are bounded away from 0, we have

min
X 6⊆Y,Y 6⊆X

Cut(X) + Cut(Y )− Cut(X ∩ Y )− Cut(X ∪ Y ) ≥ 2 ·min
u,v

c(u, v) > 0.

Such functions will be called strictly submodular.

Remark 2.1: Hardness of submodular maximization

Example 2.3 immediately implies that there exists some constant 0 ≤ α < 1 up to which submodular
maximization cannot be approximated, modulus certain complexity conjectures. On the other hand,
as we will discuss later on, the tractability of submodular minimization implies, in particular, the
tractability of min-cut.

Definition 2.2: Modular function

The function M : L→ R is called modular if ∀X ∈ L,∀Y ∈ L,

M(X ∪ Y ) +M(X ∩ Y ) = M(X) +M(Y ). (6)

Clearly, M is modular iff it is both submodular and supermodular. If L = 2Ω, inducting from (6) we
obtain

M(X) = M(∅) +
∑
ω∈X

(
M({ω})−M(∅)

)
. (7)

In other words, the modular function is determined by its values on singletons (and the empty set). On
the other hand, one easily verifies that (7) indeed defines a modular function on 2Ω. Moreover, assuming
M(∅) = 0 and denote q(X) as

∑
ω∈X qω for any q ∈ RΩ, we can identify any modular function M

with a vector q ∈ RΩ, in a way that M({ω}) = q({ω}), and consequently M(X) = q(X). Later on we
will see that this conclusion generalizes to any simple lattice, and modular functions are exactly those
corresponding to linear functions.

Example 2.4: Cardinality is modular

The cardinality of a set X ⊆ Ω is simply the number of elements in X. It is elementary to verify
that indeed the cardinality function is modular. We can extend the definition of cardinality to any
real vector x ∈ RΩ:

|x| := |Supp(x)|, (8)

where

Supp(x) := {i ∈ Ω : xi 6= 0} (9)

is the support of x. In essence, the cardinality of a real vector is the number of its nonzero components.
If we treat the vector space RΩ as a lattice equipped with the pointwise order, then the cardinality
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2 Submodular Functions

function defined in (8) is indeed modular.

Example 2.5: log det is submodular

Let Ω = {1, . . . , n} and fix X ∈ Sn++. Denote XA as the submatrix [X]i,j where (i, j) ∈ A×A. Then

F (A) := log det(XA) (10)

is submodular. Indeed, the (differential) entropy of a multivariate Gaussian vector x with covariance
matrix X ∈ Sn++ is known as

Hg(X) =
1

2
log[(2π)n det(X)] =

1

2
log(2π) · n+

1

2
log detX,

hence F (A) = 2Hg(XA)− log(2π) · |A|, but Example 2.2 showed that entropy is submodular while
Example 2.4 showed that cardinality is modular.

The following proposition will be convenient in determining submodularity.

Proposition 2.2: Determining submodularity

Let L ⊆ 2Ω be a simple sublattice. The following are equivalent:

(I). F : L→ R is submodular;

(II). ∀L 3 X ⊆ Y ∈ L,∀S ⊆ Ω \ Y such that X ∪ S ∈ L, Y ∪ S ∈ L, we have F (X ∪ S)− F (X) ≥
F (Y ∪ S)− F (Y );

(III). ∀L 3 X ⊆ Y ∈ L,∀ω ∈ Ω \ Y such that X ∪ {ω} ∈ L, Y ∪ {ω} ∈ L, we have F (X ∪ {ω}) −
F (X) ≥ F (Y ∪ {ω})− F (Y );

(IV). ∀x, y ∈ Ω,∀Z ∈ L such that Z ∪ {x} ∈ L, Z ∪ {y} ∈ L, we have F (Z ∪ {x}) − F (Z) ≥
F (Z ∪ {x, y})− F (Z ∪ {y}).

Proof: (I) ⇒ (II) ⇒ (III) ⇒ (IV) is clear.
(IV) ⇒ (I): Let X,Y ∈ L, we want to prove

F (X) + F (Y ) ≥ F (X ∪ Y ) + F (X ∩ Y ). (11)

If the set difference |X∆Y | ≤ 2, then either X ⊆ Y or Y ⊆ X or X \ Y = {x}, Y \X = {y}. (11)
holds trivially for the first two cases. For the last case, taking Z = X ∩ Y and applying (IV) we
have again (11). We perform induction on |X∆Y |. Assume w.l.o.g. |X \ Y | ≥ 2. Take any maximal
element in X \ Y , say ω. Since L is simple, we know ω 6� z for any z ∈ X ∩ Y for otherwise ω ∈ Y
as Y is an ideal. Thus ω is a maximal element of X hence X \ {ω} ∈ L. By the induction hypothesis

F (X ∪ Y )− F (X) ≤ F ((X \ {ω}) ∪ Y )− F (X \ {ω}) ≤ F (Y )− F (X ∩ Y ).

Rearranging completes the induction hence our proof.

Intuitively the quantity F (X ∪ {ω})− F (X) denotes the “gain” of adding the element ω into the
set X, and the above proposition states that submodular functions have diminishing gain (as the set
X gets bigger).

Thanks to Proposition 2.2, we can present (and verify) more examples about submodularity.

Example 2.6: Rank is submodular

Let us consider a fixed matrix A ∈ Rm×n. Define Ω := {1, . . . , n} and the rank function R on
X ⊆ Ω as the number of linearly independent columns of A, indexed by the elements of X. Using
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2 Submodular Functions

Proposition 2.2 we easily verify that R is submodular: First note that Rj(X) := R(X∪{j})−R(X) ∈
{0, 1} for any X ⊆ Ω and j ∈ Ω. Take j 6∈ Y ⊃ X,

Rj(X) = 0 =⇒ Rj(Y ) = 0,

hence Rj(X) ≥ Rj(Y ), proving the submodulartiy of R.

Alert 2.3: Rank vs. cardinality

The (matrix) rank function is usually treated as a matrix generalization of the cardinality function.
But compare Example 2.4 and Example 2.6.

Example 2.7: Union coverage is submodular

Let Ω = {A1, . . . , An} be a collection of (possibly overlapping) sets and µ : 2∪Ω → R be some
increasing set function that is additive over disjoint sets (an outer measure). The coverage function
on 2Ω, defined as

U(X) := µ(∪X) (12)

is submodular: Let X ⊂ Y ⊆ Ω \ {Aj}, then

U(X ∪ {Aj})−U(X) =
[
µ
(
(∪X) ∩Aj

)
+ µ

(
(∪X) \Aj

)
+ µ

(
Aj \ (∪X)

)]
−
[
µ
(
(∪X) ∩Aj

)
+ µ

(
(∪X) \Aj

)]
= µ

(
Aj \ (∪X)

)
≥ µ

(
Aj \ (∪Y )

)
= U(Y ∪ {Aj})−U(Y ).

Example 2.8: Intersection coverage is supermodular

Similar as Example 2.7, consider the intersection

I(X) := µ(∩X), (13)

which is supermodular:

I(X ∪ {Aj})− I(X) = −µ
(
(∩X) \Aj

)
≤ −µ

(
(∩Y ) \Aj

)
= I(Y ∪ {Aj})− I(Y ).

The next theorem about composition is occasionally useful.

Theorem 2.1: Concave composing monotonic modular is submodular

Let |Ω| ≥ 3, M : 2Ω → R and g : R→ R. F := g ◦M is (strictly) submodular for every monotone
modular M iff g is (strictly) concave.
Proof: Notice that a real-valued function g is concave iff ∀x < y < z < w,

g(y)− g(x)

y − x
≥ g(z)− g(w)

z − w
. (14)

⇐: Let g be concave (hence satisfy (14)) and M be increasing modular. For any X ⊂ Y ⊆ 2Ω, we
verify (III) in Proposition 2.2 for any ω ∈ Ω \ Y :

F (X ∪ {ω})− F (X) = g
(
M(X) +M({ω})−M(∅)

)
− g(M(X))

≥ g
(
M(Y ) +M({ω})−M(∅)

)
− g(M(Y )) (15)
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2 Submodular Functions

= F (Y ∪ {ω})− F (Y ).

If F is decreasing, simply consider −F and g(−·), which is again modular and concave, respectively.
⇒: If g is not concave, (14) is violated at some x < y = z < w. Based on this observation we can

easily construct a monotonic modular function M that does not satisfy (15).

By (7) a modular function M on 2Ω is increasing iff

M(∅) ≤ min
ω∈Ω

M({ω}). (16)

A more general result is in Proposition 4.1 below. Note that this theorem does not generalize to
simple lattices (or σ-algebras): take L = {∅, {1}, {1, 2}, {1, 2, 3}}, then any function defined on L is
trivially submodular.

Our last examples of submodularity require an important definition.

Definition 2.3: Base polyhedron and subbase polyhedron

For any set function (not necessarily submodular) F , with F (∅) = 0, we associate it with the subbase
polyhedron

PF :=
⋂
X∈L

{q ∈ RΩ : q(X) ≤ F (X)}, (17)

and the base polyhedron

BF := PF ∩ {q ∈ RΩ : q(Ω) = F (Ω)}. (18)

Note that PF is unbounded with nonempty interior while BF can be empty, although we shall see
this cannot happen if F is submodular. By definition PF and BF are closed and convex (which has
nothing to do with submodularity). For supermodular functions we reverse the inequality in (17).

Alert 2.4: Centering

Whenever we are referring to the subbase or base polyhedron, it is implicitly assumed that the
underlying function satisfies F (∅) = 0. This is merely for convenience and we can always achieve it
by subtracting F (∅), without affecting properties such as submodularity or monotonicity.

Theorem 2.2: Pointed base polyhedron

The (sub)base polyhedron (of any function), if nonempty, is pointed (i.e. with extreme points) iff L
is simple.
Proof: A closed convex set is pointed iff it does not contain a line. In our setting, it is further
equivalent to require

0 =
⋂
X∈L

{q ∈ RΩ : q(X) = 0}.

Using Theorem 1.3 the above is satisfied iff

0 =
⋂
X∈P
{q ∈ RΩ : q(X ) = 0}.

This is possible iff |X | ≡ 1, i.e., L is simple.

The next result about lattices is useful at times.
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2 Submodular Functions

Proposition 2.3: Coupling

For any ∅ 6= X 6∈ L, there exist x ∈ X and y 6∈ X such that x ∈ Y ∈ L =⇒ y ∈ Y .
Proof: X 6∈ L implies X is not the union of an ideal in (P,�), i.e., there exist J � I ∈ P such that
X ∩ J = ∅, I ⊆ X. Pick arbitrary x ∈ I and y ∈ J .

Theorem 2.3: Bounded base polyhedron

The base polyhedron (of any function), if nonempty, is bounded iff L is a simple Boolean algebra,
i.e. L = 2Ω.
Proof: If L = 2Ω, then BF is contained in F (Ω)−

∑
y 6=x F ({y}) ≤ q({x}) ≤ F ({x}), clearly bounded.

On the other hand, if L ⊂ 2Ω, by Proposition 2.3 there exists x, y ∈ Ω so that x ∈ Y ∈ L =⇒ y ∈ Y .
Take an arbitrary b ∈ BF , the half line {b+α(ex− ey) : α ≥ 0} ⊆ BF , showing the unboundedness
of the base polyhedron BF .

Now we can proceed with more examples of submodularity.

Example 2.9: Permutahedron

Consider the concave function g(x) = (n + 1
2 )x − 1

2x
2 and the cardinality function | · | : 2Ω → N,

where Ω := {1, . . . , n}. By Theorem 2.1 we know the composition

F (X) := g(|X|) =

|X|∑
i=1

(n− i+ 1) (19)

is submodular. Note that the extreme points of the base polyhedron BF are exactly all permutations
of Ω.

Example 2.10: Majorization

Take an arbitrary w ∈ RΩ, where Ω := {1, . . . , n}. Define for all X ⊆ Ω,

Fw(X) :=

|X|∑
i=1

wi, (20)

where for the empty sum we take Fw(∅) = 0. By Proposition 2.2, Fw is submodular iff for all X ⊆ Y ,
w|X|+1 ≥ w|Y |+1, i.e., w is ordered decreasingly: w1 ≥ · · · ≥ wn, in which case b ∈ RΩ is majorized
by w iff b ∈ BFw , and p is weakly majorized by w iff p ∈ PFw (whereas the if parts hold even when
w is not ordered).

Note that Fw depends only on the cardinality of its input. In fact, any such function F (that
vanishes at the empty set) is easily seen to be in the form of (20).

There are many other important submodular functions, but we shall contend ourselves with what we
have discussed, for the time being.
We end this section with an important definition.

Proposition 2.4: Saturation sublattice

For any subbase p ∈ PF of a submodular function F : L→ R,

Sp := {X ∈ L : p(X) = F (X)}, (21)

if nonempty, is a sublattice of L.
Proof: Simply note that Sp is the minimizing set of the nonnegative submodular function F (X)−p(X).
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Apply Proposition 2.1.

Definition 2.4: Capacity function

For any subbase p ∈ PF of an arbitrary function F : L→ R and for any x, y ∈ Ω,

c(p, x, y) := min{F (X)− p(X) : x ∈ X ∈ L, y 6∈ X}, (22)

and

c(p, x) := min{F (X)− p(X) : x ∈ X ∈ L}. (23)

Clearly c(p, x, y) ≥ c(p, x) ≥ 0. The importance of the capacity function is that it determines how
much we can add to p before it leaves the subbase polyhedron PF :

• p + αex ∈ PF for all 0 ≤ α ≤ c(p, x);

• p + α(ex − ey) ∈ PF for all 0 ≤ α ≤ c(p, x, y).

Let p ∈ PF and F be submodular, the unique maximal element in Sp (see (21)) coincides with

sat(p) := {x ∈ Ω : c(p, x) = 0} ∈ L. (24)

Define the dependent set dep(p, x) ∈ L to be the unique smallest element in Sp that contains x. We
verify that

c(p, x, y) = 0 ⇐⇒ x ∈ sat(p) and y 6∈ dep(p, x). (25)

Proposition 2.5: Bases are maximal

Let F : L → R be submodular and b ∈ PF . Then b ∈ BF iff b is maximal in PF (under the
pointwise order). In particular, BF 6= ∅.
Proof: Clearly, any b ∈ BF is maximal in PF . On the other hand, suppose b is maximal in PF ,
then c(b, x) = 0 for any x ∈ Ω for otherwise b + αex with some small positive α will contradict the
maximality of b. Thus sat(b) = Ω and b(Ω) = b(sat(b)) = F (sat(b)) = F (Ω).

3 Basic Properties
We study basic properties of submodular functions in this section, starting with trivialities.

Theorem 3.1: Submodular functions form convex cone

The set of submodular functions is a convex cone, i.e., if Fi : L→ R are submodular, so is λ1F1+λ2F2

for any λi ≥ 0 where i ∈ {1, 2}. �

Therefore the set of submodular functions on the same domain L induces a pre-order on RL, the vector
space of all real-valued set functions on L. In fact, this pre-order is generating.

Theorem 3.2: Submodular-Supermodular decomposition

Any function G : L→ R can be written as F1 − F2, with F1 and F2 being submodular on L.
Proof: Define

δG := min
X∈L,Y ∈L,X 6⊆Y,Y 6⊆X

G(X) +G(Y )−G(X ∪ Y )−G(X ∩ Y ),
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and let H be a strictly submodular function on L with δH > |δG| (the existence of such a function
is discussed in Example 2.3). If δG ≥ 0, then let F1 = G and F2 = 0; otherwise let F1 = H and
F2 = H −G.

Of course, the decomposition need not be unique. It remains a tricky question to define certain
minimal decompositions that are useful in applications.

Denote L1 ∧ L2 as the largest sublattice contained in both L1 and L2. In fact, L1 ∧ L2 = L1 ∩ L2.
Similarly, denote L1 ∨ L2 as the smallest lattice that contains L1 ∪ L2. It is easily seen that L1 ∨ L2 can
be obtained by taking all disjoint unions of elements in L1 ∪ L2.

Theorem 3.3: Summation

Let F : L1 → R and G : L2 → R be centered submodular, then F + G : L1 ∧ L2 → R with
X 7→ F (X) +G(X) is submodular, and

PF+G = PF + PG. (26)

Proof: Clearly LHS ⊇ RHS. For the converse, note that q ∈ LHS iff ∀X ∈ L1 ∧ L2, q(X) ≤
F (X) +G(X), i.e., q(X)− F (X) ≤ G(X). According to Theorem 4.9 below, there exists p ∈ RΩ

such that q− F ≤ p on L1 and p ≤ G on L2. So we have found q− p ∈ PF and p ∈ PG.

This result is a bit surprising because we do not, although we could, restrict F (or G) on the RHS
of (26) to L1 ∧ L2.

Theorem 3.4: Basic set operations preserve submodularity

Let F : L→ R be submodular. Then for any S ⊆ Ω

US(X) := F (X ∪ S) defined on {Z ⊆ Ω : Z ∪ S ∈ L}
IS(X) := F (X ∩ S) defined on {Z ⊆ Ω : Z ∩ S ∈ L}
CS(X) := F (S \X) defined on {Z ⊆ Ω : S \ Z ∈ L}

are all submodular. �

However, some caution must also be taken (especially when treating submodularity as discrete convexity).

Example 3.1: Pointwise maximum/minimum does not preserve submodularity

Consider the modular functions defined on 2Ω with Ω := {ω1, ω2, ω3}:

M1(∅) = 0,M1({ω1}) = 1,M1({ω2}) = −1,M1({ω3}) = 1;

M2(∅) = 0,M2({ω1}) = 2,M1({ω2}) = −2,M1({ω3}) = 2.

Taking X = {ω1, ω2} and Y = {ω2, ω3} we verify that M1 ∨M2 is not submodular, while taking
X = {ω1} and Y = {ω2} we see that M1 ∧M2 is not submodular either.

The disappointment brought by Example 3.1 is that we cannot meaningfully talk about the tightest
submodular envelop of a general set function. Nevertheless, we do have the following theorem. Note also
that for F1 ∨ F2 : L1 ∧ L2 → R,

PF1∨F2
⊇ conv{PF1

∪PF2
}. (27)

Theorem 3.5: Monotonic minimum preserves submodularity

Let F,G : L→ R be submodular. If F −G is monotonic, then F ∧G is submodular.
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Proof: Fix two arbitrary sets X,Y ∈ L. Denote H = F ∧G. If H agrees with, say F on {X,Y }, then

H(X) +H(Y ) = F (X) + F (Y ) ≥ F (X ∪ Y ) + F (X ∩ Y ) ≥ H(X ∪ Y ) +H(X ∩ Y ).

Otherwise assume that H(X) = F (X), H(Y ) = G(Y ) and that F −G is increasing, hence

H(X) +H(Y ) = F (X) +G(Y ) ≥ F (X ∪ Y )− F (Y ) + F (X ∩ Y ) +G(Y )

≥ G(X ∪ Y )−G(Y ) + F (X ∩ Y ) +G(Y )

≥ H(X ∪ Y ) +H(X ∩ Y ).

The case when F −G is decreasing is proved similarly.

Corollary 3.1: Monotone saturation preserves submodularity

Let F : L→ R be monotone, then F is submodular iff ∀c ∈ R, F ∧ c is submodular.
Proof: ⇒: Follows from Theorem 3.5 since F − c is monotone.
⇐: Take c ≥ maxX∈L F (X).

Example 3.2: Monotonicity is not essential in Corollary 3.1

Let Ω := {ω1, ω2} and define the non-monotone submodular function F (∅) = 0, F ({ω1}) =
−1, F ({ω2}) = 1, F (Ω) = −100. We notice that F ∧ c is submodular ∀c ∈ R. On the other
hand, changing F (Ω) to 0 we observe that F becomes modular but ∀ − 1 < c < 1, F ∧ c is not
submodular.

Definition 3.1: (Infimal) convolution

For any function F : L1 → R and G : L2 → R, we define their convolution F �G : L1 ∨ L2 → R as

(F �G)(X) = min{F (Y ) +G(Z)− F (∅)−G(∅) : Y ∈ L1, Z ∈ L2, Y ∩ Z = ∅, Y ∪ Z = X}. (28)

Proposition 3.1: Convolution is commutative and associative

F �G = G�F , (F �G)�H = F � (G�H), and (F −F (∅))� (G−G(∅)) = F �G. If F ≤ G are
centered submodular on the same lattice, then F �G = F .

Therefore when discussing the convolution we may assume the functions are centered. Clearly F �G ≤
F − F (∅) on L1 and similarly F �G ≤ G−G(∅) on L2, namely the convolution always brings down the
function values. Thus PF�G ⊆ PF ∩PG. The converse is also true.

Theorem 3.6: Polyhedron of the convolution is intersection of polyhedra

Let F : L1 → R and G : L2 → R be centered, then

PF�G = PF ∩PG. (29)

Proof: We need only prove LHS ⊇ RHS. Indeed, by definition, each defining inequality of LHS is
simply a summation of the defining inequalities of RHS.

Quite unfortunately, submodularity in general is not preserved under convolution.
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Example 3.3: Convolution of submodular functions need not be submodular

Let L1 = L2 = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. Let F = {0, 3, 3, 3, 3, 4, 4, 4}, G =
{0, 3, 3, 2, 4, 3, 4, 4}. Clearly both F and G are submodular. But F�G = {0, 3, 3, 2, 3, 3, 4, 4}, which is
not submodular: (F�G)({1, 2})+(F�G)({1, 3}) = 3+3 < 3+4 = (F�G)({1})+(F�G)({1, 2, 3}).

However, things are different when one of the functions is modular.

Theorem 3.7: Submodular convolving modular is submodular

The convolution of a submodular functon F : L → R and a modular function M : 2Ω → R,
F �M : 2Ω → R, remains submodular.
Proof: Let X,Y ∈ 2Ω and X1, Y1 ∈ L, X2, Y2 ∈ 2Ω so that X1 ∪X2 = X,X1 ∩X2 = ∅, Y1 ∪ Y2 =
Y, Y1 ∩ Y2 = ∅, and

(F �M)(X) + (F �M)(Y ) = F (X1) +M(X2) + F (Y1) +M(Y2)

≥ F (X1 ∪ Y1) + F (X1 ∩ Y1) +M(X2 ∪ Y2) +M(X2 ∩ Y2)

= F (X1 ∪ Y1) + F (X1 ∩ Y1) +M((X ∪ Y )− (X1 ∪ Y1))

+M((X ∩ Y )− (X1 ∩ Y1))

≥ (F �M)(X ∪ Y ) + (F �M)(X ∩ Y ),

where the second equality follows from the modularity of M . Note that we need M to be defined
on the whole Boolean algebra 2Ω since we have little control of where, say (X∪Y )−(X1∪Y1) sits in.

Consider the simple lattice L = {∅, {1}, {1, 2}, {1, 3}, {1, 2, 3}}, define M as the modular function
{0, 0, 1, 1, 2} and F as the submodular function {0, 0, 3, 0, 2}. Then F �M = {0, 0, 1, 0, 2} is not
submodular.

Clearly, F �M is the largest centered submodular function that is majorized by both F and M .

Corollary 3.2: Monotonization

Let F : L→ R be submodular, then for all X ⊆ Ω,

F ↓(X) := min
L3Y⊆X

F (Y ) (30)

is monotonically decreasing and submodular.
Proof: F ↓(X) = (F � 0)(X) + F (∅). Apply Theorem 3.7.

The next theorem provides a decomposition rule for submodular functions.

Theorem 3.8: Restriction and contraction are submodular

If F : L→ R is submodular, then ∀S ∈ L,

LS := {X ∈ L : X ⊆ S}, FS(Z) := F (Z), (31)

LS := {X \ S : X ∈ L}, FS(Z) := F (Z ∪ S)− F (S) (32)

are both submodular, called restriction and contraction of F w.r.t. the set S, respectively. �

For any vector q ∈ RΩ, we denote qS the subvector in RS that restricts to the components in S, and
qS the subvector in RΩ\S that restricts to the complement of S.

Theorem 3.9: (Sub)base decomposition

Let F : L → R be submodular and S ∈ L. The direct sum p := pS ⊕ pS ∈ PF if pS ∈ PFS
and
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pS ∈ PFS . Moreover, the converse is also true if pS is additionally maximal, and any two of the
following imply the third:

• p is maximal in PF ;

• pS is maximal in PFS
;

• pS is maximal in PFS .

Proof: First assume pS ∈ PFS
and pS ∈ PFS . For any X ∈ L,

p(X) = p(X ∩ S) + p(X \ S) = pS(X ∩ S) + pS(X \ S) ≤ FS(X ∩ S) + FS(X \ S)

= F (X ∩ S) + F (X ∪ S)− F (S) ≤ F (X).

Hence p ∈ PF .
Conversely, let p ∈ PF and pS(S) = FS(S) = F (S). For X ∈ LS , pS(X) = p(X) ≤ F (X) =

FS(X) while for Y ∈ LS , pS(Y ) = p(Y ∪ S)− p(S) ≤ F (Y ∪ S)− F (S) = FS(Y ).
Moreover, if pS and pS are maximal, then p(Ω) = pS(S)+pS(Ω\S) = F (S)+F (Ω)−F (S) = F (Ω),

proving the maximality of p; if pS and p are maximal, then pS(S) = p(Ω) − pS(Ω \ S) =
F (Ω)− F (Ω) + F (S) = F (S), proving the maximality of pS ; finally if pS and p are maximal, then
pS(Ω \ S) = p(Ω)− pS(S) = F (Ω)− F (S) = FS(Ω \ S), proving the maximality of pS .

Remark 3.1: Decomposition and divide and conquer

Under our definition, for any A,B ∈ L, it makes sense to talk about (FA)B only when B ⊆ A, and
similarly (FB)A only when A ∩B = ∅. Therefore the notation FBA has a unique meaning.

Moreover, for any A,B ∈ L, if A ⊆ B, (FB)A = FA and (FA)B = FB . For an increasing sequence
A1 ⊂ A2 ⊂ · · · ⊂ Ak in L, we have the decomposition (in the sense of Theorem 3.9) F = FAk

⊕FAk ,
and of course FAk

= (FAk
)Ak−1

⊕ (FAk
)Ak−1 = FAk−1

⊕ FAk−1

Ak
. Recursively this gives

F = FA1
⊕ FA1

A2
⊕ FA2

A3
· · · ⊕ FAk−1

Ak
⊕ FAk . (33)

The importance of the above decomposition is self-evident: divide and conquer now comes into play.

Proposition 3.2: Attainability

Let F : L → R be submodular. For any X ∈ L, there exists a (sub)base b of F such that
b(X) = F (X); while for any X 6∈ L and any K > 0, there exists a subbase p such that p(X) ≥ K.
Proof: Suppose X ∈ L. Take a base of FX and a (sub)base of FX , their direct sum is a (sub)base of
F and satisfy our requirement, according to Theorem 3.9.
If X 6∈ L, by Proposition 2.3 we can find x ∈ X, y 6∈ X so that x ∈ Y ∈ L =⇒ y ∈ Y . Thus for

any subbase p, p + α(ex − ey) for α large enough satisfies our requirement.

Suppose we have a submodular function F : L→ R. Of course F is determined by its values on all sets
in L, but is it possible to identify a smaller subset of L, namely a “base” or “subbase”, that nevertheless
would still allow us to recover F? The answer is a pleasant yes, but definitions first.

Definition 3.2: Intersecting family

A family of subsets D of Ω is called intersecting if for all X,Y ∈ D, X ∩ Y 6= ∅ =⇒ X ∩ Y ∈
D, X ∪ Y ∈ D. The function F : D → R is called intersecting submodular if for all X,Y ∈ D,
X ∩ Y 6= ∅ we have

F (X) + F (Y ) ≥ F (X ∩ Y ) + F (X ∪ Y ).
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Clearly, an intersecting family D need not be a lattice since for X,Y ∈ D, if X ∩ Y = ∅, then we
may not have X ∪ Y ∈ D. We fix this issue by enlarging D with all unions of its elements. Denote
this enlargement as Ď. Since D is intersecting, we easily verify that Ď consists of all disjoint unions of
elements in D. Note that we allow taking an empty union, which results in the empty set, and an empty
sum is taken to be 0. Recall that a partition is named proper if none of its members is empty.

Theorem 3.10: Extending an intersecting submodular function

Let D be an intersecting family and F : D→ R be intersecting submodular. Then Ď is a lattice. If
for each X ∈ Ď,

F̌ (X) := min

{∑
A∈A

F (A) : A ⊆ D is a proper partition of X

}
, (34)

then F̌ is submodular (on Ď) and F̌ (∅) = 0.
Proof: It is clear that Ď is a lattice. Also, ∅ ∈ Ď and F̌ (∅) = 0. By definition, each X ∈ Ď is
a disjoint union of elements in D, therefore F̌ is well-defined. Let X,Y ∈ Ď and A,B ⊆ D be
partitions of X and Y , respectively, so that F̌ (X) =

∑
A∈A F (A) and F̌ (Y ) =

∑
B∈B F (B). For any

A,B ∈ C := A∪B, if A∩B 6= ∅ and A 6⊆ B 6⊆ A, we replace A with A∩B and B with A∪B. Since

|A| · |Ω \A|+ |B| · |Ω \B| > |A ∩B| · |Ω \ (A ∩B)|+ |A ∪B| · |Ω \ (A ∪B)|,

after a finite number of these steps, we must have either A ∩ B = ∅ or A ⊆ B or B ⊆ A, i.e., a
laminar system. All maximal elements in C are disjoint and their union is X ∪ Y , i.e. a partition,
while the remaining elements form a partition for X ∩ Y (since during our re-shuffling we never
change the number of total elements). Since F is intersecting submodular, we have

F̌ (X) + F̌ (Y ) =
∑
A∈A

F (A) +
∑
B∈B

F (B) ≥
∑
C∈C

F (C) ≥ F̌ (X ∩ Y ) + F̌ (X ∪ Y ).

Very pleasantly, if F (∅) ≥ 0, by construction we have

PF = PF̌ , (35)

and F̌ is integer valued if F is.

Frequently we will need to center a submodular function F so that F (∅) = 0. This can be achieved by
simply subtracting the constant function F (∅) without affecting submodularity. It turns out that there is
another fancier way.

Corollary 3.3: Dilworth truncation

For any submodular function F : L→ R, its Dilworth truncation

F̌ (X) = min

{∑
A∈A

F (A) : A ⊆ L is a proper partition of X

}
(36)

is the unique maximal submodular function that vanishes at ∅ and that is majorized by F .

Recall that we can generate a topology by taking (arbitrary) unions of a basis; Theorem 3.10 is similar
in spirit. Quite naturally, one wonders if we can generate a submodular function from a subbase, perhaps
by taking intersections first and then unions?

Definition 3.3: Crossing family

A family of subsets D of Ω is called crossing if for all X,Y ∈ D, X ∩ Y 6= ∅ and X ∪ Y 6= Ω =⇒
X ∩ Y ∈ D, X ∪ Y ∈ D. The function F : D→ R is called crossing submodular if for all X,Y ∈ D,
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X ∩ Y 6= ∅, X ∪ Y 6= Ω we have

F (X) + F (Y ) ≥ F (X ∩ Y ) + F (X ∪ Y ).

As suggested, we enlarge D by taking all intersections of its elements, denoted as D̂. We expect D̂
to be intersecting. Note that we allow taking empty intersections, which result in the full set Ω. To
understand the structure of D̂, recall that a family of sets A ⊆ 2Ω is called a (proper) copartition of Ω if
{X \ A : A ∈ A} form a (proper) partition of Ω. For each x ∈ Ω, define Dx := {X ∈ D : x ∈ X}, then
D =

∑
x∈Ω Dx is a disjoint union. So we need only take intersections within each Dx. Moreover, since any

two sets in Dx intersect and D is crossing, we need only take intersections of any two sets in Dx whose
union is the full set Ω. In other words, each set in D̂x admits a copartition whose elements come from Dx.

Theorem 3.11: Extending a crossing submodular function

Let D be a crossing family and F : D→ R be crossing submodular. Then D̂ is intersecting. If for
each X ∈ D̂,

F̂ (X) := min

{∑
A∈A

F (A) : A ⊆ D is a proper copartition of Ω \X

}
, (37)

then F̂ is intersecting submodular (on D̂) and F̂ (Ω) = 0.
Proof: For each x ∈ Ω define Ex := {Ω \ X : x ∈ X ∈ D}. Fix any Ω \ Y,Ω \ Z ∈ E where
x ∈ Y ∈ D, x ∈ Z ∈ D. If (Ω \Y )∩ (Ω \Z) 6= ∅, meaning Y ∪Z 6= Ω, then x ∈ Y ∩Z ∈ D since D is
crossing. Thus (Ω\X)∪(Ω\Y ) = Ω\(X∩Y ) ∈ Ex and similarly (Ω\X)∩(Ω\Y ) = Ω\(X∪Y ) ∈ Ex,
i.e., Ex is intersecting. Therefore Ěx is a lattice, and so is D̂x = Ω \ Ěx. Since D̂ =

∑
x∈Ω D̂x is a

disjoint union, it is intersecting.
To see that F̂ is intersecting submodular, it suffices to consider its restriction F̂x to the lattice

D̂x. Define G : Ex → R by G(X) = F (Ω \X) for each X ∈ Ex. Since F is crossing submodular, G
is intersecting submodular. By Theorem 3.10 Ǧ is submodular on Ěx. As it can be verified that
F̂x(X) = Ǧ(Ω \X), we know F̂x is submodular.

Pleasantly, if F (Ω) = 0, b(X) ≤ F̂ (X) ⇐⇒ b(X) ≤
∑
A∈A F (A) ⇐⇒ b(Ω \ X) ≥

−
∑
A∈A F (A) ⇐⇒

∑
A∈A b(Ω \A) ≥ −

∑
A∈A F (A) ⇐⇒

∑
A∈A b(A) ≤

∑
A∈A F (A), thus

BF = BF̂ . (38)

More generally, for any given F (Ω), we translate back and forth to get a similar result. Clearly
F̂ is integer valued if F is. On the other hand, if F (Ω) is not given, we may not maintain even
the subbase polyhedron: Consider Ω = {1, 2, 3},L = {{1, 2}, {1, 3}, {2, 3}} and F = {1, 1, 1}. Its
subbase polyhedron is not even integral, with (1/2, 1/2, 1/2) being a vertex.

4 Greedy Algorithm
We consider the following maximization problem in this section:

σ[F (w) := max
b∈BF

〈b,w〉 , (39)

namely the support function of the base polyhedron of the centered function F : L → R. Here and
throughout we use 〈·, ·〉 for the inner product of the underlying space.

Remark 4.1: “Simplification” in the primal

If L is not simple, then P 6= Ω. By considering b + α(ex − ey), we know (39) is finite only when
wx = wy for all x, y ∈ X ∈ P. Therefore we can take the simplification of F , that is, F̃ constructed
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in Remark 1.3, and consider (at least in theory) the equivalent problem:

max
b̃∈BF̃

〈
b̃, w̃

〉
,

where for all X ∈ P, w̃({X}) = w({x}) for any x ∈ X , and b̃({X}) =
∑
x∈X b({x}).

To motivate the next result, recall from Theorem 2.3 that the base polyhedron is bounded iff L is a
simple Boolean algebra, thus for a simple L we still need some assumption on the “weight” vector w so
that (39) admits a maximizer. This is achieved by a beautiful result that characterizes the polar cone of
the isotonic cone, defined as follows.
The ordered set (Ω = P,�) induces the (anti)isotonic (convex) cone

K := {w ∈ RΩ : wx ≥ wy, ∀x � y}, (40)

which is generating as it clearly has nonempty interior. Our goal is to characterize its polar cone: K◦ :=
{z ∈ RΩ : 〈w, z〉 ≤ 0,∀w ∈ K}. Recall that a subset Y of Ω is called an ideal if ∀x � y ∈ Y =⇒ x ∈ Y .

Theorem 4.1: Characterizing the polar cone

K = {w ∈ RΩ : 〈w, ey − ex〉 ≤ 0,∀y that is an immediate successor of x} (41)

K◦ = {z ∈ RΩ : z(Ω) = 0, z(X) ≤ 0,∀ proper ideal X in (Ω,�)} =: 0+BF (42)

Proof: The first equality is standard. Thus K◦ consists of all conic combinations of the vectors
ey − ex, each of which clearly belongs to the right-hand side, meaning LHS ⊆ RHS in (42). For the
other direction, we slightly abuse the notation to let

w1 > w2 > · · · > wk (43)

be the distinct elements of w ∈ K. Define for each i ∈ {1, . . . , k},

Ai := {x ∈ Ω : wx ≥ wi}. (44)

Thanks to the monotonicity of w, Ak = Ω and all other Ai’s are proper ideals. Let A0 = ∅, then for
any fixed z ∈ RHS,

〈w, z〉 =
∑
x∈Ω

wxzx =

k∑
i=1

wi
∑

x∈Ai\Ai−1

zx =

k∑
i=1

wi(z(Ai)− z(Ai−1)) =

k−1∑
i=1

(wi − wi+1)z(Ai) ≤ 0,

where we have used the fact that z(Ω) = 0 and z(Ai) ≤ 0. Therefore RHS ⊆ LHS too.

Note that (41) is a minimal characterization while (42) may contain redundant constraints. Indeed,
we need only consider all principal ideals (since any ideal is a union of principal ideals when |Ω| <∞).

Now we are ready to discuss when (39) has a maximizer.

Theorem 4.2: Existence of maximizer: Base polyhedron

Let L be simple, then problem (39) has a solution iff BF 6= ∅ and w : Ω → R is monotonically
decreasing from (Ω,�) to R (equipped with its usual order), namely w ∈ K.
Proof: Problem (39) is bounded from below iff w is in the polar of the recession cone of the base poly-
hedron, that is 〈b,w〉 ≤ 0 for all {b ∈ RΩ : b(Ω) = 0,b(X) ≤ 0 for all proper ideals X in (Ω,�)}.
By Theorem 4.1 w ∈ (K◦)◦ = K, where the isotonic cone K is defined in (40).
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Note that Theorem 4.2 is mostly about the underlying lattice: we have not used any information about
the function F except the nonemptyness of its base polyhedron. In particular, when L is a simple Boolean
algebra, the ordered set (Ω,�) is trivial, hence no assumption on the weight vector w is needed, matching
the conclusion we have drawn from Theorem 2.3.
Before continuing, let us point out an easy observation about the support function of the subbase

polyhedron:

σF (w) := max
p∈PF

〈p,w〉 . (45)

Theorem 4.3: Existence of maximizer: Subbase polyhedron

Let L be simple, (45) has a maximizer iff w ∈ K ∩RΩ
+, whose polar is K◦ +RΩ

− = 0+PF . If F is
submodular, (45) reduces to (39), and for any t ≤ mini wi,

σ[F (w) = t · F (Ω) + σF (w − t1). (46)

Proof: (45) has a maximizer iff w ∈ (0+PF )◦, with the recession cone 0+PF := {z ∈ RΩ : z(X) ≤
0, for all ideal X in (Ω,�)}. Thus all we need is to prove K◦+RΩ

− = 0+PF . Thanks to Theorem 4.1,
LHS ⊆ RHS is clear. Fix any w ∈ K ∩RΩ

+, a similar argument as in the proof of Theorem 4.1 yields
〈w, z〉 ≤ 0 for all z ∈ 0+PF . Therefore K ∩RΩ

+ ⊆ (0+PF )◦ =⇒ K◦ +RΩ
− ⊇ 0+PF .

If F is submodular, w.l.o.g. we assume F (∅) ≥ 0. By Proposition 2.5 p ∈ PF ⇐⇒ ∃b ∈ BF

such that p ≤ b. The rest follows from Theorem 4.2.

Edmonds [1970] showed that for submodular functions there is a simple greedy algorithm that computes
the support functions (39) and (45).

Algorithm 4.1: Greedy algorithm for (39)

• Find a maximal increasing sequence ∅ = S0 ⊂ S1 . . . ⊂ Sn = Ω that contains each Ai in (44);

• Set b?(Si \ Si−1) = F (Si)− F (Si−1).

The algorithm is greedy in the sense that for any b ∈ BF , by maximality Si\Si−1 ∈ L, hence b(Si\Si−1) ≤
F (Si \Si−1) ≤ F (Si)−F (Si−1) +F (∅)—we go for the upper bound (but neglect the constant term F (∅)).

Theorem 4.4: Correctness of Algorithm 4.1

Let L be simple and w be monotonically decreasing from (Ω,�) to R. Algorithm 4.1 always returns
a maximizer of (39) iff F is submodular and F (∅) ≥ 0.
Proof: Let b? be the solution returned by Algorithm 4.1 and b ∈ BF be arbitrary. Then

〈b− b?,w〉 =
∑
x∈Ω

wx(bx − b?x) =

k∑
i=1

wi
∑

x∈Ai\Ai−1

(bx − b?x)

=

k∑
i=1

wi
(
b(Ai)− b(Ai−1)− b?(Ai) + b?(Ai−1)

)
=

k∑
i=1

wi
(
b(Ai)− b(Ai−1)− F (Ai) + F (Ai−1)

)
=

k−1∑
i=1

(wi − wi+1)
(
b(Ai)− F (Ai)

)
≤ 0. (47)

Therefore we need only prove that b? ∈ BF iff F is submodular.
The correctness of Algorithm 4.1 implies b? ∈ BF . For any incomparable X,Y ∈ L, let {Si}ni=0
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be a maximal increasing sequence that contains X ∩ Y , X ∪ Y and of course {Ai}ki=1. Thus

F (X) + F (Y ) ≥ b?(X) + b?(Y ) = b?(X ∩ Y ) + b?(X ∪ Y ) ≥ F (X ∩ Y ) + F (X ∪ Y ).

For the reverse direction, we note that FAi−1

Ai
is defined on {X \ Ai−1 : L 3 X ⊆ Ai} and

sends Z = X \ Ai−1 to F (Z ∪ Ai−1) − F (Ai−1), see Theorem 3.8 and Remark 3.1. We claim
that b?Ai\Ai−1

is a base of FAi−1

Ai
. Indeed, let Sj0 = Ai−1, Sjm+1

= Ai, and Z = {zj1 , . . . , zjm}
with zjt = Sjt \ Sjt−1, t = 1, . . . ,m. Since L is simple and {Sj}nj=0 is maximal, by Theorem 1.3
|Sj \ Sj−1| = 1 for all 1 ≤ j ≤ n. Thanks to the submodularity of F , for all m ≥ t ≥ 1,

F (Sj0 ∪ {zj1 , . . . , zjt}) + F (Sjt−1) ≥ F (Sj0 ∪ {zj1 , . . . , zjt−1}) + F (Sjt).

Here notice that Sj0 ∪ {zj1 , . . . , zjt} ∈ L implies Sj0 ∪ {zj1 , . . . , zjt−1} ∈ L. Thus summing from
t = m to t = 1 we obtain

F (Sj0 ∪ {zj1 , . . . , zjm})− F (Sj0) ≥
m∑
t=1

F (Sjt)− F (Sjt−1),

that is, F (Ai−1 ∪ Z)− F (Ai−1) ≥ b?(Z). By definition b?(Ai \ Ai−1) = F (Ai)− F (Ai−1). So we
have proved that b?Ai\Ai−1

is a base of FAi−1

Ai
. Since 1 ≤ i ≤ n is arbitrary, we know from Remark 3.1

that b? ∈ BF .

Theorem 4.5: Characterizing the maximizer by base decomposition

If L is simple, F : L→ R is submodular, and w is monotonically decreasing from (Ω,�) to R, then
the maximizers of (39) are given by

BFA1
⊕B

F
A1
A2

⊕ · · · ⊕B
F

Ak−1
Ak

⊕BFAk , (48)

where the sets {Ai}ki=1 are defined in (44).
Proof: It is clear from the inequality (47) that any vector in the form of (48) is a maximizer for (39).
On the other hand, if b is a maximizer, then for all x ∈ Ai we have dep(b, x) ⊆ Ai, for otherwise
b + α(ex − ey) with any y ∈ dep(b, x) − Ai and small positive α gives a larger objective than b
(note that wx > wy). Thus Ai =

⋃
x∈Ai

dep(b, x). By definition b(dep(b, x)) = F (dep(b, x)) hence
by Proposition 2.4 b(Ai) = f(Ai). Due to feasibility b is a base of F , and applying Remark 3.1
completes our proof.

Corollary 4.1: Uniqueness of maximizer

Let L be simple and F be submodular. (39) has a unique solution iff F (∅) ≥ 0 and w ∈ K is 1-1.
Proof: If w is not 1-1, then one of B

F
Ai−1
Ai

, i = 1, . . . , k, will have multiple bases.

Corollary 4.2: Extreme points of base polyhedron

Let L be simple and F be submodular. b ∈ BF is an extreme point iff F (∅) ≥ 0 and there is a
maximal increasing sequence ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = Ω in L so that b(Si\Si−1) = F (Si)−F (Si−1)
for all i = 1, . . . , n.
Proof: If b is an extreme point, then any of its supporting hyperplanes will give us the desired
maximal increasing sequence. On the other hand, given the maximal sequence, we construct a 1-1 w
so that its associated sets Ai := {x ∈ Ω : wx ≥ wi} = Si. According to Corollary 4.1 b is a unique
solution hence an extreme point.
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Theorem 4.6: Characterizing the maximizer by local optimality

If L is simple, F : L → R is submodular with F (∅) ≥ 0, and w is monotonically decreasing from
(Ω,�) to R, then b ∈ BF is a maximizer of (39) iff for all x, y ∈ Ω, y ∈ dep(b, x) =⇒ wy ≥ wx.
Proof: We have seen the necessity in the proof of Theorem 4.5: Simply consider b + α(ex − ey). For
the sufficiency, note that the given condition implies that for the set Ai defined in (44), we have
Ai =

⋃
x∈Ai

dep(b, x) hence b(Ai) = F (Ai) by Proposition 2.4. Appeal to Theorem 4.5.

Recall that the tangent cone at the point b in a set C ⊆ RΩ is defined as cl
(⋃

λ>0 λ(C − {b})
)
while

the normal cone is defined as {z ∈ RΩ : 〈z,w − b〉 ≤ 0,∀w ∈ C}. Clearly the tangent cone and the
normal cone are polar to each other.

Corollary 4.3: Tangent cone of base polyhedron

Let L be simple and F be submodular with F (∅) ≥ 0, for any b ∈ BF , its tangent cone is the conic
combinations of 1x − 1y for all x ∈ Ω, y ∈ dep(b, x).
Proof: From convex analysis we know that b is optimal for (39) iff w is in the normal cone of b,
while from Theorem 4.6 we know b is optimal iff w is in the polar of the cone spanned by 1x − 1y
for all x ∈ Ω, y ∈ dep(b, x).

To discuss the monotonicity of a submodular function F defined on a simple lattice L, let us define for
each x ∈ Ω, Ix :=

⋂
{X ∈ L : x ∈ X}, i.e., the (union of the) principal ideal of [x] in (P,�), and let

∀x ∈ Ω, ux := F (Ix)− F (Ix \ {x}). (49)

Note that x is a maximal element in Ix, hence Ix \ {x} is an ideal therefore belongs to L. Since F is
submodular, for all X ∈ L so that x ∈ X and X \ {x} ∈ L, we have

F (X)− F (X \ {x}) ≤ F (Ix)− F (Ix \ {x}) = ux.

Thanks to Corollary 4.2, u is the least upper bound of all extreme points, hence all points, in BF . In
particular, for all X ∈ L, F (X) ≤ u(X) since there exists a base b with b(X) = F (X), see Proposition 3.2.
Similarly, we define Ix :=

⋃
{X ∈ L : x 6∈ X} and

∀x ∈ Ω, `x := F (Ix ∪ {x})− F (Ix), (50)

i.e., ` is the greatest upper bound of all extreme points, hence all points, in BF .

Proposition 4.1: Characterizing monotonicity

Let L be simple and F : L → R be submodular, then F is (strictly) increasing iff ` is (strictly)
positive; (strictly) decreasing iff u is (strictly) negative.
Proof: We prove the if part for the decreasing case; others are similar. Let X ⊂ Y both in L and
ω ∈ Ω be a maximal element in Y \X. Since X is an ideal, ω is in fact a maximal element of Y , thus
Y \ {ω} is an ideal hence in L. Then F (Y )− F (Y \ {ω}) ≤ uω ≤ 0. Continue removing elements
until we reach Y = X.

Proposition 4.2: Characterizing modularity

Let L be simple and F : L→ R be centered submodular, then F is modular iff BF has one and only
one extreme point iff there exists a base b ∈ BF such that b = ` or b = u.
Proof: If BF has exactly one extreme point b, then for all X ∈ L, F (X) = σ[F (1X) = b(X), a modu-
lar function. On the other hand, if F is modular, any b ∈ BF coincides with ` (or u) by definition.
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In fact, each centered modular function M can be identified with its unique extreme base b so
that M(X) = b(X) for all X ∈ L.

Remark 4.2: Monotone-Modular decomposition

Here we show how to decompose a submodular function into the difference of two increasing
submodular functions. First observe that the map F 7→ `, see (50), is clearly linear. Therefore, for
all X in a simple lattice L,

F (X) = F (X)−M(X)︸ ︷︷ ︸
increasing submodular

+ M(X)︸ ︷︷ ︸
decreasing modular

, (51)

where we pick any modular function M whose (unique) extreme base dominates the lower bound `
of F . It is obvious that we can make both parts strictly monotonic. Additionally, if F is centered
and integer valued, then the decomposition can be made of two polymatroid functions, that is,
monotonically increasing centered submodular functions which take integral values.

Besides, if we are interested in minimizing F , then we know the minimizer may not be written as
the union of two disjoint sets X,Y ∈ L such that, say `y ≥ 0 for all y ∈ Y , after all `y ≥ 0 intuitively
means that F is increasing along the “coordinate” y. Indeed, following the proof of Proposition 4.1 to
remove each element in Y we can only decrease F . Note that it may well happen that the minimizer
still consists of some coordinate y with `y ≥ 0, as long as we do not have a partition of the minimizer
in L: take L = {∅, {1}, {1, 2}, {1, 2, 3}} and consider F = {2, 1, 2, 0}.

Remark 4.3: The greedy Algorithm 4.1 is primal-dual

The reasoning in the proof of Theorem 4.4 actually shows that the greedy Algorithm 4.1 is primal-dual.
Indeed, consider the dual problem of (39):

min
λ

∑
X∈L

λXF (X) (52)

s.t. ∀L 3 X 6= Ω, λX ≥ 0, (53)

∀x ∈ Ω, wx =
∑

L3X3x

λX . (54)

Let us set for each Ai in (44),

λ?Ai
= wi − wi+1, (55)

with the understanding that wk+1 = 0, and for all other X ∈ L, λ?X = 0. Clearly (53) is satisfied
since wi > wi+1 by definition. Moreover, for some j, wx = wj =

∑
i≥j(wi − wi+1) =

∑
L3X3x λ

?
X ,

satisfying (54). Finally,

〈b?,w〉 =

k∑
i=1

wi(b
?(Ai)− b?(Ai−1)) =

k∑
i=1

(wi − wi+1)F (Ai) =
∑
X∈L

λ?XF (X). (56)

Therefore by linear programming duality λ? defined in (55) is indeed a minimizer of the dual problem
(52). In particular, if w is integral, so is the dual minimizer λ?.

Remark 4.4: “Simplification” in the dual

The simplification we mentioned in Remark 4.1 extends to the dual problem (52)-(54). In fact, the
dual problem of max{〈w,b〉 : b ∈ BF }, when finite, is exactly the dual of max{〈w̃, b̃〉 : b̃ ∈ BF̃ },
where F̃ is the simplification constructed in Remark 4.1.
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The above primal-dual result is in fact way more far-reaching than it appears to be. We need some
background first. Recall that the linear system P := {z ∈ RΩ : A1z ≤ s1, A2z = s2} is called box
totally dual integral (box-TDI) if for any `,u ∈ RΩ and any integral c ∈ ZΩ, the dual problem of
max{〈c, z〉 : z ∈ P, ` ≤ z ≤ u} always has an integral solution (whenever there exists one). The matrix
A is called totally unimodular (TUM) if the determinants of all its submatrices are either 0 or ±1. We
will thoroughly discuss the many consequences of box-TDI and TUM later. For now, the following two
propositions, also due to Edmonds [1970], are enough.

Proposition 4.3: TUM support in the dual implies box-TDI

Consider the linear system P := {z ∈ RΩ : A1z ≤ s1, A2z = s2} for some matrix A = [A1, A2]
and vector s = [s1; s2]. If for any w ∈ RΩ, the problem max{〈z,w〉 : z ∈ P} has an optimal dual
minimizer λ? = [λ?1;λ?2] such that the rows of A corresponding to the support of λ? form a totally
unimodular submatrix, then the system P is box totally dual integral.
Proof: Fix any `,u ∈ RΩ, c ∈ ZΩ and consider the primal problem

max{〈z, c〉 : z ∈ P, ` ≤ z ≤ u},

whose dual is

min{〈λ1, s1〉+ 〈λ2, s2〉 − 〈α, `〉+ 〈β,u〉 : A>1 λ1 +A>2 λ2 −α+ β = c,λ1,α,β ≥ 0}. (57)

Fix any minimizer α?,β? ≥ 0, (57) is the dual problem of

max{〈z, c +α? − β?〉 − 〈α?, `〉+ 〈β?,u〉 : z ∈ P}.

Therefore by assumption the minimizer λ? = [λ?1;λ?2] in (57) can be chosen so that the rows of
A = [A1, A2] corresponding to the support of λ? form a TUM submatrix. Call the submatrix
Ã = [Ã1, Ã2] and denote λ̃i as the restriction of λi to the support of λ?i , then (α?, β?, λ̃?1, λ̃

?
2) is

feasible for

min{
〈
λ̃1, s̃1

〉
+
〈
λ̃2, s̃2

〉
− 〈α, `〉+ 〈β,u〉 : Ã>1 λ̃1 + Ã>2 λ̃2 −α+ β = c, λ̃1,α,β ≥ 0}. (58)

Clearly the constraints in (58) are TUM, thus it has an integral minimizer, which, after padding zero
(in λ̃), must also be optimal for (57) (since it has a smaller objective than (α?,β?,λ?), a minimizer
of (57)). Thus (57) has an integral minimizer, meaning that P is box-TDI.

The proof, although straightforward, is a very useful technique and will re-appear a few times
later. We remark that box-TDI is a property of the system parameterized by A and s. It is not
entirely, although close to, a property of the underlying polyhedron.

A collection of subsets of Ω , say F , is called a laminar system if for all X ∈ F , Y ∈ F we have either
X ⊆ Y or Y ⊆ X or X ∩ Y = ∅.

Proposition 4.4: Incidence of two laminar systems is TUM

Let F = F1 ∪ F2 be the union of two laminar systems F1,F2, the incidence matrix A ∈ RΩ×F ,
defined as Aω,X = 1 if ω ∈ X and 0 otherwise, is totally unimodular.
Proof: Let B be any square submatrix of A. Note that a subset of a laminar system is clearly laminar.
Pick any column of B that is indexed by the set X in, say F1. For all other columns of B that are
indexed also by sets in F1, we replace them with the set difference by X. This does not change the
determinant of B and the system remains laminar. Repeatedly, we can assume the sets in F1 and F2

are pairwise disjoint, respectively. Therefore each row of B contains at most two 1’s. If there exists
a row with all 0’s, then det(B) = 0, while if there exists a row with a singe 1, we perform induction.
Finally if every row has two 1’s, then they must each come from F1 and F2, respectively. Hence the
sum of the columns indexed by F1 equals the sum of the columns indexed by F2, again det(B) = 0.
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This proposition is clearly false for more than two laminar systems: Take

1 1 0
1 0 1
0 1 1

 whose

determinant is −2.

Theorem 4.7: (Sub)base system is box-TDI

The (sub)base system of a submodular function is box totally dual integral.
Proof: Thanks to Remark 4.4, we can assume the underlying lattice is simple. According to
Remark 4.3, the dual problem (55) admits a minimizer λ? whose support is an increasing sequence
in L, in particular, a laminar system. As a simple consequence of Proposition 4.4, we verify that the
rows corresponding to the support form a TUM submatrix. Apply Proposition 4.3.
Thanks to Theorem 4.3, the same conclusion for the subbase polyhedron is clear.

Theorem 4.7 can be further improved, after all we have not used the full power of Proposition 4.4.
Note that we do not discuss the intersection of two base systems since it can easily be empty, unless the
functions coincide at the ground set Ω, in which case Theorem 4.8 and Corollary 4.4 continue to hold
with essentially the same proof.

Theorem 4.8: Intersection of two subbase systems is box-TDI

The intersection of the subbase systems of two submodular/supermodular functions (not necessarily
defined on the same lattice) is box totally dual integral.
Proof: We prove the case for two submodular functions; the other cases are completely analogous
(recall that the subbase system for a supermodular function is defined by reversing the inequalities,
without taking negation of the set).

The dual problem is

min

{
2∑
i=1

∑
X∈Li

λi(X)Fi(X) : ∀X ∈ Li,λi(X) ≥ 0,∀x ∈ Ω,

2∑
i=1

∑
x∈X∈Li

λi(X) = wx

}
. (59)

Fix any minimizer λ?i of (59), and let αi =
∑
x∈X∈Li

λ?i (X). Consider the restricted subproblem
for i = 1, 2:

min

{∑
X∈Li

λi(X)Fi(X) : ∀X ∈ Li,λi(X) ≥ 0,∀x ∈ Ω,
∑

x∈X∈Li

λi(X) = α3−i

}
. (60)

As before, we assume w.l.o.g. that the lattices Li are simple. Since Fi is submodular, from Remark 4.3
we can choose a minimizer λ̃i for (60) whose support is an increasing sequence in Li. Clearly (λ̃1, λ̃2)
is also optimal for the dual problem (59), proving the existence of a dual minimizer whose support
is the union of two increasing sequences. Apply Proposition 4.3 and Proposition 4.4.
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Corollary 4.4: Min-max duality

Let F : L1 → R and G : L2 → R be centered submodular, then for any X ∈ L1 ∨ L2 we have

max{p(X) : p ∈ PF ∩PG} = (F �G)(X). (61)

Moreover, if F and G are integer valued, then we can choose an integral maximizer on the LHS.
Proof: Clearly LHS is equal to the dual problem (59), with w = 1X . According to Theorem 4.8, we
have an integral minimizer for the dual, but this can only happen when λ1(Y ) = 1 and λ2(X \Y ) = 1
for some Y ∈ L1, X \ Y ∈ L2, Y ⊆ X and λi vanish on all other sets.

When F,G are integer valued, the box-TDI of the system PF ∩PG implies it is integral.
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The result is not entirely trivial since F �G need not be submodular.

We need a handy construction that sends a submodular function to a supermodular one, and vice versa.

Definition 4.1: Negation

For any centered function F : L→ R, we associate it with the negated function F¬ : L̄→ R, where

L̄ := {Ω \X : X ∈ L}, (62)
F¬(Z) := F (Ω)− F (Ω \ Z). (63)

One easily verifies that indeed F is submodular iff F¬ is supermodular, and F is supermodular iff
F¬ is submodular.

Remark 4.5: Reversed order

As shown in Theorem 1.2, L consists of all lower ideals of the underlying ordered set (P,�). Not
surprisingly, L̄ consists of exactly all upper ideals of the same ordered set. Or we can treat L̄ as the
set of all lower ideals of the reversed ordered set (P, �̃), i.e., X�̃Y ⇐⇒ X�Y. Therefore, if K is
the isotonic cone of L, then the isotonic cone of L̃ is simply −K.

Proposition 4.5: Double negation cancels

For any centered F : L→ R, BF = BF¬ and (F¬)¬ = F .

Proof: One first verifies that ¯̄L = L, hence for X ∈ L, (F¬)¬(X) = F¬(Ω) − F¬(Ω \ X) =
F (Ω)− F (∅)− F (Ω) + F (X) = F (X) since we assume F (∅) = 0.

For any b ∈ BF and X ∈ L, Z = Ω\X, b(X) = b(Ω\Z) = b(Ω)−b(Z) ≤ F (X) = F (Ω)−F¬(Z).
Since F (Ω) = b(Ω), we have F¬(Z) ≤ b(Z).

The next theorem, due to Frank [1982], resembles a classic result in convex analysis, and the real
difference lies in its integral part.

Theorem 4.9: Discrete sandwich theorem

Let F : L1 → R be submodular and G : L2 → R be supermodular. If for all X ∈ L1 ∧ L2,
G(X) ≤ F (X), then there exists p? ∈ RΩ so that for all X ∈ L2, G(X) ≤ p?(X) while for all
X ∈ L1, p?(X) ≤ F (X). Moreover, if F and G are integer valued, we can choose p? ∈ ZΩ.
Proof: By translation we can assume w.l.o.g. F (∅) = 0 and G(∅) ≤ 0. Redefine G(∅) = 0, and note
that this does not ruin the supermodularity of G nor affect the theorem.
By Corollary 4.4 we have

max{p(Ω) : p ∈ PF ∩PG¬} = min{F (Y ) +G¬(Ω \ Y ) : Y ∈ L1, Y ⊆ Ω,Ω \ Y ∈ L̄2}
= min{F (Y ) +G(Ω)−G(Y ) : Y ∈ L1 ∩ L2} (64)
= G(Ω),

since F ≥ G on L1 ∧ L2 and they are centered. Any maximizer for the LHS, say p? satisfies
our requirement. Indeed, by feasibility, for all X ∈ L1, p?(X) ≤ F (X) and for all X ∈ L2,
p?(Ω \X) ≤ G¬(Ω \X) = G(Ω)−G(X), that is p?(X) ≥ G(X) since p?(Ω) = G(Ω).
When F,G are integer valued, we can choose a integral p?, according to Corollary 4.4.

Of course, we could have assumed G ≥ F on L1 ∧ L2 and get a similar result.
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5 The Lovász Extension
Motivated by the greedy Algorithm 4.1, in this section we extend a set function F : L→ R to f : K → R,
where K ⊆ RΩ is the (anti)isotonic cone defined in (40). The result, generally known as the Lovász
extension, appeared in Lovász [1982], but a more general theory was developed before by Choquet [1954].
The following convention will be adopted.

Remark 5.1: Centering and simplification

If L is not simple, we first identify (F,L) with its “simplification” (F̃ , L̃), which is defined in
Remark 4.1. In case F (∅) 6= 0, we first translate F −F (∅), compute the Lovász extension, and finally
add F (∅) back to the extension.

For any w ∈ K, as before we identify its unique elements as w1 > w2 > · · · > wk and define
Ai := {x ∈ Ω : wx ≥ wi}. Then we have the decomposition

w =

k∑
i=1

λi · 1Ai
, (65)

where, with the understanding wk+1 = 0,

λi := wi − wi+1 (66)

is uniquely determined, thanks to the monotonicity of w. Next, we define the Lovász extension of F as

f(w) =

k∑
i=1

λi · F (Ai) =

k∑
i=1

(wi − wi+1) · F (Ai) =

k∑
i=1

wi ·
(
F (Ai)− F (Ai−1)

)
, (67)

with the understanding that F (A0) = F (∅) = 0. Clearly, f is a positively homogeneous real-valued
function defined on the isotonic cone K. More importantly, f is an “extension” of F in the following sense.

Theorem 5.1: Lovász extension is an extension

Consider F : L→ R and f its Lovász extension. For all X ∈ L, f(1X) = F (X).
Proof: We first show that 1X ∈ K for all X ∈ L. Indeed, fix any y � x. If x ∈ X, then y ∈ X since
each X in the simple lattice L is an ideal. Thus 1X(y) ≥ 1X(x), which is also true when x 6∈ X.
Finally, observing that for w = 1X , λi = 0,∀i < k, λk = 1, and Ak = X completes the proof.

Theorem 5.2: Linearity

The map that sends F : L→ R to its Lovász extension f : K :→ R is linear, 1-1 but not onto the
space of positively homogeneous functions (unless |Ω| = 1).
Proof: The linearity is clear while the 1-1 property follows from Theorem 5.1. Lastly, the space of
all set functions from L to R is of finite dimension while the space of all positively homogeneous
f : K → R is of infinite dimension (whenever |Ω| ≥ 2).

An explicit counterexample: take f(w) = max{w1, w2 + w3}. It is not clear to us what is the
Lovász extension of the convolution.

Similarly, the map that sends a submodular function to its Lovász extension is not onto the space of all
sublinear functions. A complete characterization of the Lovász extension will be given in Corollary 6.2 below.
For now, let us observe that we do have a nice 1-1 correspondence for modular functions. In the following
we call the function ` : K → R linear if for all α, β ≥ 0, w, z ∈ K, we have `(αw + βz) = α`(w) + β`(z).
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Theorem 5.3: Modularity corresponds to linearity

The Lovász extension of any centered modular function M : L→ R, is linear. Conversely, any linear
function on K is the Lovász extension of such a modular function M .
Proof: Clearly if M is modular, it is both submodular and supermodular, hence by Theorem 5.5
below its Lovász extension is both convex and concave, i.e., linear. Conversely, a linear function
` : K → R is uniquely determined by its values on {1X : X ∈ L} through (65). For any X ∈ L,
define M(X) := `(1X), we easily verify that M is modular and ` is its Lovász extension.

As a sanity check, we note that the space of linear functions on K is of finite dimension, hence the
possibility of Theorem 5.3. Besides, we can easily extend ` from the cone K to the linear subspace
K −K = RΩ (recall that K is generating), thus the Lovász extension of a modular function is given by
〈·, z〉 for some z ∈ RΩ being the unique extreme base (of the base polyhedron). The identification by z is
clearly unique. Interestingly, this immediately implies that the space of all centered modular functions
defined on any (finite distributive) simple lattice is isomorphic to RΩ—a result which does not seem to be
entirely trivial (although it is indeed trivial for Boolean algebras, see (7)).
The next a few results should convince us the importance of the Lovász extension.

Theorem 5.4: Lovász extension preserves the minimum

Let F : L→ R be any function and f its Lovász extension, then

min
X∈L

F (X) = min
w∈C

f(w), (68)

where C = K ∩ [0, 1]Ω is the convex hull of {1X : X ∈ L}.
Proof: Following Remark 5.1 we assume w.l.o.g. that F is centered. Thanks to Theorem 5.1, we
clearly have LHS ≥ RHS in (68). On the other hand,

RHS = min
w∈C

k∑
i=1

(wi − wi+1)F (Ai) ≥ min
w∈C

k∑
i=1

(wi − wi+1) · LHS = min
w∈C

w1 · LHS ≥ LHS,

since LHS ≤ 0. To see C is the convex hull of {1X : X ∈ L}, first note that C clearly is bigger.
However, any w ∈ C can be written uniquely as in (65), where λi is given in (66) and satisfies
λi ≥ 0,

∑
i λi = w1 ≤ 1. Since ∅ ∈ L, w is in the convex hull of {1X : X ∈ L}.

Theorem 5.5: Submodularity is equivalent to convexity

Let F : L→ R be centered, then F is submodular iff its Lovász extension f is convex iff the support
function σ[F = f .
Proof: Firstly, f = σ[F implies f is convex, since the support function is always convex. Secondly, if
f is convex, then it is subadditive due to its built-in positive homogeneity. Thus for all X,Y ∈ L,
using Theorem 5.1,

F (X) + F (Y ) = f(1X) + f(1Y ) ≥ f(1X + 1Y ) = f(1X∪Y + 1X∩Y ) = F (X ∪ Y ) + F (X ∩ Y ),

where the last equality follows from (67). Lastly, if F is submodular, according to Remark 4.3 we
know f = σ[F .

Corollary 5.1: Lovász extension is d.c.

The Lovász extension of any F : L → R is the difference of two positively homogeneous convex
functions.
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Proof: By Theorem 3.2 any set function F can be written as the difference of two submodular
functions, and the rest follows from Theorem 5.2 and Theorem 5.5.

Of course, the decomposition need not be unique, even for a submodular F .

Remark 5.2: Algorithmic consequence of the Lovász extension

Thanks to Theorem 5.4, we can turn the minimization of a submodular function into the minimization
of its Lovász extension, which, by Theorem 5.5, is a convex program hence can be efficiently solved.
Moreover, the definition of Lovász extension in (65) and (67) allows us to recover a minimizer of the
original submodular function: any set Ai, i = 0, . . . , k − 1 in the decomposition must be optimal.

6 The Choquet Integral
It turns out that the Lovász extension is a very special case of a much more general theory—the non-additive
integration theory originated from Choquet [1954].

For this section only, Ω is an arbitrary nonempty set and L ⊆ 2Ω always includes the empty set ∅ and the
full set Ω. At first we consider a monotonically increasing set function F : L→ R+, where R := R∪{±∞}
is the extended real line. With the additional assumption that F (∅) = 0, such an increasing set function
F will be called a capacity. A function g : Ω→ R is called L-measurable if for all γ ∈ R the upper level
set {x ∈ Ω : g(x) ≥ γ} ∈ L. Not surprisingly, all of our results still hold if we consider instead the strict
upper level sets {x ∈ Ω : g(x) > γ}. Note that the two definitions coincide when L is a σ-algebra. From
now on we use the short hand [[g ≥ γ]] for the upper level set. It is an easy exercise to verify that if g is
L-measurable, then so are g ∧ µ, g ∨ µ, (g − µ)+ and λg + µ for all µ ∈ R, λ ∈ R+. Our initial goal is to
build an integration theory for any L and any capacity F . As usual, we start with nonnegative functions,
in particular, step functions.

Definition 6.1: Choquet integral for nonnegative function

Fix any capacity F : L → R+. For any L-measurable function g : Ω → R+, its Choquet integral
w.r.t. F is defined as

–

∫
g dF :=

∫ ∞
0

F ([[g ≥ γ]]) dγ, (69)

where the right integral is of the Riemann type. Since the integrand on the RHS is a decreasing
function (of γ), the Choquet integral is well-defined and always nonnegative.

If F is a measure (on a σ-algebra L), then the Choquet integral coincides with the Lebesgue integral,
since the RHS in (69) is nothing but the familiar “integrating the tail”. The next result is immediate.

Proposition 6.1: Increasing and positively homogeneous

Let g, h : Ω→ R+ be L-measurable and F : L→ R+ be a capacity. Then h ≥ g =⇒ –
∫
h dF ≥ –

∫
g dF ,

and for all λ ≥ 0, –
∫
(λg) dF = λ · –

∫
g dF . Moreover, if F̄ is an extension of F , we have –

∫
g dF = –

∫
g dF̄ .

Abstract as it is, let us compute the Choquet integral for step functions, whose range is a finite set. We
useM =M(L) and S = S(L) to denote L-measurable functions and step functions, respectively, with (·)+

signaling the nonnegative ones. For any s ∈ S+, we identify it with its range {0 ≤ wk < · · · < w1} and
the increasing sequence Ai := [[s ≥ wi]], i = 1, . . . , k. Clearly s =

∑k
i=1(wi − wi+1)1Ai

, where wk+1 := 0.
We verify that –

∫
sdF =

∑k
i=1(wi − wi+1)F (Ai). Recall that this is exactly how we defined the Lovász

extension in Section 5.
We can extend the centered set function F : L→ R to the power set 2Ω in the following way:

∀ X ⊆ Ω, F?(X) = sup{F (Y ) : L 3 Y ⊆ X}, (70)
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which is always increasing and nonnegative. Clearly any function is 2Ω-measurable, hence –
∫
g dF? is

well-defined for all functions g : Ω→ R+. The next three results are fundamental.

Theorem 6.1: Regularity

Fix any capacity F : L→ R+. For all g : Ω→ R+ we have

–

∫
g dF? = sup

{
–

∫
sdF : g ≥ s ∈ S+(L)

}
. (71)

Proof: Due to monotonicity, it is clear that LHS ≥ RHS. For the converse, suppose first that
F?([[g ≥ γ]]) =∞ for some γ. Then for each α ≥ 0, there exists L 3 A ⊆ [[g ≥ γ]] so that γF (A) ≥ α.
Clearly γ1A ∈ S+, thus RHS ≥ –

∫
γ1A dF = γF (A) ≥ α. Since α is arbitrary, we have RHS =∞ and

there is nothing to prove.
Now fix 0 < a < b <∞ and ε > 0. By the definition of Riemann integral, there exists a subdivision

a = tk+1 < tk < . . . < t1 = b such that∫ b

a

F?([[g ≥ γ]]) dγ ≤ ε+

k∑
i=1

(ti − ti+1)F?([[g ≥ ti]]),

and for each 1 ≤ i ≤ k, there exists a chain L 3 Ai ⊆ [[g ≥ ti]] such that F?([[g ≥ ti]]) ≤
F (Ai) + ε/(b− a). Note that we can assume w.l.o.g. that F?([[g ≥ γ]]) <∞ for all γ ∈ R. Therefore

∫ b

a

F?([[g ≥ γ]]) dγ ≤ 2ε+

k∑
i=1

(ti − ti+1)F (Ai) = 2ε+ –

∫ ≤g︷ ︸︸ ︷
k∑
i=1

(ti − ti+1)1Ai dF.

Taking limits we are done.

Note that F? extends F due to the monotonicity of the latter. Of course, if g is L-measurable, we
can replace F? in (71) with F , thanks to the observation made in Proposition 6.1.

Recall that a set function F : L → R is called continuous from below if L 3 Ai ↑ A ∈ L and
F (Ai) > −∞ =⇒ limi F (Ai) ↑ F (A), and similarly it is called continuous from above if L 3 Ai ↓ A ∈ L
and F (Ai) <∞ =⇒ limi F (Ai) ↓ F (A).

Theorem 6.2: Monotone convergence

Let the capacity F : L → R+ be continuous from below (above, resp.) and M+(L) 3 gn ↑ (↓
, resp.) g ∈M+(L) (with –

∫
gn dF <∞, resp.). Then

lim
n

–

∫
gn dF = –

∫
g dF. (72)

Proof: Simply note that, for example, gn ↓ g =⇒ [[gn ≥ γ]] ↓ [[g ≥ γ]] hence F ([[gn ≥ γ]]) ↓ F ([[g ≥ γ]]),
thanks to the continuity of F and the fact that –

∫
gn dF < ∞ =⇒ γF ([[g ≥ γ]]) < ∞. Apply the

usual monotone convergence theorem for Riemann’s integral.

It is clear that we can replace all sequences with nets.

When the capacity F is submodular (on a lattice L), resorting to the definition we have the inequality

–

∫
(g ∧ h) dF + –

∫
(g ∨ h) dF ≤ –

∫
g dF + –

∫
hdF, (73)

which is reversed if F is supermodular.

Proposition 6.2: Choquet [1954, Theorem 54.1]
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Let K be a lattice convex cone and Γ : K → R be positively homogeneous. Then

∀ g, h ∈ K,Γ(g ∨ h) + Γ(g ∧ h) ≤ Γ(g) + Γ(h) =⇒ Γ(g + h) ≤ Γ(g) + Γ(h). (74)

Proof: This result is not entirely true. Repair it later (see Marinacci and Montrucchio [2008] and
König [2003]).

For the Choquet integral, we shall provide a direct proof.

Theorem 6.3: Subadditive = submodular, Choquet [1954, Theorem 54.2]

Let L be a lattice and F : L → R+ be a capacity, then the Choquet integral is subadditive
(superadditive) iff F is submodular (supermodular).
Proof: Suppose first that the Choquet integral is subadditive. Let A,B ∈ L, then

F (A∩B)+F (A∪B) = –

∫
(1A∩B+1A∪B) dF = –

∫
(1A+1B) dF ≤ –

∫
1A dF +–

∫
1B dF = F (A)+F (B).

Conversely, suppose F is submodular. Clearly we can assume w.l.o.g. that –
∫
g dF < ∞ and

–
∫
hdF <∞. Consequently (assuming g + h ∈M+)

–

∫
(g + h) dF =

∫ ∞
0

F ([[g + h ≥ γ]]) dγ ≤
∫ ∞

0

F
(

[[g ≥ γ/2]] ∪ [[h ≥ γ/2]]
)

dγ

≤
∫ ∞

0

F ([[g ≥ γ/2]]) dγ +

∫ ∞
0

F ([[h ≥ γ/2]]) dγ <∞.

Note that for any A ∈ L and g ∈M+, g + 1A ∈M+ since L is a lattice. Consider first the step
function s ∈ S+ with smax its maximal value. Then

–

∫
(s+ 1A) dF =

∫ 1

0

F (A ∪ [[s ≥ γ]]) dγ +

∫ smax

1

F
(

[[s ≥ γ]] ∪ ([[s ≥ γ − 1]] ∩A)
)

dγ

≤
∫ 1

0

(
F (A) + F ([[s ≥ γ]])− F ([[s ≥ γ]] ∩A)

)
dγ +

∫ smax

1

(
F ([[s ≥ γ]])

+ F ([[s ≥ γ − 1]] ∩A)− F ([[s ≥ γ]] ∩A)
)

dγ

≤ F (A) +

∫ smax

0

F ([[s ≥ γ]]) dγ = –

∫
sdF + –

∫
1A dF.

Now let g ∈M+. According to Theorem 6.1 we can find s ∈ S+ so that –
∫
(g + 1A) dF ≤ ε+ –

∫
s dF

and s ≤ g + 1A. Clearly t := s ∨ 1A ≤ g + 1A hence 0 ≤ t− 1A ≤ g. Moreover t− 1A ∈ S+. Thus

–

∫
(g + 1A) dF ≤ ε+ –

∫
sdF ≤ ε+ –

∫
tdF ≤ ε+ –

∫
(t− 1A) dF + –

∫
1A dF ≤ ε+ –

∫
g dF + –

∫
1A dF.

Iterating the argument for each component of a step function we can replace 1A in the above
inequality with any step function s. Finally applying a similar approximation we can replace the
step function s with any h ∈M+ (such that g + h ∈M+).

In general, the Choquet integral is not even subadditive, which is not too surprising, after all we are
dealing with a general capacity F . When F is a charge (namely, finitely additive) on an algebra L, it
is modular, thus we gain additivity for the Choquet integral. When F is a measure (namely, countably
additive) on a σ-algebra, the Choquet integral reduces to the Lebesgue integral, which, of course, is
additive.
The next notion is extremely important.

Definition 6.2: Comonotone
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Two functions g, h : Ω→ R are called comonotone iff there are no pairs x, y ∈ Ω such that

g(x) < g(y) and h(x) > h(y). (75)

When g, h are real valued, the above definition can be written as for all x, y ∈ Ω,(
g(x)− g(y)

)
·
(
h(x)− h(y)

)
≥ 0,

hence the name comonotone.

Recall that a subset of an ordered set is a chain if it is totally ordered, i.e., all pairs are comparable.

Theorem 6.4: Characterizing comonotonicity, Denneberg [1994]

Let g, h : Ω→ R be L-measurable. The following are equivalent:

(I). g, h are comonotone;

(II). The set {[[g ≥ γ]] : γ ∈ R} ∪ {[[h ≥ γ]] : γ ∈ R} is a chain;

(III). The set {
(
g(x), h(x)

)
: x ∈ Ω} ⊆ R2 is a chain;

If g, h are real valued, then we have the additional equivalence:

(IV). There exists f : Ω→ R and increasing functions i, j : R→ R such that g = i ◦ f, h = j ◦ f ;

(V). There exists continuous increasing functions i, j : R → R such that i + j = Id and g =
i ◦ (g + h), h = j ◦ (g + h).

Proof: (I) ⇐⇒ (II) is easily proved from considering its contrapositive. The implications (I) ⇐⇒
(III), (V) =⇒ (IV) =⇒ (I) are clear. Only (I) =⇒ (V) is left.

Note first that for t = (g + h)(z) with some z ∈ Ω, we can decompose it into t = p + q with
p ∈ g(Ω) and q ∈ h(Ω). From comonotonicity, we know p and q are uniquely determined by
t. Define i(t) = p and j(t) = q we satisfy the identity i + j = Id. By comonotonicity again, we
know both i and j are increasing, which in turn implies their continuity: for example, for δ ≥ 0,
i(t) ≤ i(t + δ) = t + δ − j(t + δ) ≤ t + δ − j(t) = i(t) + δ. So we have constructed i and j on
(g+h)(Ω). Extend to the closure cl((g+h)(Ω)) by continuity. For R− cl((g+h)(Ω)), we apply linear
interpolation in each of its connected components. The extensions maintain the identity i + j = Id,
as well as the monotonicity and continuity.

This theorem is very handy in verifying comonotonicity (for real valued functions). For instance,
from (IV) it is clear that g+ := g ∨ 0 and −g− := g ∧ 0 are comonotone (which also pleasantly fits
(V)). Similarly using (IV), if g and h are comonotone, so is g and g + h.

Theorem 6.5: Comonotone additivity, Bassanezi and Greco [1984, Theorem 2.1]

Let g, h and g + h belong toM+. Then

for all capacity F : L→ R+, –

∫
(g + h) dF = –

∫
g dF + –

∫
hdF ⇐⇒ g, h comonotone .

Proof: ⇐=: Let L̊ := {[[g ≥ γ]] : γ ∈ R} ∪ {[[h ≥ γ]] : γ ∈ R}. Since f, g are comonotone, by
Theorem 6.4, L̊ is a chain hence trivially a lattice and the restriction of F to L̊, F̊ , is modular. Thus
using Theorem 6.3 we have

–

∫
g dF + –

∫
hdF = –

∫
g dF̊ + –

∫
hdF̊ = –

∫
(g + h) dF̊ = –

∫
(g + h) dF,

where the last equality follows from Proposition 6.1.
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=⇒: Suppose g and h are not comonotone, implying the existence of α 6= β such that there
exists x ∈ [[g ≥ α]] − [[h ≥ β]] and x 6= y ∈ [[h ≥ β]] − [[g ≥ α]]. Define the capacity F : L → {0, 1},
X 7→ 1{x,y}⊆X . In fact, F is supermodular. An easy calculation reveals that –

∫
g dF < α, –

∫
h dF < β

while –
∫
(g + h) dF ≥ α+ β.

As an application, consider g =
∑k
i=1 wi1Ai for a chain A1 ⊂ · · · ⊂ Ak. Clearly the functions 1Ai

are comonotone hence immediately we have –
∫
g dF =

∑k
i=1 –
∫
wi1Ai dF =

∑k
i=1 wiF (Ai).

Alert 6.1: Non-existence interpretation

From now on the integrals we consider might not exist in pathological cases, due to the possibility of
∞−∞. Instead of tediously repeating the existence assumption each time, we adopt the convention
that if something does not make sense, the related result shall not be interpreted.

It is time to consider the integral of a real valued function. It turns out there are two different ways to
proceed. One is familiar: we split g into g+ := g ∨ 0 and g− = g+ − g. This yields the symmetric integral
of Šipoš [1979]:

· · ·
∫

g dF := –

∫
g+ dF − –

∫
g− dF =

∫ ∞
0

F ([[g ≥ γ]]) dγ −
∫ ∞

0

F ([[−g ≥ γ]]) dγ. (76)

Note that we now need −g to be L-measurable too. Let s =
∑k
i=1(ai − ai+1)1Ai

+
∑m
j=1(bj − bj+1)1Bj

where 0 = ak+1 < ak < · · · < a1, b1 < · · · < bm < bm+1 = 0, and Ai = [[s ≥ ai]], Bj = [[s ≤ bj ]], then

· · ·
∫

sdF =

k∑
i=1

(ai − ai+1)F (Ai) +

m∑
j=1

(bj − bj+1)F (Bj). (77)

The following result about the symmetric integral is useful to know.

Proposition 6.3: Basic properties of the symmetric integral

Let ±g,±h ∈M and F : L→ R+ a capacity. Then

• g ≥ h =⇒ ·· ·
∫
g dF ≥ · · ·

∫
hdF ;

• ∀µ ∈ R, · · ·
∫

(µg) dF = µ · · · ·
∫
g dF ;

• · · ·
∫
g dF = sup{· · ·

∫
sdF : g ≥ s ∈ S};

• ∀λ ≥ 0, · · ·
∫
g dF = · · ·

∫
(g ∧ λ) dF + · · ·

∫
(g − λ)+ dF .

Proof: The first two claims are clear while the third follows from the definition and Theorem 6.1.
We prove the last one:

RHS = –

∫
(g ∧ λ)+ dF − –

∫
(g ∧ λ)− dF + –

∫
(g − λ)+ dF

= –

∫ (
(g ∧ λ)+ + (g − λ)+

)
dF − –

∫
g− dF

= –

∫
g+ dF − –

∫
g− dF = LHS,

where the second equality follows from Theorem 6.5 and the nonnegativity of λ.

However, the symmetric integral does not maintain comonotone additivity. Indeed, consider a bounded
function g with supx |g(x)| ≤ gmax. If we had comonotone additivity, then

–

∫
g dF = –

∫
(g + gmax1) dF − gmax –

∫
1dF =

∫ gmax

0

F ([[g ≥ γ]]) dγ +

∫ 0

−gmax

(F ([[g ≥ γ]]− F (Ω)) dγ,

since any function is comonotone with the constant function 1. Thus we are motivated to extend the
Choquet integral in a different way.
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Definition 6.3: Choquet integral w.r.t. capacity

Fix any capacity F : L→ R+. For any L-measurable g : Ω→ R, its Choquet integral w.r.t. F is
defined as

–

∫
g dF :=

∫ ∞
0

F ([[g ≥ γ]]) dγ +

∫ 0

−∞

(
F ([[g ≥ γ]])− F (Ω)

)
dγ, (78)

where the right integrals are of the Riemann type, and are well-defined respectively due to mono-
tonicity. Unless we have ∞−∞ on the RHS, the Choquet integral always exists in R.

Again, let us compute the Choquet integral for step functions s =
∑k
i=1(wi − wi+1)1Ai where wk <

· · · < w1, wk+1 := 0 and Ai = [[s ≥ wi]]. An easy calculation gives

–

∫
sdF =

k∑
i=1

(wi − wi+1)F (Ai). (79)

Note the difference with the symmetric integral in (77).
We remind that two measurable functions agree almost everywhere do not necessarily yield the same

Choquet integral: Take Ω = {1, 2} and L = 2Ω. Set F = {0, 0, 0, 1} and consider g = [0, 1], h = [2, 1].
Clearly F ([[g 6= h]]) = F ({1}) = 0 but –

∫
g dF = 0, –

∫
hdF = 1. We need a stronger notion of “almost

everywhere”.

Definition 6.4: s-null set

A set N ⊆ Ω is called s-null w.r.t. the capacity F : L → R+ if for all A,B ∈ L, A ⊆ B ∪N =⇒
F (A) ≤ F (B).

Note that an s-null set N need not be L-measurable, however, when it does, we have F (N) = 0 since
the empty set is s-null. Also, a subset of an s-null set is s-null.

Proposition 6.4: Choquet integals agree up to an s-null set

Let F : L→ R+ be a capacity. If two L-measurable functions g and h agree up to an s-null set N ,
then –

∫
g dF = –

∫
hdF .

Proof: The definition of s-null set allows us to restrict both the set function F and measurable functions
g, h to L̊ := {A∩(Ω\N) : A ∈ L} and Ω\N , respectively, without changing the Choquet integral.

Next, we remove the increasing assumption on the set function F , which requires a new concept.

Definition 6.5: Bounded (chain) variation

We define the chain variation of a centered set function F : L→ R at X ∈ L as

|F |(X) := sup

{∑
i

|F (Ai)− F (Ai−1)| : ∅ = A0 ⊂ A1 ⊂ · · · ⊂ Ak = X

}
. (80)

Clearly |F | is a capacity on the same domain L, and |F (X)| ≤ |F |(X). The set function F is said to
have bounded variation if ‖F‖ := |F |(Ω) <∞.

Denote BV(L) as the set of all centered set functions on L ⊆ 2Ω that have bounded variation.

Proposition 6.5: BV(L) is Banach

The space BV(L), equipped with the chain variation norm ‖·‖ := | · |(Ω), is Banach.
Proof: Clearly, ‖F +G‖ ≤ ‖F‖ + ‖G‖, therefore BV(L) is a vector space and ‖·‖ is a norm on it.
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The completeness of the norm is proved as usual.

Theorem 6.6: Monotone decomposition, Aumann and Shapley [1974]

F ∈ BV(L) iff F = F1 − F2 where F1, F2 are capacities. Moreover, for F ∈ BV(L),

‖F‖ = min{F1(Ω) + F2(Ω) : F = F1 − F2, F1, F2 are capacities }. (81)

Proof: As usual, define

F+(X) = sup

{∑
i

(F (Ai)− F (Ai−1))+ : ∅ = A0 ⊂ A1 ⊂ · · · ⊂ Ak = X

}
(82)

F− = F+ − F. (83)

We easily verify F+ and F− are increasing hence the first claim is clear.
For the second claim, note first that ‖F‖ ≤ ‖F1‖+ ‖F2‖ = F1(Ω) + F2(Ω). On the other hand,

F+(Ω)+F−(Ω) ≥ |F |(Ω) is clear. Let ∅ = A0 ⊂ · · · ⊂ Ak = Ω be a chain such that F+ attains its norm
on it (up to some ε ≥ 0). Divide the chain into two subchains: S1 = {(Ai−1, Ai) : F (Ai−1) ≤ F (Ai)}
and S2 the rest. Clearly F+ still attains its norm on S1 hence F− attains its (negated) norm on
S2 too, since

∑
S1

(F (Ai)− F (Ai−1)) +
∑
S2

(F (Ai)− F (Ai−1)) =
∑
i(F (Ai)− F (Ai−1)) = F (Ω) =

F+(Ω) − F−(Ω). Thus F+(Ω) + F−(Ω) =
∑
S1

(F (Ai) − F (Ai−1)) −
∑
S2

(F (Ai) − F (Ai−1)) =∑
i |F (Ai)− F (Ai−1)| ≤ |F |(Ω).

We actually proved that ‖F‖ = F+(Ω) + F−(Ω) = ‖F+‖+ ‖F−‖, from which we can also show
that the norm is submultiplicative: ‖FG‖ ≤ ‖F‖ · ‖G‖.

Theorem 6.6 allows us to extend the Choquet integral in a linear way.

Definition 6.6: Choquet integral for bounded variation set function

Fix any centered set function F ∈ BV(L). For any L-measurable g : Ω→ R, its Choquet integral
w.r.t. F is defined as (see (82) and (83) for the definitions of F+ and F−)

–

∫
g dF := –

∫
g dF+ − –

∫
g dF− (84)

=

∫ ∞
0

F ([[g ≥ γ]] dγ +

∫ 0

−∞

(
F ([[g ≥ γ]]− F (Ω)

)
dγ, (85)

where the right integrals in (84) are defined in Definition 6.3. Again, when we encounter ∞−∞,
the Choquet integral does not exist. Clearly, the Choquet integral is linear in the set function
F . Moreover, the integral is even w.r.t. g iff F is symmetric, i.e., for all A ∈ L, Ω \ A ∈ L and
F (A) = F (Ω \A). (introduce the complement capacity and firm this claim up)

Of course we could extend the symmetric integral in a similar way, but that is of less interest to us.
Judging from the end result in (85), it might appear that we could just directly drop the monotone
assumption on F without going through the notion of bounded variation. This is of course inappropriate
as how do we know the integrals in (85) are sensible at all?
We summarize some useful results about the general Choquet integral.

Theorem 6.7: Basic properties of the general Choquet integral

Let F,G : L→ R be centered and of bounded variation. For any L-measurable g, h : Ω→ R,

(I). for all α, β ∈ R, –
∫
g d(αF + βG) = α –

∫
g dF + β –

∫
g dG;

(II). for all λ ∈ R+, –
∫
(λg) dF = λ –

∫
g dF ;
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(III). f, g are comonotone iff –
∫
(g + h) dF = –

∫
g dF + –

∫
hdF for all F ;

If F is additionally increasing, i.e. a capacity, then we also have

(IV). g ≥ h =⇒ –
∫
g dF ≥ –

∫
hdF ;

(V). for all g : Ω→ R, –
∫
g dF? = sup{–

∫
sdF : g ≥ s ∈ S(L)};

(VI). provided that L is a lattice, F is submodular iff for all L-measurable g and h, –
∫
(g + h) dF ≤

–
∫
g dF + –

∫
hdF . A similar claim for a supermodular F also holds.

Proof: (V), (VI), and (III) can be proved (sequentially) as Theorem 6.1, Theorem 6.3 and Theo-
rem 6.5, respectively. The rest are obvious.

Comparing Proposition 6.3 and the current theorem we see that, despite their coincidence for
nonnegative functions and the many similarities, the symmetric integral enjoys complete homogeneity
but only partial comonotone additivity (see the last bullet point of Proposition 6.3) while the
Choquet integral enjoys full comonotone additivity but only positively homogeneity. Both reduces
to the usual Lebesgue integral when we have a (signed) measure.

We now come to a very natural question: What kind of functionals I : RΩ → R can be represented
by some set function F as the Choquet integral I(·) = –

∫
·dF? The next representation theorem, usually

attributed to Greco [1982], gives a satisfactory answer. Recall that a (nonempty) class of functions
G ⊆ RΩ (equipped with the pointwise order) is Stonean if g ∈ G =⇒ ∀λ ∈ R+, λg, g ∧ λ, (g − λ)+ ∈ G,
in particular 0 ∈ G. A functional Γ : G → R is monotonically increasing if g ≥ h =⇒ Γ(g) ≥ Γ(h) and
comonotone additive if Γ(g + h) = Γ(g) + Γ(h) for all comonotone g, h ∈ G. We use M = M(G) and
L = L(G) to denote the minimal set system {[[g ≥ γ]] : g ∈ G, γ ∈ R} and the minimal lattice under which
G is measurable, respectively. For any h : Ω→ R, define

Γ?(h) := inf{Γ(g) : h ≤ g ∈ G} (86)
Γ?(h) := sup{Γ(g) : h ≥ g ∈ G}, (87)

which are clearly increasing functionals on R
Ω
. Similarly, for A ∈ L, we let

Fmax(A) := Γ?(1A) = inf{Γ(g) : 1A ≤ g ∈ G} (88)

Fmin(A) := Γ?(1A) = sup{Γ(g) : 1A ≥ g ∈ G}, (89)

which are centered (if 0 ∈ G), increasing and potentially infinite.

Theorem 6.8: Representing functionals as Choquet integral

Let G ⊆ RΩ be a class of real valued functions on Ω that is nonnegative and Stonean; Γ : G → R+

be a functional that is increasing and comonotone additive, then

(I). Γ is represented by some capacity F : M→ R̄+ iff Γ is truncation friendly:

• ∀g ∈ G,Γ(g ∧ t) ↓ 0 as t ↓ 0, and Γ(g ∧ t) ↑ Γ(g) as t ↑ ∞;

Also, F can only take ∞ at the full set Ω, which is avoided if there exists g ∈ G, λ ≥ 0 such
that λ · g ≥ 1Ω;

(II). under (I), a centered F (not necessarily increasing) represents Γ iff Fmin ≤ F ≤ Fmax on M;

(III). if F representing Γ is continuous from above (below), then F = Fmax (F = Fmin) on M;

(IV). under (I), if G is convex and Γ is superadditive, then for all h : Ω→ R, Γ?(h) = –
∫
hd(Fmin)?

(see (70) for the definition of F?).
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Proof: (I): Assume first that F : M→ R+ represents Γ. Thus for t > 0,

Γ(g ∧ t) = –

∫
(g ∧ t) dF =

∫ ∞
0

F ([[g ∧ t ≥ γ]]) dγ =

∫ t

0

F ([[g ≥ γ]]) dγ,

meaning I is truncation friendly. Conversely, for g ∈ G and 0 < γ < λ, we have

1[[g≥λ]] ≤
1

λ− γ
(
(g ∧ λ)− (g ∧ γ)

)
≤ 1[[g≥γ]],

whereas (g∧λ)− (g∧γ) = (g∧λ)− (g∧λ)∧γ = (g∧λ−γ)+ ∈ G since G is Stonean. By comonotone
additivity,

Γ
( 1

λ− γ
(
(g ∧ λ)− (g ∧ γ)

))
=

1

λ− γ

(
Γ(g ∧ λ)− Γ(g ∧ γ)

)
,

whence follows from the definitions (88)-(89) that

Fmax([[g ≥ λ]]) ≤ 1

λ− γ

(
Γ(g ∧ λ)− Γ(g ∧ γ)

)
≤ Fmin([[g ≥ γ]]).

Fix the subdivision 0 < a = tk+1 < · · · < t1 = b <∞ and apply the previous inequality:

k∑
i=1

(ti − ti+1)Fmax([[g ≥ ti]]) ≤ Γ(g ∧ b)− Γ(g ∧ a) ≤
k∑
i=1

(ti − ti+1)Fmin([[g ≥ ti+1]]).

Taking limits, applying the truncation property of Γ, and using Fmax ≥ Fmin on M (which is implied
by the monotonicity of Γ) we obtain

Γ(g) =

∫ ∞
0

Fmax([[g ≥ γ]]) dγ =

∫ ∞
0

Fmin([[g ≥ γ]]) dγ,

i.e., Γ is represented by both Fmax and Fmin, hence also any F satisfying 0 ≤ Fmin ≤ F ≤ Fmax.
Note that since G is Stonean, for all A ∈M, Fmin(A) ≤ Fmax(A) <∞ except perhaps A = Ω, which
is further avoided if there exists g ∈ G, λ ≥ 0 such that λ · g ≥ 1Ω.
(II): Assume F represents Γ. Consider any A ∈ M and any g ∈ G with 1A ≥ g. Note that 1A

need not in G. If 1 ≥ γ ≥ 0 we have [[g ≥ γ]] ⊆ A while if γ > 1 we have [[g ≥ γ]] = ∅. Thus

F (A) ≥
∫ 1

0

F ([[g ≥ γ]]) dγ +

∫ ∞
1

F ([[g ≥ γ]]) dγ = Γ(g) =⇒ F (A) ≥ Fmin(A).

Similarly we prove F (A) ≤ Fmax(A).
(III): By (II) F ≤ Fmax. Fix g ∈ G and put p(γ) = F ([[g ≥ γ]]), q(γ) = Fmax([[g ≥ γ]]) which

are both decreasing functions. The continuity assumption implies the left continuity of p. But∫ t
0
p(γ) dγ =

∫ t
0
q(γ) dγ = Γ(g ∧ t), hence p = q almost everywhere. Since p is left continuous, p ≥ q.

(IV): For all G 3 g ≤ h, Γ(g) = –
∫
g dFmin = –

∫
g dFmin

? ≤ –
∫
hdFmin

? , hence Γ?(h) ≤ –
∫
hdFmin

? . On
the other hand, by Theorem 6.1, –

∫
hdFmin

? = sup
{

–
∫
sdFmin : h ≥ s ∈ S+(L)

}
. Take an arbitrary

s =
∑k
i=1 ai1Ai for some A1 ⊂ · · · ⊂ Ak so that h ≥ s ∈ S+(L), then

–

∫
sdFmin =

k∑
i=1

aiF
min(Ai) =

k∑
i=1

aiΓ?(1Ai
) ≤ Γ?

(
k∑
i=1

ai1Ai

)
= Γ?(s) ≤ Γ?(h),

where the superadditivity of Γ? follows from that of Γ and the convexity of G. Thus we have the
other inequality Γ?(h) ≥ –

∫
hdFmin

? .

It is tempted to prove a similar claim as in (IV) when Γ is subadditive. However, this does not
seem plausible simply because in Theorem 6.1 we can only approximate from below, not above.

Note that comonotone additivity and monotonicity together imply positive homogeneity: the former
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The model function for d is the decreasing distribution function. Let g be an L-measurable
function and F : L→ R+ be an increasing set function, we define d(t) = F ([[g ≥ t]]) and its inverse
q := d† is known as the quantile function.

Note that If t is a continuity point of d†, then d(s) ≥ t =⇒ d†(t) = d†max(t) ≥ s =⇒ (d†)†max(s) ≥ t,
meaning d

e.c.
≤ (d†)†. Similarly, if t is a continuity point of d†, then d(s) ≤ t =⇒ d†(t) = d†min(t) ≤ s =⇒

(d†)†min(s) ≤ t, meaning d
e.c.
≥ (d†)†. Therefore (d†)†

e.c.
= d.

Proposition 6.6: Quantile retains expectation

Let d : R+ → R+ be decreasing and d† its inverse.∫ ∞
0

d(t) dt =

∫ ∞
0

d†(t) dt. (104)

Proof: d, as a decreasing function, is Lebesgue measurable. Denote µ the Legesgue measure on the
real line and apply the “integrating the tail” trick:

LHS =

∫ ∞
0

µ({s : d(s) ≥ t}) dt ≤
∫ ∞

0

µ({s : d†(t) ≥ s}) dt =

∫ ∞
0

d†(t) dt = RHS.

Intuitively, this result says that switching the xy-axis does not change the (Riemann) integral of a
nonnegative decreasing function.

Theorem 6.14: Change of formula

Let d : [0, b]→ R be decreasing, where 0 < b <∞.∫ b

0

d(t) dt =

∫ ∞
0

d†(t) dt+

∫ 0

−∞
(d†(t)− b) dt. (105)

Proof: Due to monotonicity, we can split the LHS into two parts
∫ a

0
d(t) dt+

∫ b
a
d(t) dt so that d ≥ 0

on the first term and d ≤ 0 one the other term. Apply Proposition 6.6 on the first term directly and
on the second term after an appropriate translation and sign change.

Thus we could define the Choquet integral of g w.r.t. the capacity F as

–

∫
g dF :=

∫ F (Ω)

0

d†g(t) dt, where dg(t) := F ([[g ≥ t]]). (106)

At least when F (Ω) <∞, the above definition coincides with our previous Definition 6.3.

Proposition 6.7: Composition rule

Let F : L→ R+ be an increasing set function, g : Ω→ R be L-measurable, i : R→ R be increasing,
and define dg(t) := F ([[g ≥ t]]). If dg has no common discontinuity point with i, then

d†i◦g
e.c.
= i ◦ d†g. (107)

Proof: For convenience we take d† = d†max, which clearly does not affect the result. Let i†(s) :=
inf{t : i(t) ≥ s}. We claim that

d†i◦g(t)
e.c.
= sup{s : F ([[g ≥ i†(s)]]) > t} ≤ i(d†g(t)).

Indeed, dg(i†(s)) > t =⇒ d†g(t) ≥ i†(s). If d†g(t) > i†(s), then i(d†g(t)) ≥ s; while if d†g(t) = i†(s) we
know dg is discontinuous at d†g(t) (otherwise dg(d

†
g(t)) = dg(i

†(s)) = t), then i is continuous at d†g(t)
and i(d†g(t)) = i(i†(s)) = s.
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On the other hand,

i(d†g(t)) = i(sup{s : dg(s) ≥ t}) = sup{i(s) : dg(s) ≥ t}.

Indeed, due to monotonicity the set {s : dg(s) ≥ t} is an interval whose right most endpoint a may or
may not be present. We need only consider when a is not present, in which case dg is discontinuous
at a. Thus by assumption i is continuous at a, whence follows that both sides above are equal to
i(a). Therefore we have the other direction

i(d†g(t)) = sup{i(s) : F ([[g ≥ s]] ≥ t)} ≤ sup{r : F ([[i(g) ≥ r]] ≥ t)} = d†i◦g(t)

by taking r = i(s).

We have an alternative proof of the comonotone additivity of the Choquet integral, under the equivalent
definition in (106).

Theorem 6.15: Comonotone additivity, revisited

Let F : L → R be centered and of bounded variation. If g, h ∈ M(L) are comonotone and real
valued, then –

∫
(g + h) dF = –

∫
g dF + –

∫
hdF .

Proof: We assume w.l.o.g. that F is increasing. According to Theorem 6.4, g = i(g + h), h = j(g + h)
for some continuous increasing functions i, j : R→ R with i + j = Id. Using Proposition 6.7 and its
notation,

–

∫
g dF + –

∫
hdF =

∫ F (Ω)

0

(
d†i◦(g+h)(t) + d†j◦(g+h)(t)

)
dt =

∫ F (Ω)

0

(
(i ◦ d†g+h)(t) + (j ◦ d†g+h)(t)

)
dt

=

∫ F (Ω)

0

d†g+h(t) dt = –

∫
(g + h) dF.

7 Duality
In this section we develop a duality theory for submodular functions by mimicking that for convex
functions. Most of our results are taken from Fujishige [2005]. An important definition first.

Definition 7.1: Conjugate function

For any function F : L→ R, define its conjugate f∗C : RΩ → R ∪ {∞} as

f∗C(z) := max
X∈L

z(X)− F (X) (108)

= z(Ω)− (F � z)(Ω). (109)

In some cases, such as a supermodular F , we change the max to min.

Theorem 7.1: Conjugate is supermodular

The conjugate f∗C is always convex and supermodular on the distributive lattice (RΩ,≤).

In fact, as the notation suggests, f∗C is the Fenchel conjugate of the Lovász extension, restricted to some
convex set C.

Theorem 7.2: Justifying the conjugate

Consider F : L→ R, then

f∗C(z) = max
w∈C

〈w, z〉 − f(w), (110)
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where f is the Lovász extension of F and C = K ∩ [0, 1]Ω is the convex hull of {1X : X ∈ L}.
Proof: By its definition in (108), we have

f∗C(z) = max
X∈L

z(X)− F (X) = −min
X∈L

F (X)− z(X) = −min
w∈C

f(w)− 〈w, z〉 = max
w∈C

〈w, z〉 − f(w),

where the second last equality follows from Theorem 5.4 and from identifying the modular function
z(·) with its Lovász extension 〈·, z〉.

Corollary 7.1: Double conjugation

Let F : L→ R be submodular, then

(f∗C)∗(w) := sup
z∈RΩ

〈w, z〉 − f∗C(z) = f(w) + ιC(w), (111)

where ιC(w) = 0 if w ∈ C and ∞ otherwise. In particular, for all X ∈ L,

(f∗C)∗(1X) = sup
z∈RΩ

z(X)− f∗C(z) = F (X). (112)

Proof: Following Remark 5.1 we assume w.l.o.g. that F is centered. When F is submodular, the
Lovász extension f coincides with the support function, hence it is closed and convex. Then (111)
follows from the classic result in convex analysis while (112) follows from Theorem 5.1.

Proposition 7.1: Conjugate of supermodular

Let G : L→ R be supermodular, then its conjugate g∗C : RΩ → R ∪ {−∞} satisfies

g∗C(z) := min
X∈L
{z(X)−G(X)} = z(Ω)−G(Ω)− (g¬

C̃
)∗(z), (113)

where C = K ∩ [0, 1]Ω, C̃ = (−K) ∩ [0, 1]Ω, and (g¬
C̃

)∗ is the conjugate of G¬ (see Definition 4.1).

Proof: Clearly G¬ : L̄→ R is submodular and the isotonic cone of L̄, as discussed in Remark 4.5, is
−K. By the definition of G¬ and Theorem 7.2,

g∗C(z) = min
X∈L

z(X)−G(X)

= z(Ω)−G(Ω)−max
X∈L

z(Ω−X)− (G(Ω)−G(X))

= z(Ω)−G(Ω)− (g¬
C̃

)∗(z),

The Lovász extension nicely bridges convex functions in the continuous domain and submodular functions
in the discrete domain. Let us illustrate this point with another duality result.

Theorem 7.3: Discrete Fenchel duality

Let F : L1 → R be submodular and G : L2 → R be supermodular, then for their conjugate functions
f∗C1

and g∗C2
(which we use min instead of max in Definition 7.1), we have

min{F (X)−G(X) : X ∈ L1 ∧ L2} = max{g∗C2
(z)− f∗C1

(z) : z ∈ RΩ}. (114)

Moreover, if F,G are integer valued, the maximizer of RHS can be chosen in ZΩ.
Proof: Through translation we may assume w.l.o.g. that G(Ω) = 0. By Corollary 4.4 and Proposi-
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tion 7.1, we have (after restricting to L1 ∧ L2)

LHS = min{F (X) +G¬(Ω−X) : X ∈ L1 ∧ L2} = (F �G¬)(Ω) = max{p(Ω) : p ∈ PF ∩PG¬}
RHS = max{(G¬ � z)(Ω) + (F � z)(Ω)− z(Ω) : z ∈ RΩ}

= max{s(Ω) + t(Ω)− z(Ω) : s ∈ PF , s ≤ z, t ∈ PG¬ , t ≤ z}
= max{s(Ω) ∧ t(Ω) : s ∈ PF , t ∈ PG¬},

where in the last equality we used the fact that z = s ∨ t and s + t = s ∨ t + s ∧ t. It is clear now
that by taking p = s = t = s ∧ t = z we have LHS = RHS. When F,G are integer valued, p can be
taken integral, thanks to Corollary 4.4, hence also z on the RHS.

Definition 7.2: Subgradient

w ∈ RΩ is a subgradient of F : L→ R at X ∈ L if for all Y ∈ L,

F (Y ) ≥ F (X) + w(Y −X). (115)

The subdifferential ∂F (X) consists of all subgradients of F at X ∈ L. Clearly the subdifferential is
a polyhedron.

Theorem 7.4: Duality

Let F : L→ R, w ∈ RΩ, and X ∈ L, then

w ∈ ∂F (X) ⇐⇒ f∗C(w) + F (X) = w(X) ⇐⇒ w ∈ ∂fC(1X). (116)

If F is submodular, we can add the equivalence 1X ∈ ∂f∗C(w).

Theorem 7.5: Optimality condition

X ∈ L minimizes F : L→ R iff 0 ∈ ∂F (X).

Proposition 7.2: Irrelevance of disjoint sets

Let F : L→ R be submodular and X ∈ L, then w ∈ RΩ belongs to the subdifferential ∂F (X) iff
(115) holds for all L 3 Y ⊆ X and L 3 Y ⊇ X.
Proof: We need only prove the sufficiency. Fix any Z ∈ L, then

w(X ∪ Z)−w(X) ≤ F (X ∪ Z)− F (X),

w(X ∩ Z)−w(X) ≤ F (X ∩ Z)− F (X).

Adding the inequalities and applying the submodularity of F completes the proof.

Theorem 7.6: Decomposing the subdifferential

Let F : L→ R be submodular and X ∈ L, then

∂F (X) = ∂FX(X)⊗ ∂FX(∅), (117)

where FX and FX are defined in Theorem 3.8.
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Proof: By definition, p ∈ ∂FX(X) and q ∈ ∂FX(∅) iff for all L 3 Y ⊆ X and L 3 Z ⊇ X,

p(Y )− p(X) ≤ FX(Y )− FX(X) = F (Y )− F (X),

q(Z −X) ≤ FX(Z −X)− FX(∅) = F (Z)− F (X).

Apply Proposition 7.2.

Theorem 7.7: Divide and conquer

Let F : L→ R be submodular, then X ∈ L minimizes F iff X minimizes FX and ∅ minimizes FX .
Proof: Apply Theorem 7.5.

Clearly we can iterate the argument in the spirit of Remark 3.1.

Proposition 7.3: Subdifferential of extremal sets

Let F : L→ R be centered, then

∂F (∅) = PF (118)
∂F (Ω) = PF¬ . (119)

If F is additionally submodular, then for all X ∈ L, ∂F (X) ∩BF 6= ∅.
Proof: We only prove the last claim. If F is submodular, by Proposition 3.2 there exists some base b
such that b(X) = F (X). Verify (115).

Theorem 7.8: Subdifferential is positively homogeneous

For any function F : L→ R and λ > 0, ∂(λF )(X) = λ · ∂F (X) for all X ∈ L.

Theorem 7.9: Subdifferential is additive

Let F : L1 → R and G : L2 → R be submodular. For all X ∈ L := L1 ∧ L2,

∂(F +G)(X) = ∂F (X) + ∂G(X). (120)

Proof: According to Theorem 7.6 and Proposition 7.3,

∂(F +G)(X) = ∂(F +G)X(X)⊗ ∂(F +G)X(∅)
= ∂(FX +GX)(X)⊗ ∂(FX +GX)(∅)
= P(FX+GX)¬ ⊗PFX+GX

= PF¬X+G¬X
⊗PFX+GX

=
(
PF¬X + PG¬X

)
⊗
(
PFX + PGX

)
=
(
∂(FX)(X) + ∂(GX)(X)

)
⊗
(
∂(FX)(∅) + ∂(GX)(∅)

)
=
(
∂(FX)(X)⊗ ∂(FX)(∅)

)
+
(
∂(GX)(X)⊗ ∂(GX)(∅)

)
= ∂F (X) + ∂G(X).
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Again, the surprising part of this result is that we do not, although we could, restrict F or G to L.

Theorem 7.10: Summation is dual to convolution

Let F and G be submodular on L, then

(F +G)∗ = (fC + gC)∗ = f∗C � g∗C , (121)

where recall that C := K ∩ [0, 1]Ω is the convex hull of {1X : X ∈ L}.
Proof: The first equality is always true due to Theorem 7.2 and Theorem 5.2. In case of submodularity,
the Lovász extensions are convex, thanks to Theorem 5.5.

Theorem 7.11: Extreme points of subdifferential

Let L be simple and F : L → R be submodular. For any X ∈ L, w ∈ RΩ is an extreme point of
∂F (X) iff there exists a maximal increasing sequence

∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = Ω

in L that contains X such that for all i ∈ {1, . . . , n}, w(Si \ Si−1) = F (Si)− F (Si−1).

Proof: Following Remark 5.1 we assume w.l.o.g. that F is centered. By Proposition 7.3 we have
∂F (∅) = PF . Thanks to submodularity, the current theorem for X = ∅ is true by Proposition 2.5
and Corollary 4.2. Similarly for X = Ω. Finally apply Theorem 7.6.

Theorem 7.12: Intersection of subdifferential

Consider F : L→ R. Every w ∈ C can be written as w =
∑
i λi1Ai

for some Ai ∈ L, λi > 0 and∑
i λi = 1, and

∂fC(w) =
⋂
i

∂F (Ai). (122)

Proof: By Theorem 7.4, z ∈ ∂fC(w) iff

〈z,w〉 = fC(w) + f∗C(z) ⇐⇒
∑
i

λi 〈z,1Ai
〉 =

∑
i

λi

(
F (Ai) + f∗C(z)

)
⇐⇒ ∀ i, 〈z,1Ai〉 = F (Ai) + f∗C(z).

Apply Theorem 7.4 once more.

Definition 7.3: Normal cone

Following convex analysis, we define the normal cone of a lattice L at the set X ∈ L as

NL(X) := {w ∈ RΩ : 〈w,1Y − 1X〉 ≤ 0,∀ Y ∈ L}.

Theorem 7.13: Constrained optimality

Let F : L→ R be submodular and L0 ⊆ L a sublattice, then X ∈ L0 minimizes F on L0 iff

0 ∈ ∂F (X) +NL0
(X). (123)
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Proof: The sufficiency is immediate from the definitions. On the other hand, if X minimizes F
on L0, we consider the constant F (X) as a supermodular function on the sublattice L0. Apply
the sandwich Theorem 4.9, we have some p ∈ RΩ so that F ≥ p on L while p ≥ F (X) on L0.
Necessarily F (X) = p(X). Thus for all Z ∈ L, F (Z) ≥ F (X) + p(Z)− p(X) while for all Y ∈ L0,
p(X)− p(Y ) ≤ F (X)− F (X) = 0. Clearly p satisfies (123).

Usually the sublattice L0 is given explicitly as the constraint set

L0 := {X ∈ L : Fi(X) = αi, i = 1, . . . ,m} (124)

where Fi : L → R are submodular and αi = min{Fi(X) : X ∈ L}. Thanks to Proposition 2.1, L0 thus
defined is indeed a sublattice of L. Very interestingly, we can also develop a theory of Lagrangian duality
for the (discrete) constrained minimization problem

min
X∈L0

F (X). (125)

First recall that the Lagrangian is defined as

L(X,µ) := F (X) +

m∑
i=1

µi(Fi(X)− αi), (126)

where µ ∈ Rm+ is called a Lagrangian multiplier if

min
X∈L

L(X,µ) = min
X∈L0

F (X). (127)

Note that the constraint Fi(X) = αi is equivalent to Fi(X) ≤ αi since αi is the minimum of Fi. That
partly explains why we take µ to be nonnegative, but the true reason will become clear only later.

Theorem 7.14: Existence of a Lagrangian multiplier

There always exists a Lagrangian multiplier for problem (125), where L0 is given by (124) and
αi = minX∈L Fi(X).
Proof: Let

γ := min
i=1,...,m

min
X∈L:Fi(X)6=αi

Fi(X)− αi.

Clearly γ > 0, due to the minimality of αi. Let β = minX∈L F (X). If X 6∈ L0, then

L(X,µ) ≥ β + γµi,

for some 1 ≤ i ≤ m. Therefore if,

min
i=1,...,m

µi ≥
1

γ

(
min
X∈L0

F (X)− β
)
,

we must have the equality in (127).

No assumption on submodularity is needed here, thanks to the inherent finite structure. Note that
our proof is semi-constructive, as it requires knowledge of minX∈L F (X) and minX∈L0

F (X) while
the latter is our true interest! Also clear from the proof is that any upper bound of a Lagrangian
multiplier remains a Lagrangian multiplier.

Given a Lagrangian multiplier, clearly any minimizer of the RHS in (127) also minimizes its LHS.
Conversely, any minimizer of the LHS lying in L0 minimizes the RHS too. Recall that (X?,µ?) is called a
saddle-point of the Lagrangian iff

sup
µ∈Rm

+

L(X?,µ) ≤ L(X?,µ?) ≤ min
X∈L

L(X,µ?). (128)

Note that the inequalities obviously imply equalities.
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Theorem 7.15: Saddle-point and optimality

Let F, Fi : L→ R, i = 1, . . . ,m be submodular, then X? ∈ L0 minimizes F on L0 and µ? ∈ Rm+ is a
Lagrangian multiplier iff (X? ∈ L,µ? ∈ Rm+ ) is a saddle-point of the Lagrangian iff X? ∈ L0,µ ∈ Rm+
and

0 ∈ ∂F (X?) +

m∑
i=1

µ?i ∂Fi(X
?), (129)

where the subdifferentials are taken on L.
Proof: If (X?,µ?) is a saddle-point of the Lagrangian, then (128) holds, hence we have

sup
µ∈Rm

+

L(X?,µ) = L(X?,µ?) = min
X∈L

L(X,µ?), (130)

from which we immediately know X? ∈ L0 for otherwise the LHS would be unbounded from above.
On the other hand, clearly RHS ≤ minX∈L0

F (X). Thus X? minimizes F on L0 and µ? is a
Lagrangian multiplier. The converse is obvious, hence we have proved the first equivalence.
If X? minimizes F on L0 and µ? is a Lagrangian multiplier, then applying Theorem 7.5, The-

orem 7.8 and Theorem 7.9 on the RHS of (130) yields (129). Note that we need the Lagrangian
multiplier µ to be nonnegative in order to apply Theorem 7.8. For the converse, note that (129)
implies X? is optimal for the RHS of (130), whence follows that X? minimizes F on L0 and µ is a
Lagrangian multiplier.

Theorem 7.16: Characterizing the Lagrangian multipliers

Let F, Fi : L→ R, i = 1, . . . ,m be submodular. The Lagrangian multipliers for (125) are given by

argmax
µ∈Rm

+

{
g(µ) := min

X∈L
L(X,µ)

}
. (131)

Proof: Theorem 7.14 proves the existence of a Lagrangian multiplier µ?. Let X? be any minimizer
of F on L0. For any µ̂ that maximizes (131), according to (130),{

min
X∈L

L(X, µ̂)

}
= g(µ̂) ≤

{
sup

µ∈Rm
+

L(X?,µ)

}
= L(X?,µ?) = min

X∈L0

F (X),

verifying that µ̂ is a Lagrangian multiplier, since LHS ≤ RHS is clear due to nonnegativity. By (128),
any Lagrangian multiplier clearly belongs to (131).

Since the function g by definition is increasing w.r.t. µ, we see again that any upper bound of a
Lagrangian multiplier remains a Lagrangian multiplier.

Remark 7.1: Optimizing the dual

Thanks to Theorem 7.16 and Theorem 7.14, to optimize the constrained problem (125), we can first
optimize the dual problem (131) to find a Lagrangian multiplier, based on which we minimize the
“unconstrained” Lagrangian w.r.t. X ∈ L. If the minimizer X? happens to be in L0, we have found a
minimizer to the primal problem (125). Happily, the dual problem (131) is to maximize a bounded
(from above) continuous concave function g on Rm+ .
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8 Algorithms
We consider the separable minimization problem first:

min
b∈BF

∑
x∈Ω

ϕx(bx), (132)

where F : L → R is a centered submodular function with BF its base polyhedron, and each ϕx is a
univariate (finite-valued) convex function.

Theorem 8.1: Optimality for separable convex minimization

b ∈ BF is optimal for (132) iff for all x ∈ Ω, y ∈ dep(b, x) we have

ϕ+
x (bx) ≥ ϕ−y (by), (133)

where ϕ− and ϕ+ denote the left and right derivative of ϕ, respectively.
Proof: Clearly b is optimal iff 0 ∈ ∂ϕ(b) +NBF

(b), namely, according to Corollary 4.3,

∀ x ∈ Ω,∀ y ∈ dep(b, x), 〈−∂ϕ(b),1x − 1y〉 ≤ 0,

which is (133).

Take ϕx(bx) = wxbx we recover Theorem 4.6.

The next result is important for developing a decomposition algorithm.

Theorem 8.2: Optimality certificate

b ∈ BF is optimal for (132) iff there exists a chain ∅ = A0 ⊂ A1 ⊂ · · · ⊂ Ak = Ω in L such that

(I). ∀i,b(Ai) = F (Ai);

(II). ∀i ≥ j, ∀x ∈ Ai \Ai−1,∀y ∈ Aj \Aj−1, ϕ+
x (bx) ≥ ϕ−y (by).

Proof: ⇐=: We verify Theorem 8.1. Let x ∈ Ω, y ∈ dep(b, x). Thanks to (I), we know x ∈ Ai \Ai−1,
y ∈ Aj \Aj−1 for some i ≥ j. Thus (II) implies (133).

=⇒: Consider the saturation lattice Sb := {X ∈ L : b(X) = F (X)}. Following Remark 1.2 we
construct the ordered set P(Sb) = {[X1], . . . , [Xk]}. For each i, define g−i = max{ϕ−y (by) : y ∈ [Xi]}
and similarly g+

i = min{ϕ+
x (bx) : x ∈ [Xi]}. Note that x ∈ [Xi], y ∈ [Xj ] with [Xj ] � [Xi]

implies y ∈ dep(b, x) hence by Theorem 8.1 ϕ+
x (bx) ≥ ϕ−y (by), thus g+

i ≥ g−j . Finally define
g↑i := max{g−j : [Xj ] � [Xi]}. Clearly g−i ≤ g↑i ≤ g+

i , and [Xj ] � [Xi] =⇒ g↑j ≤ g↑i . Assume w.l.o.g.
that g↑1 ≤ . . . ≤ g↑k and let Ai =

⋃
j≤i[Xj ]. (I) is clearly met since [Xj ] ∈ Sb. For (II), consider

x ∈ [Xi], y ∈ [Xj ] with i ≥ j, we have ϕ+
x (bx) ≥ g+

i ≥ g↑i ≥ g↑j ≥ g−j ≥ ϕ−y (by), as required.

In the following algorithm, we assume for each x ∈ Ω, ϕx is super-coercive, i.e., lim
|b|→∞

ϕx(b)/|b| → ∞,

which guarantees that the Fenchel conjugate ϕ∗x is finite hence subdifferentiable everywhere.

Algorithm 8.1: Decomposition algorithm

(I). Find η ∈ R such that F (Ω) ∈
∑
x∈Ω ∂ϕ

∗
x(η);

(II). Find b ∈ BF such that for all x, y ∈ Ω:

a) ϕ+
x (bx) < η and ϕ−y (by) > η imply y 6∈ dep(b, x);

b) ϕ+
x (bx) < η, ϕ−y (by) = η and y ∈ dep(b, x) imply by = inf ∂ϕ∗y(η);

c) ϕ+
x (bx) = η, ϕ−y (by) > η and y ∈ dep(b, x) imply bx = sup ∂ϕ∗x(η);
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(III). Let Ω+ = {}, Ω− = {} and Ω0 = Ω \ Ω+ \ Ω−. Set b?(Ω0) = b(Ω0) and repeat the algorithm
for the subproblems:

Needless to say that the current algorithm generalizes the greedy Algorithm 4.1.

Let us explain Algorithm 8.1: According to Theorem 8.1, we need to satisfy the optimality condition
(133), hence (II)a collects those pairs which could potentially violate this optimality condition while (II)b
and (II)c are needed merely for technical reasons.

Proposition 8.1: Algorithm 8.1 is well-defined and terminates

Algorithm 8.1 is well-defined and terminates in finite steps.
Proof: (I): Equivalently, we may consider the problem

min
q∈RΩ

∑
x∈Ω

ϕx(qx) s.t. q(Ω) = F (Ω), (134)

whose Fenchel dual is

max
η∈R

η · F (Ω)−
∑
x∈Ω

ϕ∗x(η). (135)

Therefore (I) is nothing but the optimality condition of (135). Since ϕx by assumption is finite
everywhere, (135) admits a maximizer.
(II): We provide an implementation for (II). Note first that ϕ+

x (bx) < η ⇐⇒ bx < inf ∂ϕ∗x(η)
and similarly ϕ−y (by) > η ⇐⇒ by > sup ∂ϕ∗y(η). Start with any base b ∈ BF and we perform the
following procedure:

1 ). find x ∈ Ω so that bx < inf ∂ϕ∗x(η); if no such x exists, b is optimal;

2 ). if there exists y ∈ dep(b, x) such that by > sup ∂ϕ∗y(η), update b← b + α(ex − ey) with

0 ≤ α = min{c(b, x, y), sup ∂ϕ∗x(η)− bx , by − inf ∂ϕ∗y(η) };

if there is no such y, remove dep(b, x) from later considerations and go to 1);

3 ). if α = sup ∂ϕ∗x(η)− bx, remove x from later considerations and go to 1); otherwise repeat 2).

Some explanations: If we find no x in Step 1), then b ∈ BF is optimal for the relaxation (134) hence
also optimal for (132). Step 2) makes one of (II)a, (II)b and (II)c happen for the pair (x, y). We
need to argue that the subsequent updates never ruin previous updates. Indeed, note first that
if α = sup ∂ϕ∗x(η) − bx (resp. α = by − inf ∂ϕ∗y(η)), then bx (resp. by), which meets (II)c (resp.
(II)b), is never updated again. Then we prove that step 2) is repeated for each x at most |Ω|
times: We need only consider α = c(b, x, y), after the immediate update of b, y 6∈ dep(b, x) and in
subsequent repetitions of step 2) (for the same x), dep(b, x) can only shrink. Finally observe that
we either remove x from our consideration because bx = sup ∂ϕ∗x(η) in which case (II)c is satisfied,
or we remove dep(b, x) in which case any element in dep(b, x) is never updated anymore: For all
x 6= x′ ∈ dep(b, x), either bx′ = inf ∂ϕ∗x′(η) (which clearly remains intact) or bx′ < inf ∂ϕ∗x′(η) (but
dep(b, x′) ⊆ dep(b, x) thus step (II)b is never executed for x′).
(III):

Proposition 8.2: Algorithm 8.1 is correct
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Fujishige [2005] minimum-point algorithm
The problem of maximizing a symmetric non-monotone submodular function subject to no constraints

admits a 1/2 approximation algorithm [Feige et al., 2011]. Computing the maximum cut of a graph is
a special case of this problem. The more general problem of maximizing an arbitrary non-monotone
submodular function subject to no constraints also admits a 1/2 approximation algorithm [Buchbinder
et al., 2012]. The problem of maximizing a monotone submodular function subject to a cardinality
constraint admits a 1 - 1/e approximation algorithm [Nemhauser et al., 1978]. The maximum coverage
problem is a special case of this problem. The more general problem of maximizing a monotone submodular
function subject to a matroid constraint also admits a 1 - 1/e approximation algorithm.

9 Graph Theorems and Algorithms
We collect here some of the most important graph algorithms in combinatorial optimization. Recall that
a graph is defined as the pair (V ;E) where V is the set of vertices and E is the set of edges. If the graph
is directed, we will use A to denote the arcs (instead of E for the edges).

Definition 9.1: Walk, Path, Cycle and Circuit

A walk in a graph is simply a collection of vertices and edges (arcs) v0, e1, v1, . . . , ek, vk where
{vi : 0 ≤ i ≤ k} are vertices and {ei : 1 ≤ i ≤ k} are edges (arcs) connecting vi−1 and vi. A path is
simply a walk whose vertices (hence edges/arcs) are all distinct. A cycle is a walk with v0 = vk and
a circuit is a cycle whose vertices, except the first one, are all distinct.

Alert 9.1: Simple Graph

Note that when we say graph we allow it to have multiple edges/arcs between two vertices. If not
the case, we will use explicitly the phrase simple graph.

Algorithm 9.1: Graph Scanning

Let G = (V ;E) be a graph and s be a vertex. The following procedure scans all vertices and
edges/arcs reachable from s.

Start with Q = {s}, R = {s}, T = ∅.

(I). If Q = ∅ stop; otherwise choose v from Q.

(II). Choose w ∈ V −R with vw ∈ E and set Q← Q ∪ {w}, R← R ∪ {w}, T ← T ∪ vw; If there is
no such w, Q← Q− {v}.

(III). Repeat.

When the algorithm stops, R is the set of vertices reachable from s and T is the set of edges/arcs
reachable from s. The overall complexity is O(|V |+ |E|) since each vertex/arc is scanned at most
once.

Algorithm 9.2: Breadth First Search

This is a specialization of Algorithm 9.1, where the query set Q follows first in first out.
Fix a vertex s and denote Vi as the set of vertices that has i unit distance to s. Clearly V0 = {s},

and Vi+1 = {v ∈ V −
⋃i
j=1 Vi : ∃u ∈ Vi such that uv ∈ E}. The partition V =

∑
i Vi can be

performed in time O(|V |+ |E|).
Clearly we can use breadth first search to find a shortest path from the vertex s to any other

vertex t: Simply check j := min{i : t ∈ Vi}. The Vi’s also indicate all the distances from s to other
vertices.
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Algorithm 9.3: Depth First Search

This is another specialization of Algorithm 9.1, where the query set Q follows first in last out.
Given the vertex s we can also perform a depth first search by recursion, using the scan operator:

scan(v): Delete all edges/arcs pointing to v. For each u ∈ V such that vu ∈ E, scan(u).

We order the vertices by

vi � vj : scan(vi) finishes earlier than scan(vj),

which is a strict partial ordering on all vertices that are reachable by s. Moreover, this order enjoys
the property that if vi � vj and vj is reachable by vi, then vi must be reachable by vj too, i.e., there
exists a circuit in the graph. It is easy to count that the complexity of determining this ordering is
O(m), where m is the number of edges/arcs reachable by s.

By adding an extra vertex t to the graph and connecting it to all vertices, scan(t) will give us an
ordering of all vertices. Clearly the complexity is O(|V |+ |E|).

Algorithm 9.4: Strong Components

To find the strong components in a digraph, we first order the vertices such that v1 � . . . � vn.
Scan the largest vertex v1 and let V1 be the set of vertices reachable by it. Due to the property of
the ordering, V1 is exactly the component containing v1. Delete from the graph the component V1

and repeat the procedure (no need to reorder the remaining vertices). The overall complexity is
dominated by ordering, that is O(|V |+ |A|).

Definition 9.2: Eulerian Cycle

An Eulerian cycle in a (di)graph is a cycle which transverses each edge/arc exactly once. It is
well-known that an undirected graph has an Eulerian cycle iff each vertex has even degree, while a
directed graph has an Eulerian cycle iff for each vertex its in-degree and out-degree agree.

Algorithm 9.5: Eulerian Cycle

Choose a non-isolated vertex, make a walk as long as possible so that no edge/arc is transversed
twice. If there is an Eulerian cycle we must end in the starting vertex again. Delete the transversed
edges/arcs and repeat the procedure. Since each edge is transversed at most once, the complexity is
O(|V |+ |E|).

Algorithm 9.6: Dijkstra’s Shortest Path

Given a digraph G = (V ;A) and a nonnegative length function ` : A → R+, we want to find a
shortest path from the vertex s to another vertex t.
Start with the distance vector d ∈ RV+ with d(s) = 0 and d(v) = ∞,∀v 6= s. Set U = V and

repeat the following: Find u ∈ U such that d(u) is minimal over u ∈ U . For each uv ∈ A set
d(v) = d(v) ∧ (d(u) + `(uv)). Delete u from U .
Clearly the complexity is at most O(|V |2).
Using induction it is clear that the distance vector d maintained by the algorithm is always an

upper bound of the true distance dist in the graph. In each iteration, we claim that d(u) = dist(u).
Use induction: d(s) = 0 = dist(s). Suppose d(u) > dist(u). Let s = v0, . . . , vk = u be a shortest s−u
path and i ≥ 1 be the smallest index such that vi ∈ U . Then the fact that vi−1 has been chosen
previously leads to d(vi) ≤ d(vi−1) + `(vi−1vi) = dist(vi−1) + `(vi−1vi) = dist(vi) ≤ dist(u) < d(u),
contradicting our choice of u ∈ U . Note that the nonnegativity of the length function is used to
derive the second inequality.

By using a fancier data structure (the Fibonacci heap), Dijkstra’s algorithm can be accelerated to
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O(|A|+ |V | log |V |),i.e., almost linear time.

Algorithm 9.7: Bellman-Ford Shortest Path

This is an instance of dynamic programming. Note first that it is NP-hard to find the shortest path
between two vertices in a digraph, when the length function is arbitrary (reduction from Hamiltonian
path). However, if there is no negative-length directed circuit that is reachable by s, the following
algorithm will do.

Fix s ∈ V and denote dk ∈ RV as the distance vector where dk(v) is the minimum length of s− v
paths transversing at most k edges. Clearly d0(s) = 0 and d0(v) = ∞,∀v 6= s. Given dk, dk+1 is
given as dk+1(v) = dk(v) ∧ (minuv∈A dk(u) + `(uv)).

The complexity is easily seen to be O(|V ||A|). Moreover, if there exists a negative-length directed
circuit that is reachable by s, by comparing the distance vectors d|V | with d|V |−1, we can detect
its existence: If d|V | = d|V |−1, denote the circuit reachable by s as v0, v1, . . . , vk = v0, then
d|V |(vi) ≤ d|V |−1(vi−1) + `(vi−1vi) for all 1 ≤ i ≤ k. Summing up we get that the circuit must have
nonnegative length. Conversely, if ∃t such that d|V |(t) < d|V |−1(t) then there exists a shortest s− t
path which transverses |V | edges, i.e., there exists a circuit. Of course, the circuit can only have
negative length.

Definition 9.3: Potential

Let G := (V ;A) be a digraph with the length function ` : A→ R. The function p : V → R is called
a potential for G if

∀uv ∈ A, `(uv) ≥ p(v)− p(u).

Add a new vertex s to the graph and compute the shortest distance of each vertex to it. The
resulting distance function is trivially a potential for the graph. Conversely, given a potential p, we
can change the length function to `(uv)− p(v) + p(u) to make it nonnegative, without affecting the
relative lengths of paths between any pair of vertices. When a potential can be found cheaply, we
will apply the previous trick so that the cheaper Dijkstra’s algorithm can be employed to find the
shortest path.

Algorithm 9.8: Floyd-Warshall Shortest Path

To compute the shortest distances between all pairs of vertices in a digraph (with arbitrary length
function ` but without negative-length circuits), we proceed as follows. Arbitrarily order the vertices
as v1, . . . , vn. Denote Dk ∈ RV×V as the distance matrix where Dk(s, t) is the minimum length
of s − t paths using only vertices {s, v1, . . . , vk, t}. Define D0(s, t) = `(s, t), if st ∈ A otherwise
D0(s, t) = ∞. Given Dk, Dk+1(s, t) = Dk(s, t) ∧ (Dk(s, vk+1) + Dk(vk+1, t)). This is yet another
instance of dynamic programming.
The complexity is O(|V |3). However, we can easily get a faster algorithm: Using Bellman-Ford

algorithm to compute a potential and then employ Dijkstra’s algorithm for each vertex. This gives
us O(|V |(|A|+ |V | log |V |).
Using the Floyd-Marshall algorithm, it is easy to find a minimum length circuit (provided that

there is no negative-length circuit): Simply solve mins∈V mint∈V Dn(s, t) +Dn(t, s), where n := |V |.

Algorithm 9.9: Karp’s Minimum Average-Length Directed Circuit

Given a digraph G = (V ;A) (with arbitrary length function `), we want to find a directed circuit
whose average length is minimal. Define ∀v ∈ V , d0(v) = 0, and dk(v) as the minimum length of
walks ending in v with exactly k arcs. That is

dk+1(v) = min
uv∈A

dk(u) + `(uv).
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Set dk+1(v) =∞ if no such walk exists. Denote n := |V |.
We prove that the minimum average length of cycles is equal to

min
v∈V

max
0≤k≤n−1:dk(v)<∞

dn(v)− dk(v)

n− k
. (136)

Note first that if there is no cycle (i.e., the minimum average length is ∞), then dn ≡ ∞ hence
the formula is correct. By subtracting some constant from each arc, we can assume w.l.o.g. the
minimum average length of cycles is 0. Let the minimum in (136) be attained by u. It is easy to
see that the minimum is nonnegative: If dn(u) =∞ this is trivially true, otherwise the walk that
leads to dn(u) must be composed of a walk with k arcs ending at u and a nonnegative-length cycle
C with n− k arcs.
Conversely, let C := {v0, v1, . . . , vt = v0} be a zero length cycle. Then arg minr dr(v0) can be

chosen in the interval n−t ≤ r < n (since dn(v0), containing a nonnegative length cycle, can be safely
ignored). Fix such an r and split C into P := {v0, . . . , vn−r} and Q := {vn−r, . . . , vt = v0}. We
have dk(vn−r) + `(Q) ≥ dk+(t−(n−r))(v0) ≥ dr(v0) ≥ dn(vn−r)− `(P ), hence dn(vn−r)− dk(vn−r) ≤
`(C) = 0.
Algorithmically, we compute the distance vector dn in time O(|V ||A|); find the minimizer u ∈ V

which achieves the minimum in (136); and finally any circuit in the walk that leads to dn(u) is the
one we are looking for: By subtracting the circuit we get an upper bound on dk(u) for some k, which
in turn is an upper bound on dn(u) due to the minimality of u. The overall complexity is dominated
by the first step hence O(|V ||A|).

Recall that for a collection of subsets Q = {∅ 6= Pi ⊆ Ω : i ∈ I}, pi ∈ Ω, i ∈ I is called a system of
representation for Q if there exists a bijection π : I → I such that pi ∈ Pπ(i). Note that we might have
pi = pj for some i, j ∈ I, otherwise it will be called a system of distinct representation.

Theorem 9.1: Hall-Rado Theorem

Let F : 2Ω → R be a polymatroid function and Q = {∅ 6= Pi ⊆ Ω : i ∈ I}. Fix d ∈ N, then Q has a
system of representation pi, i ∈ I with F (

⋃
i∈J{pi}) ≥ |J |+ d, ∀J ⊆ I iff

F

(⋃
i∈J

Pi

)
≥ |J |+ d,∀J ⊆ I. (137)

Proof: ⇒: Trivial, since
⋃
i∈J{pi} ⊆

⋃
i∈J Pi.

⇐: If |Pi| = 1,∀i ∈ I, then the implication is trivial. Otherwise let, say, |Pi1 | > 1, hence there exist
x1, x2 ∈ Pi1 and x1 6= x2. We claim that ∃k ∈ {1, 2} such that the system {P̂i1 := Pi1 − {xk}, P̂i :=
Pi, i1 6= i ∈ I} satisfies (137). Indeed, suppose not, then there exist J1 ∪ J2 63 i1 such that

F
(
(Pi1 − {xk}) ∪ P (Jk)

)
≤ |Jk|+ d,

where we introduce the notation P (J) :=
⋃
i∈J Pi. But since F is polymatroid, we have

F
(

(Pi1 − {x1}) ∪ P (J1)
)

+ F
(

(Pi1 − {x2}) ∪ P (J2)
)
≥ F

(
P ({i1} ∪ J1 ∪ J2)

)
+ F

(
P (J1 ∩ J2)

)
≥ |J1 ∪ J2|+ 1 + |J1 ∩ J2|+ 2d

= |J1|+ |J2|+ 1 + 2d,

contradiction. Therefore we can keep deleting elements so that |Pi| = 1,∀i ∈ I.

The case with d = 0 is mostly interesting. If we let F = | · | then the system of representation is
forced to be distinct, and (137) becomes a sufficient and necessary condition for the existence of
transversals, usually known as Hall’s Marriage Theorem (marrying pi to Pπ(i), one husband and
one wife!). If we let F be the rank function of some matroid, then (137) becomes a sufficient and
necessary condition for the existence of transversals satisfying {pi : i ∈ J} ∈ I,∀J ⊆ I.
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We add a few other theorems that each is related to Hall’s and König’s theorems.

Theorem 9.2: Birkhoff Theorem

Let S ∈ Rn×n+ be a doubly stochastic matrix (i.e., each row and column sums to 1). Then S can be
written as a convex combination of permutation matrices.
Proof: For each i ∈ Ω := {1, . . . , n}, define Pi := {j ∈ Ω : Sij > 0}, which is non-empty due to the
assumption

∑
j Sij = 1. Consider any subset J ⊆ Ω. Denote P (J) as

⋃
j∈J Pj , we have

|P (J)| =
n∑
i=1

∑
j∈P (J)

Sij ≥
∑
i∈J

∑
j∈Pi

Sij = |J |,

where the first equality is due to
∑
i Sij = 1 and the last equality follows from the definition of Pi.

Apply Hado’s theorem we get a transversal from Ω to {Pi}i∈Ω. The transversal can be represented
as a permutation matrix whose multiple subtracted from S will zero out one more element in S.
Iterating the above procedure until S becomes 0.

It is not clear if Hall’s theorem (or any of the above equivalents) follows directly from Birkhoff’s
Theorem, although for a regular (i.e., each node has the same degree) bipartite graph, the incidence
matrix is doubly stochastic (after padding zeros) hence Hall’s theorem does follow from Birkhoff’s in
this special case.

Theorem 9.3: König’s Theorem

Let G = (U, V ;E) be a bipartite graph, then

min
C is a vertex cover

|C| = max
M is a matching

|M |. (138)

Proof: The inequality ≥ is easily seen to be true for any graph. Now let C be a minimum cover with
C ∩ U = X,C ∩ V = Y . For each x ∈ X, define Vx := {v ∈ V − Y : xv ∈ E}. The minimality of C
allows us to apply Hall’s theorem to {Vx}x∈X hence we can find a matching Mx that connects X to
V − Y . Similarly another matching My that connects Y to U −X exists. Apparently Mx ∪My is a
matching that has the same size as the minimum cover C.

Conversely, Hall’s theorem follows from König’s theorem: Build the bipartite graph G := (U, V ;E)
where U is the disjoint union of {pi}, V is the collection of {Pi}, and uv ∈ E iff u ∈ v. Let C be a
minimum cover and X = U −C. All the edges between X and V , whose number denoted as k, must
be covered by nodes in V , collectively denoted as Y . Hence k ≥ |

⋃
i∈Y Pi| ≥ |Y | = |X|. Therefore

|C| ≥ |U |, and by König’s theorem a transversal exists.
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Algorithm 9.10: Bipartite Maximum-Size Matching/Minimum-Size Vertex Cover

To get a maximum size matching in a bipartite graph Gb = (U, V ;E), start with a maximal matching
M . Let UM denote the vertices in U that are not covered by M . Similarly define VM . Build a
digraph GM = (U, V ;D) where the edges in M oriented from V to U while the rest edges in E
oriented from U to V . Find a (directed) path from UM to VM and augment it with M (by taking
their symmetric difference). Repeat until this no augmenting path. The overall complexity is clearly
O(ν · |E|), where ν is the size of a maximum matching.
A better algorithm is to add a source s and point it to U , add a sink t and point V to it, and

orient edges in E from U to V . Using Algorithm 9.13 below to find the maximum number of vertex
disjoint s− t paths, which naturally lead to a maximum matching. The overall complexity is brought
down to O(ν1/2 · |E|) (König’s theorem equates ν with the minimum size of a vertex cover).
After getting a maximum-size matching M , we can construct a minimum-size vertex cover as

follows: As before build the digraph GM . Denote RM as the set of vertices in GM that can be
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reached from some vertex in UM . By the maximality of M we know RM ∩ VM = ∅. Moreover there
is no edge connecting U ∩ RM and V − RM (for otherwise the latter will be reachable). Hence
C := (U−RM )∪ (V ∩RM ) is a vertex cover whose vertices are covered by the matchingM . However,
the vertices on the same edge in M cannot both be present in C (because then both vertices are
reachable, violating the definition of C). Therefore |C| ≤ |M |, i.e., C is a minimum-size vertex
cover. The complexity is dominated by finding the maximum matching, hence can be bounded by
O(τ1/2 · |E|), where τ is the size of a minimum vertex cover.

Note that the above construction does not generalize to the weighted setting, although minimum-
weight vertex cover in a bipartite graph can be solved using the linear programming relaxation.

Algorithm 9.11: Bipartite Maximum-Weight Matching

To find a maximum-weight matching in any bipartite graph, we can use the Hungarian method:
Start with the empty matching M in the bipartite graph Gb = (U, V ;E). Let UM denote the vertices
in U that are not covered by M . Similarly define VM . As before build a digraph GM = (U, V ;D)
where the edges in M oriented from V to U with length equal to the weight while the rest edges
in E oriented from U to V with length equal to the negation of the weight. Among all the paths
(if any) in GM that start from UM and end in VM , pick a shortest one and augment M with it.
Iterate the procedure. Using induction it can easily be shown that M is always a maximum-weight
matching among all matchings with size |M |. We terminate when the shortest path we find has
positive length. If we want to find a maximum-weight perfect matching, we stop until all vertices are
covered. The complexity can be bounded as O(ν · |V ||E|) if we use the Bellman-Ford algorithm (cf.
Algorithm 9.7) to find shortest paths, where ν is the minimum size of a maximum-weight matching.

A refined algorithm can maintain a potential (cf. Definition 9.3) so that the faster Dijkstra’s
algorithm (cf. Algorithm 9.6) can be applied to find shortest paths. Indeed, denote RM as the set
of vertices in GM that can be reached from some vertex in UM . Initially, when M = ∅, we can set
the potential p as p(v) := maxe∈E we if v ∈ U and p(v) = 0 otherwise. This gives us a potential for
the graph GM (RM ), the restriction of the graph GM to the vertex set RM . Then for each v ∈ RM
we calculate p̂(v) = dist(UM , v) using Dijkstra’s algorithm. We find a shortest UM − VM path P
and obtain the bigger matching M̂ = M∆P . We claim that p̂ is a potential for GM̂ (RM̂ ): Clearly
UM̂ ⊆ UM . Moreover RM̂ ⊆ RM , for otherwise there exists a path starting from UM̂ hence UM and
ending in RM̂ but not RM . Each arc in GM does not leave RM therefore there must be an arc in P
that leaves RM , which impossible by the definition of RM . So p̂, defined on RM , also covers RM̂ .
Now take an arc uv ∈ GM̂ (RM̂ ). Either uv ∈ GM hence `(uv) ≥ p̂(v)− p̂(u) due to the definiton of
p̂, or vu ∈ P , the augmenting path, hence also p̂(v)− p̂(u) = −`(vu) = `(uv) since P is shortest. In
conclusion, p̂ is a potential for GM̂ (RM̂ ). The overall complexity is thus O(ν · (|E|+ |V | log |V |)),
where ν is the minimum size of a maximum-weight matching.

Theorem 9.4: Gallai’s Theorem

For any graph without isolated vertices the sum of the maximum size of an independent set and
the minimum size of a vertex cover, equals the sum of the maximum size of a matching and the
minimum size of an edge cover, equals the number of vertices.
Proof: Consider a matching M , augmenting it with edges that cover vertices not covered by M gives
us an edge cover whose size is |V | − 2|M |+ |M | = |V | − |M |. Conversely, for any edge cover C, find
a maximum matching M in it. Denote the vertices in V that are not covered by M as X. Then
|X| ≤ |C| − |M |, since every vertex is covered by C while no two vertices connected in C are missed
by M . Therefore |X| = |V | − 2|M | ≤ |C| − |M |. Finally note that a vertex set is independent iff its
complement is a vertex cover.

It is clear from the proof that if we can find a maximum matching then we can easily grow from it
a minimum edge cover. Also if we can find a maximum independent set in the complement graph
then we get a minimum vertex cover in the original graph, and vice versa (although it is unlikely to
have polynomial-time algorithms for them).
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Algorithm 9.12: Minimum-Weight Edge Cover

We reduce the minimum-weight edge cover problem (in any graph without isolated vertices) to
minimum-weight perfect matching: Simply build a copy of the graph, and for each vertex v, connect
it to its twin sister v′ with weight 2wv = mine3v w(e). Find a minimum-weight perfect matching
(which exists by construction) in the twin-graph, retain edges within one copy of the graph and
replace the crossing edge with a lightest edge that resides in the chosen copy of the twin-graph.
Since the matching is perfect, we get an edge cover whose weight is half of the matching. Conversely,
any edge cover induces a perfect matching in the twin-graph whose weight is at most twice bigger
(provided that the weights are nonnegative). The complexity is O(|V | · (|E|+ |V | log |V |)).

Theorem 9.5: Dilworth’s Theorem

Let (P,�) be a partially ordered set. The minimal number m of disjoint chains covering P equals
the maximal size M of antichains.
Proof: Clearly m ≥M . We prove König ⇒ Dilworth: Build the bipartite graph G = (P, P ;E) where
ab ∈ E iff a � b. A chain of length n in (P,�) corresponds to a matching with size n − 1 in G.
Therefore a covering of disjoint j chains in P corresponds to a matching with size |P | − j, and vice
versa. Now consider a minimum covering of m disjoint chains, which corresponds to a maximum
matching in G with size |P |−m. By König’s theorem, there exists a minimum vertex cover in G with
size |P | −m. The rest of the vertexes that are not in the minimum vertex cover form a antichain
with size m.

Conversely, we show Dilworth ⇒ Hall: Let Pi ⊆ Ω, i ∈ I satisfy (137) (with d = 0, F = card).
Build the partially ordered set (P :=

⋃
i∈I{Pi} ∪ Ω,�) where ω � Pi iff ω ∈ Pi while all other pairs

are not comparable. Let S ∪ {Pi}i∈J be a maximum antichain where S ⊆ Ω, J ⊆ I. By Dilworth’s
theorem, P can be partitioned into |S|+ |J | disjoint chains. In particular, |J | of these chains cover
{Pi}i∈J hence also cover

⋃
i∈J Pi (because other chains cover S hence cannot cover elements in Pi).

Therefore |J | ≥ |
⋃
i∈J Pi| (each chain can contain at most one element of Ω) while by assumption

|
⋃
i∈J Pi| ≥ |J |. So we find from these J chains a system of distinct representation for Pi, i ∈ J . On

the other hand {Pi}i∈I−J are covered by the remaining |S| chains, each containing one element in
S. We then easily find a system of distinct representation for Pi, i ∈ I − J . Combing the results
completes the proof of Hall’s theorem.

Theorem 9.6: Menger’s Theorem

The maximum number m of vertex-disjoint S − T paths equals the minimum size n of S − T
separating vertex sets (possibly containing vertices in S, T ).
Proof: Clearly we have n ≥ m. Consider the digraph Gd := (V,D) with S, T ⊆ V . For each node in
S ∩ T , we create a “twins”, one responsible for outward arcs (assigned to S) and one for inward arcs
(assigned to T ). Add also arcs in both directions between the twins. One can verify that by doing so
we do not change n−m, hence we can assume S ∩ T = ∅.

For each v ∈ V − S introduce vt and for each v ∈ V − T introduce vs. Construct the bipartite
graph Gb = (V s, V t;E), where for us ∈ V s, vt ∈ V t, uv ∈ E iff u = v or uv ∈ D. By construction
N := {vsvt : v ∈ V − (S ∪ T )} is a matching in Gb. Take a maximum matching M in Gb with size
µ and consider N∆M , the symmetric difference. Pick a component K of N∆M , there are three
possibilities:

(I). |K ∩M | < |K ∩N |. However, by replacing K ∩M with K ∩N in M we would have got a
larger matching, contradicting the maximality of M ;

(II). |K ∩M | = |K ∩N |. Similar as above, by (repeatedly) replacing K ∩M with K ∩N in M we
can assume this case does not happen either;

(III). |K ∩M | > |K ∩N |. Due to our construction of the special matching N , we know it must be
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true that |K ∩M | = |K ∩N |+ 1 and this component is an Ss − T t path.

Of course the components of N∆M are disconnected. So we have |M | − |N | = µ− |V − (S ∪ T )|
vertex-disjoint Ss − T t paths in Gb, which easily translate to the same number of vertex-disjoint
S − T paths in Gd.

Now let X ⊆ V − T and Y ⊆ V − S be such that C := Xs ∪ Y t is a minimum vertex cover in Gb.
Denote U := (X∩S)∪(Y ∩T )∪(X∩Y ). Let P := (v0, v1, . . . , vk) be an S−T path in Gd. W.l.o.g., we
assume only v0 ∈ S and only vk ∈ T . The path P induces the path Q := (vs0, v

t
1, v

s
1, . . . , v

t
k−1, v

s
k−1, v

t
k)

in Gb. Since Q has 2k − 1 edges, the vertex cover C must intersect it in at least k vertices: either
vs0 ∈ C hence v0 ∈ X ∩S ⊆ U , or vtk ∈ C hence vk ∈ Y ∩T ⊆ U , or vsi , vti ∈ C for some 1 ≤ i ≤ k− 1
hence vi ∈ S ∩T ⊆ U . In any case the vertex set U intersects each S−T path in Gd, i.e., U is S−T
separating. The size of U is

|U | = |X ∩ S|+ |Y ∩ T |+ |X ∩ Y |
= |X ∩ S|+ |Y ∩ T |+ |X|+ |Y | − |X ∪ Y |
= |X|+ |Y | − |V − (S ∪ T )|
= |C| − |V − (S ∪ T )|
= µ− |V − (S ∪ T )|.

The third equality follows from (X ∪ Y )− (S ∪ T ) = V − (S ∪ T ) since ∀v ∈ V − (S ∪ T ), vsvt ∈ E
and C is a vertex cover while the last equality follows from König’s theorem. Therefore n ≤ m thus
m = n.

Two variations of Menger’s theorem are also useful.
The maximum number of internally vertex-disjoint paths connecting two distinct non-adjacent

vertices s and t equals the minimum size of s− t vertex cuts (not containing s, t).
Proof: Let S = {v ∈ V : sv ∈ D}, T = {v ∈ V : vt ∈ D} and delete s, t.

The maximum number of arc-disjoint paths connecting two distinct non-adjacent vertices s and t
equals the minimum size of s− t arc cuts.
Proof: Consider the line graph and define S and T similarly as above.

Algorithm 9.13: Maximum Collection of Arc Disjoint Paths

Given a digraph G := (V ;A) and vertices s and t, we want to find a maximum number of arc disjoint
s− t paths. Denote distG(s, t) as the minimum length of an s− t path in G. The idea is to reverse a
blocking collection of arc disjoint s− t paths at a time so that distG(s, t) increases.

Start with i = 0 and G0 = G.
First we use breadth first search (cf. Algorithm 9.2) to identify the arcs Asti that appear in some

s− t path in Gi: Simply compute the distance ds to s and the distance dt to t for each vertex, then
arc uv ∈ Asti iff uv ∈ A(Gi) and ds(u) + dt(v) + 1 = distGi(s, t). Notice that the arcs in Asti form a
DAG.

Next we recursively find a blocking collection of s− t paths in the DAG G̃i := (V,Asti ): Use depth
first search (cf. Algorithm 9.3) to scan s and stop immediately when t is reached. Delete all arcs
that have been scanned (for every arc other than the ones in the found s− t path must have finished
scanning, therefore if it is contained in another s− t path, it is reachable by t, i.e. there is a circuit,
contradicting the DAG property). Repeat until there is no s− t path. Using induction we see that
the paths we find are indeed blocking, i.e., after reversing them in G̃i, there is no other s− t path.
The complexity for this step is O(|Asti |).

Reverse the arcs in the blocking collection of s− t paths in Gi, call the new graph Gi+1. We show
that distGi+1

(s, t) > distGi(s, t). We need the graph Ĝi := (V ;A(Gi) ∪ (Asti )−1), obtained by adding
the reversed arcs in Asti to the graph Gi. It is not hard to see that distGi(s, t) = distĜi(s, t), hence the
reversed arcs in Ast cannot appear in any s− t path in Ĝi (due to the DAG nature of arcs appearing
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in shortest paths). Since Gi+1 ⊆ Ĝi, we have distGi+1(s, t) ≥ distĜi(s, t). Let P be an s− t path in
Gi+1 with length distĜi(s, t). Then P is arc disjoint from the (reversed) blocking collection we found
in G̃i (otherwise contradicting the DAG property of Asti ). But P is also an s− t path in Ĝi hence in
Gi hence also in G̃i, contradicting to the blocking property. Thus we have strict inequality.

Increment i and repeat until there is no s− t path in the graph, say, Gk. We show how to extract
a minimum s− t cut first. Recall that an s− t cut is defined as the set of arcs pointing from U 3 s
to (V − U) 3 t for some vertex set U ⊆ V . Each time when we reverse an s − t path, the size of
any s− t cut decreases by 1. At the end of iteration, there is no s− t path left hence by Menger’s
theorem there exists a zero s− t cut. Therefore the minimum size of an s− t cut equals the times
we reverse the s− t paths. Moreover, the set of vertices reachable by s in the final graph Gk consists
of a minimum s− t cut.
Finally we show that the arcs reversed in the final graph Gk consists of a maximum collection of

arc disjoint s− t paths in the graph G. Let Rj be the arcs remaining reversed in G when we reverse
the j-th s− t path. Using induction we can easily show that the graph (V ;Rj) with j direct arcs
from s to t added is Eulerian. Therefore we can find as many s− t arc disjoint paths in Gk as the
times we reverse s− t paths in G. But this number of arc disjoint paths coincides with the minimum
size of an s − t cut we found above, hence by Menger’s theorem it is maximum. In fact we have
proved something stronger: Each time we reverse an s− t path, we add to our repository one more
arc disjoint s− t path.
Note that we choose to reverse arcs instead of deleting them, because the graph in general can

have multiple arcs between vertices. The overall complexity of the above procedure is O(k · |A|),
where k ≤ distG(s, t)) is the terminating index. Clearly an easy upper bound is O(|V | · |A|). On
the other hand, let p :=

⌊
|A|1/2

⌋
, then each s − t path in Gp has length at least p + 1 ≥ |A|1/2,

i.e., there are at most |A|/(p + 1) ≈ |A|1/2 arc disjoint s − t paths in Gp. Therefore there are at
most |A|1/2 iterations after Gp since each iteration afterwards increases the cut in Gp by at least 1
while by Menger’s theorem the minimum size of a cut equals the maximum number of arc disjoint
paths. Hence k ≤ 2 · |A|1/2, i.e., the complexity of the procedure is also bounded by O(|A|3/2).
Furthermore, if G is simple, we can tighten the analysis. Let p =

⌊
|V |2/3

⌋
. Denote Ui as the set of

vertices in Gp that has i-unit distance to s. Clearly
∑p
i=1 |Ui|+ |Ui+1| ≤ 2 · |V | hence exists some j

such that |Uj |+ |Uj+1| ≤ 2 · |V |1/3, i.e., |Uj | ≤ |V |2/3 for some j. Since the graph is simple, no two
arc disjoint paths can share vertices. Then Gp has at most |V |2/3 arc disjoint paths, therefore the
number of iterations after Gp is at most |V |2/3, i.e., the complexity is bounded by O(|V |2/3|A|) for
simple graphs.

To find a maximum collection of vertex disjoint s− t paths, we split each vertex v into v1 and v2

where v1v2 is added to the arc set while any uv ∈ A is replaced by u2v1. A maximum collection
of arc disjoint s2 − t1 paths in the new graph suffices for our purpose. However, we can tighten
the complexity analysis a bit by exploiting the special structure of the new graph: Denote τ as the
size of a minimum vertex cover C in G. Set p =

⌊
τ1/2

⌋
. Each vertex disjoint s2 − t1 path in Gp has

length at least p + 1 hence contains at least p/2 vertices in C, therefore there are at most 2τ1/2

vertex disjoint paths in Gp. It follows that the maximum number of iterations after Gp is at most
2τ1/2, i.e., the complexity is bounded by O(τ1/2|A|) ≤ O(|V |1/2|A|).

Theorem 9.7: Ford-Fulkerson Theorem

For any network (a digraph with a single source and a single sink), the minimum cut equals the
maximum flow.
Proof: Let us assume the capacities are all integral (the general case will be handled in ??). Replace
each arc with capacity c to c arcs, all pointing to the original direction. Clearly by construction,
the maximum number of s− t arc-disjoint paths equals the (value of the ) maximum flow while the
minimum number of arcs separating s − t equals the (value of the) minimum cut. The theorem
follows from (the edge version of) Menger’s theorem.

Conversely, Ford-Fulkerson theorem easily implies König’s theorem: Let G = (U, V ;E) be a
bipartite graph. Add a source vertex s to U and a sink vertex t to V . Put infinite (or a sufficiently
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large number) capacity on each edge between U and V and put unit capacity from the source to
U and similarly unit capacity from V to the sink t. Clearly, under our construction a maximum
matching corresponds to a maximum flow. On the other hand, given a minimum cut C = Cs ∪ Ct
with value c (note that c ≤ |U | ∧ |V | hence is finite), we define Us := U ∩Cs and Vs := V ∩Cs. Then
we verify that (U − Us) ∪ Vs form a vertex cover for G with value c, since a minimum cut cannot
afford any edge between (Us, V −Vs) and also (U −Us, Vs). Similarly, given a minimum vertex cover,
we can find a cut with the same value. Therefore (the integral version of) Ford-Fulkerson theorem
implies König’s theorem.

Algorithm 9.14: Edmonds-Karp Algorithm for Max-Flow

The algorithm is extremely simple: Start with any flow, build the residual graph, find a shortest
path, augment the flow and repeat. Note that if we find an arbitrary path instead the algorithm
might not be correct for irrational capacities although it remains correct for rational capacities at
the price of exponential slow down (in the extreme case) [?, page 152 & figure 10.1].

To see the correctness: Let f be the current flow, Gf be the residual graph. Denote A(Gf ) as the
set of arcs in Gf which are on at least one shortest path in Gf . Reverse the arcs in A(Gf ) and add
them to Gf , call it Ĝf . Note that we have A(Gf ) = A(Ĝf ) since the added arcs in Ĝf clearly cannot
on any shortest path. Consequently `(Gf ) = `(Ĝf ), i.e., the length of the shortest paths does not
change. After augmenting f with a shortest path P , we get a bigger flow g whose residual graph Gg
is a subgraph of Ĝf , hence `(Gg) ≥ `(Ĝf ). If we actually have equality, then A(Gg) ⊆ A(Ĝf ) = A(Gf ).
The inclusion is in fact proper since at least one arc in P is no longer in Gg after the augmentation.
In summary, after each augmentation, we either increase the length of the shortest path of the
residual graph by one or we lose one edge in A(Gf ). Therefore the algorithm will terminate after at
most |V | · |A| steps.

The overall complexity of the Edmonds-Karp algorithm is O(|V | · |A|2), and the best algorithm so
far achieves O(|V | · |E|) [?].

Algorithm 9.15: Tardos’ Minimum Cost Circulation

TO BE ADDED.

Theorem 9.8: Tutte-Berge Formula

For an arbitrary graph G = (V,E), the maximum size m(G) of its matchings satisfies

m(G) = min
U⊆V

1

2
[|U |+ |V | − o(G − U)] , (139)

where G − U is the graph with all nodes in U removed and o(G) denotes the number of components
of G that have odd number of vertices.
Proof: Clearly ∀U ⊆ V, m ≤ |U |+m(G−U) ≤ |U |+ 1

2 [|V −U |−o(G−U)] = 1
2 [|U |+ |V |−o(G−U)].

For the other direction, we do induction on |V |. The case V = ∅ trivially holds and we assume
G is connected (otherwise apply the induction hypothesis to each component). If there exists a
vertex v that is contained in every matching, then we can delete the vertex and apply the induction
hypothesis. If we prove by contradiction that there exists a maximum matching that misses at most
one node, then m(G) ≥ 1

2 [|V | − o(G)] while the r.h.s. of (139) is at most 1
2 [|V | − o(G)] (by setting

U = ∅), hence the theorem will be proved.
Indeed, suppose every maximum matching misses at least two distinct nodes. Let

(u, v) = arg min
M,p6∈M,q 6∈N,p6=q

dist(p, q),

where M ranges over all maximum matchings while dist(p, q) denotes the distance between node
p and q in G. Note that dist(u, v) ≥ 2 for otherwise we can augment M to get a bigger matching.
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Choose a distinct third node w on the shortest path from u to v and select among maximum
matchings which do not contain w the one intersects M most, dented as N . By the minimality of
(u, v) (in the sense of dist), N must contain both u and v. Therefore there exists z 6= w that is
covered by M but not N (for they have the same size). Let zx be the edge contained in M . Then
there exists an edge xy contained in N (for otherwise we can augment N with zx). But replac-
ing N by N−xy+zx increases the intersection of N withM , contradiction to the maximality of N .

Algorithm 9.16: Maximum-Size Matching

We describe Edmonds’ maximum-size matching algorithm for any graph.

Theorem 9.9: Brualdi Formula

Theorem 9.10: Edmonds-Galai Decomposition

Algorithm 9.17: Maximum-Weight Matching

We describe Edmonds’ maximum-size matching algorithm for any graph.

10 Matroid
Definition 10.1: Matroid by Independent Sets

Let Ω be a nonempty finite set (called the ground set) and call the pair M = (Ω, I) matroid, where
I ⊆ 2Ω define the independent sets:

(I). (Non-empty) ∅ ∈ I;

(II). (Inheritable) J ∈ I =⇒ I 3 I ⊆ J ;

(III). (Augmentable) If I ∈ I, J ∈ I and |J | > |I|, then ∃ω ∈ J − I such that I ∪ {ω} ∈ I.

The temptation to assume Ω = ∪I must be resisted for good reasons (cf. Definition 10.11 below). The
last property of I allows us to consider maximal independent sets, which will be called basis. It should be
clear that all bases are equipotent, and their common cardinality is called the rank of the matroid. (Do
not confuse the rank of the matroid with the rank function that is defined below.)

Remark 10.1: Weakening the Augmentable Property

For a nonempty, inheritable collection of sets I, the augmentable property can be weakened to

(III’). I ∈ I, J ∈ I, |I − J | = 1, |J − I| = 2 =⇒ ∃ω ∈ J − I s.t. I ∪ {ω} ∈ I.

Proof: Take I ∈ I, J ∈ I, |J | > |I| and we show (III’) =⇒ (III) in Definition 10.1.
Induction on |I − J |:

• |I − J | = 0: Trivial.

• |I − J | = 1: Take a subset of J and apply (III’);

• |I − J | = k + 1: Consider I − {i} where i ∈ I − J . Note that |J | > |I| > |I − {i}| while
|I−{i}−J | = k hence we can apply the induction hypothesis to conclude that ∃j ∈ J − I such
that (I −{i})∪{j} ∈ I. Now consider (I −{i})∪{j} and J , we have |(I −{i})∪{j}− J | = k
while |J | > |(I−{i})∪{j}|. Therefore we can apply the induction hypothesis again to conclude
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that ∃j′ ∈ J − I −{j} such that (I −{i})∪ {j, j′} ∈ I. Finally consider (I −{i})∪ {j, j′} and
I, apply (III’) we get either I ∪ {j} ∈ I or I ∪ {j′} ∈ I, finishing the induction.

As will be seen, (III’) is usually more convenient than (III) to check.

Definition 10.2: Polymatroid and Rank Function

We call any positive integer valued, nondecreasing, submodular function F 0 with F 0(∅) = 0
polymatroid function. Any polymatroid function satisfying the “1-Lipschitz” property (denote X∆Y
as (X − Y ) ∪ (Y −X), the symmetric difference)

| F 0(X)− F 0(Y ) | ≤ |X∆Y | (140)

is called the rank function, denoted usually as R0.

Every matroid M = (Ω, I) is equipped with a rank function defined as

R0
M(X) := max{|I| : I ⊆ X and I ∈ I}. (141)

One need only apply ?? to verify the submodularity of (141): Let X ⊆ Y ⊆ Ω − ω. Note that
(R0

M)ω(·) ∈ {0, 1}. We show that (R0
M)ω(Y ) = 1 =⇒ (R0

M)ω(X) = 1. Let I 3 IX ⊆ X such
that R0(X) = |IX | and similarly define IY such that R0(Y ∪ {ω}) = |IY ∪ {ω}| > |IX |. By the
augmentable property of independent sets we can build independent set IX ∪J where J ⊆ IY ∪{ω} so that
|IX ∪ J | = |IY ∪ {ω}|. We claim ω ∈ J for otherwise IX ∪ J ⊆ Y hence R0(Y ) = |IY ∪ {ω}| = R0(Y ) + 1,
contradiction. Therefore IX ∪ {ω} is independent due to the inheritable property, i.e., (R0

M)ω(X) = 1.
Conversely, we can also define a matroid from a given rank function.

Definition 10.3: Matroid by Rank Function

Given a rank function R0 on Ω, we associate it with the matroid M = (Ω, I), where I 3 I ⊆ Ω iff
R0(I) = |I|. Such a definition indeed yields a matroid in the sense of Definition 10.1:

(I). R0(∅) = 0 = |∅|, hence ∅ ∈ I;

(II). Let I ⊆ J ∈ I. From the 1-Lipschitz property of R0 we have R0(I)−R0(∅) = R0(I) ≤ |I∆∅| =
|I|. Similarly, R0(J)−R0(I) = |J |−R0(I) ≤ |J∆I| = |J− I| hence R0(I) ≥ |J |− |J− I| = |I|.
Therefore R0(I) = |I|, i.e., I ∈ I;

(III’). We verify (III’) in Remark 10.1 instead of (III) in Definition 10.1. Let I ∈ I, J ∈ I such that
I−J = {i} while J−I = {j1, j2}. Suppose ∀k ∈ {1, 2}, I∪{jk} 6∈ I, i.e., R0(I∪{jk}) = R0(I).
Then R0(J) ≤ R0(I ∪ {j1, j2}) ≤ R0(I ∪ {j1}) +R0(I ∪ {j2})−R0(I) = R0(I) = R0(J)− 1,
contradiction.

Finally we show that the rank function (141) RM
0 defined for the constructed matroid coincides

with the rank function R0 we start with: Note first R0
M(X) := max{|I| : I ⊆ X and |I| = R0(I)} ≤

R0(X), since R0 is nondecreasing. The converse can be shown by induction: R0(∅) = R0
M(∅) = 0. Let

X 6= ∅ and consider X − {x} for x ∈ X. By the induction hypothesis, there exists I 3 I ⊆ X − {x}
such that R0

M(X − {x}) = |I| = R0(X − {x}). If R0(X) = R0(X − {x}) = R0
M(X − {x}) ≤ R0

M(X)
then we are done, otherwise assume R0(X) = R0(X − {x}) + 1. We claim I ∪ {x} ∈ I since
R0(I∪{x}) ≥ R0(I)+R0(X)−R0(X−{x}) = |I|+1. Therefore R0(X) ≤ R0(X−{x})+R0({x}) ≤
|I|+ 1 ≤ R0

M(X), finishing the induction.

More generally, we call a set Ω, equipped with a polymatroid function P 0, a polymatroid.
As mentioned before, a maximal independent set is called basis while a minimal dependent set is called

circuit. We can also define a matroid by specifying its bases or circuits.
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Definition 10.4: Matroid by Bases

Let B ⊆ 2Ω be a collection of bases, which satisfies

(I). (Non-empty) B 6= ∅;

(II). (Exchangeable) For any B1, B2 ∈ B, for any x ∈ B1 there exists y ∈ B2 such that (B1−{x})∪
{y} ∈ B.

(II’). For any B1, B2 ∈ B, for any x ∈ B1 there exists y ∈ B2 such that (B2 − {y}) ∪ {x} ∈ B.

The independent sets are precisely those contained in some basis.
We only prove (II) ⇒ (II’) (the other direction is completely analogous): Take B1, B2 ∈ B and fix

x ∈ B1 −B2 (the interesting case). For each z ∈ B1 −B2 − {x}, by (II) there exists w ∈ B2 −B1

such that (B1 − {z}) ∪ {w} ∈ B. Repeating the replacement until B1 −B2 − {x} = ∅.

Definition 10.5: Matroid by Circuits

Let C ⊆ 2Ω be a collection of circuits, which satisfies

(I). (Non-containing) ∀C1, C2 ∈ C, C1 ⊆ C2 =⇒ C1 = C2;

(II). ∀C1, C2 ∈ C with C1 6= C2, ∀x ∈ C1 ∩ C2,∃C ∈ C such that C ⊆ (C1 ∪ C2)− {x};

(II’). If C1, C2 ∈ C, x ∈ C1 ∩ C2, y ∈ C1 − C2, then ∃C ∈ C such that y ∈ C ⊆ (C1 ∪ C2)− {x}.

Circuits are precisely “bases” for dependent sets. Define the independent sets to be those containing
no elements in C.
We show first that (II) indeed guarantees the new definition of independent sets satisfies Defini-

tion 10.1. We verify only (III’) in Remark 10.1. Let I ∈ I, J ∈ I, I − J = {i}, J − I = {j1, j2}, and
suppose to the contrary I ∪ {jk} 6∈ I for k ∈ {1, 2}. Then I ∪ {jk} ⊆ J ∪ {i} 6∈ I,i.e., ∃C1 ∈ C such
that C1 ⊆ J ∪ {i}. Let C2 ∈ C be another circuit contained in J ∪ {i}. We must have i ∈ C1 ∩ C2

(otherwise Ck ⊆ J contradicting J ∈ I). If C1 6= C2, by (II) we can construct C ∈ C such that C ⊆ J ,
i.e., contradicting J ∈ I. Therefore C1 = C2. Moreover I ∈ I implies C1 is not contained in I hence
exists, say, j1 ∈ C1∩(J−I). It follows from the uniqueness of C1 that I 3 (J ∪{i})−{j1} = I∪{j2}.

Next we prove that (II’) is satisfied for the collection of circuits of any matroid (defined through
Definition 10.1). Consider the submatroid Ms = (C1 ∪C2, Is) (cf. Definition 10.6 below). Obviously
C1 − {y} does not contain any (sub)circuit (otherwise contradicting (I)) hence exists some basis
y 6∈ B1 ⊇ C1 − {y}, and similarly exists another basis x 6∈ B2 ⊇ C2 − {x}. If y ∈ B2, then by
the exchangeability of bases, ∃z ∈ B1 − B2 such that (B2 − {y}) ∪ {z} is still a basis. Note that
z 6∈ {x, y} for otherwise B2 ⊇ C2 (as y 6∈ C2). Replace B2 with (B2 − {y}) ∪ {z} we can assume
{x, y} ∩B2 = ∅. Therefore B2 ∪ {y} 6∈ I, i.e., ∃C ∈ Cs such that C ⊆ B2 ∪ {y}. Apparently y ∈ C
(for otherwise C ⊆ B2) and x 6∈ C (for x 6∈ B2).

Needless to say that (II’) =⇒ (II). Another consequence of (II) is that for any I ∈ I, if I∪{j} 6∈ I
then there exists a unique circuit in I ∪ {j} (since all circuits must contain j).

Definition 10.6: Submatroid

Given a matroid M = (Ω, I) and any set S ⊆ Ω we can define a submatroid Ms = (S, Is), where
Is := {I ∈ I : I ⊆ S}. It is easy to verify that indeed Is satisfies Definition 10.1. The rank function
for Ms is simply the one for M restricted to subsets of S, and the circuits of Ms are precisely those
of M which are contained in S.

Definition 10.7: Matroid by Closure Operator

Fix a matroid M = (Ω, I) with its rank function R0
M defined in (141), we define its closure operator
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cl : 2Ω → 2Ω by

cl(X) :=
{
ω ∈ Ω : R0

M(X) = R0
M(X ∪ {ω})

}
. (142)

Sets satisfy cl(X) = X are called flats (closed sets) while sets satisfy cl(X) = Ω are called spanning
(dense). We note first that R0

M(cl(X)) = R0
M(X) hence cl(cl(X)) = cl(X): Let I ∈ I, I ⊆ X satisfy

|I| = R0
M(X), then if R0

M(cl(X)) > R0
M(X) there must exists ω ∈ cl(X)−X such that I ∪ {ω} ∈ I,

contradicting R0
M(X ∪ {ω}) = R0

M(X). Similarly we can prove X ⊆ Y =⇒ cl(X) ⊆ cl(Y ), hence
consequently cl(X ∩ Y ) ⊆ cl(X) ∩ cl(Y ).
One easily verifies that the closure operator satisfies

(I). X ⊆ cl(X);

(II). X ⊆ cl(Y ) =⇒ cl(X) ⊆ cl(Y );

(III). ∀X ⊆ Ω, ω ∈ Ω : ω′ ∈ cl(X ∪ {ω})− cl(X) =⇒ ω ∈ cl(X ∪ {ω′})− cl(X).

We prove conversely the closure operator defines a matroid by specifying

I :=
{
I ⊆ Ω : ∀ω ∈ I, ω 6∈ cl(I − {ω})

}
.

We first prove that

I ∈ I =⇒ cl(I) = I ∪ {ω : I ∪ {ω} 6∈ I}. (143)

If ω ∈ cl(I) − I, then I ∪ {ω} 6∈ I. Conversely if I ∪ {ω} 6∈ I then ∃ω′ ∈ I ∪ {ω} such that
ω′ ∈ cl((I ∪ {ω}) − ω′). If ω = ω′ then ω ∈ cl(I); otherwise ω′ ∈ I, since I ∈ I we have
ω′ 6∈ cl(I − {ω′}) hence by (III) (where X = I − {ω′}) we get again ω ∈ cl(I).
Now we can prove (III’) in Remark 10.1 (the other two are easy). Let I ∈ I, J ∈ I, I − J =
{i}, J − I = {j1, j2}. Assume that I ∪ {j1} 6∈ I, i.e., (J ∪ {i}) − {j2} 6∈ I. Apply (143) we know
i ∈ cl(J −{j2}) (for J −{j2} ∈ I). Therefore I ⊆ cl(J −{j2}) and consequently cl(I) ⊆ cl(J −{j2}).
Since J ∈ I we have j2 6∈ cl(J−{j2}) hence j2 6∈ cl(I). Apply (143) once more we obtain I∪{j2} ∈ I.
Finally we show that the closure operator cl(·) we start with coincides with the closure operator

clM(·) for the constructed matroid. Consider an arbitrary X ⊆ Ω and let I ∈ I, I ⊆ X satisfy
R0

M(X) = |I|. Then clM(X) = I ∪ {ω : I ∪ {ω} 6∈ I}, which by (143) is also equal to cl(I) ⊆ cl(X).
Let ω ∈ X − I, then I ∪ {ω} 6∈ I (by our choice of I). Hence ω ∈ cl(I) due to (143), i.e., X ∈ cl(I).
Therefore cl(X) ⊆ cl(I), implying clM(X) = cl(I) = cl(X).
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Definition 10.8: Matroid by Flats

Recall that flats are closed sets F : cl(F ) = F , which collectively, denoted as F , satisfy:

(I). Ω ∈ F ;

(II). F1 ∈ F , F2 ∈ F =⇒ F1 ∩ F2 ∈ F ;

(III). ∀F ∈ F ,∀ω ∈ Ω, denote Fs as the smallest flat containing F ∪ {ω}, then there is no F ′ ∈ F
with F ⊂ F ′ ⊂ Fs.

It is easy to verify that bona fide flats do satisfy (I) and (II). Note also that due to (II), it is
meaningful to talk about smallest containing flats in (III). To show (III), assume such an F ′ exists.
Then ∃ω′ ∈ F ′ such that ω′ 6∈ cl(F ). By assumption ω ∈ Fs − F ′ and ω 6∈ cl(F ∪ {ω′}) (due to the
minimality of Fs). By property (III) of the closure operator we have ω′ 6∈ cl(F ∪ {ω}) = Fs ⊃ F ′,
contradiction.
Conversely, a collection of sets satisfy the above three properties defines a matroid, through the

closure operator:
cl(X) :=

⋂
F∈F,F⊇X

F.
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We need only prove the last property of the closure operator. Let X ⊆ Ω, ω ∈ Ω, ω′ ∈ cl(X ∪ {ω})−
cl(X). Then cl(X) ⊂ cl(X ∪ {ω′}) ⊆ cl(X ∪ {ω}), therefore by property (III) of the flats we have
cl(X ∪ {ω′}) = cl(X ∪ {ω}), i.e., ω ∈ cl(X ∪ {ω′}).
We can also specify the independent sets through flats (and vice versa):

I = {I ⊆ Ω : ∀ω ∈ I, ∃F ∈ F such that ω 6∈ F and I − {ω} ⊆ F}.

Indeed, if I is independent and ω ∈ I, let F = cl(I − {ω}), then R0
M(F ∪ {ω}) ≥ R0

M(I) =
R0

M(I − {ω}) + 1 = R0
M(F ) + 1, meaning ω 6∈ F . Conversely, if I is not independent, then ∃ω ∈ I

such that ω ∈ cl(I − {ω}), hence all flats containing cl(I − {ω}) must also contain ω.

Remark 10.2: Polynomial-time Implications

The following polynomial-time implications are easy to check:
Closure ⇔ Independence ⇔ Rank

⇓
{Basis, Circuit, Flat}

Definition 10.9: Dual Matroid

Given a matroid M = (Ω, I) we can define its dual

M∗ := (Ω, I∗) where I∗ := {I ⊆ Ω : clM(Ω− I) = Ω}, (144)

i.e., the complement of spanning sets. Equivalently we can define

B∗ := {B ⊆ Ω : Ω−B ∈ B}, (145)

or

R0
M∗(X) = |X| −R0

M(Ω) +R0
M(Ω−X). (146)

The equivalence can be easily established by noting that (146) indeed is a rank function, whose
independent sets are given by precisely (144), whose bases are precisely (145).
To justify the name dual matroid, note simply from (145) that

M = (M∗)∗. (147)

Definition 10.10: Deletion, Contraction and Truncation

Let M = (Ω, I) be a matroid and ω ∈ Ω, then M\{ω} is the submatroid with ground
set Ω − {ω}, i.e., deleting ω. The contraction M/{ω} := (M∗\{ω})∗, and the truncation
Mk := (Ω, Ik), where Ik := {I ∈ I : |I| ≤ k}. It is easily verified that deletion is commu-
tative, and as a consequence of the deliberate definition, contraction is also commutative. Therefore
we can extend the definitions of deletion and contraction from singletons to subsets by successive
application to each element (or simply revise the definition directly). It follows from (146) that
∀S ⊆ Ω

∀X ⊆ Ω− S,R0
M/S(X) = R0

M(X ∪ S)−R0
M(S), (148)

which implies further that deletion commutes with contraction (by verifying the equality of the
rank functions). Any matroid arising from deletion and contraction of M is called a minor of M.
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Checking again the rank functions we verify the duality between deletion and contraction:

(M\S)∗ = M∗/S, (149)
(M/S)∗ = M∗\S. (150)

Definition 10.11: Matroid Isomorphism

We call two matroids Mi = (Ωi, Ii), i ∈ {1, 2} isomorphic if there exists a bijection f : Ω1 → Ω2

such that I1 ∈ I1 ⇐⇒ f(I1) ∈ I2. Necessarily isomorphic matroids satisfy |Ω1| = |Ω2|.

Now it is time to see some examples.

Example 10.1: Uninteresting Matroids

Mt = (Ω, {∅}) is called the trivial matroid while Mf = (Ω, 2Ω) is called the free matroid. Clearly
the two are dual to each other.

Example 10.2: k-Uniform Matroid

Denote n = |Ω| ≥ k. Define the uniform matroid

Uk,n := (Ω, I) where I := {I ⊆ Ω : |I| ≤ k}. (151)

Obviously the bases B = {I ⊆ Ω : |I| = k} and the rank function R0(X) = |X| ∧ k. It is exactly the
truncation of the free matroid.

Example 10.3: Linear Matroid

This example is extremely important due to its historical significance and many deep questions
related to it. Let Ω be the disjoint union of {ai} where i ∈ {1, . . . , n}, ai ∈ V and V is an
arbitrary vector space over some field F. A subset is claimed independent iff its elements are linearly
independent over F. One should not have difficulty in verifying Definition 10.1. From the matroid
structure point of view, we can take V = Fr where r is the rank of the matroid. Hence a linear
matroid can be simply represented as a matrix A ∈ Fr×n, which is easily seen to be isomorphic
to [Ir, B], where Ir is the r × r identity matrix, whereas the dual matroid can be shown to be
isomorphic to [B>, In−r], hence is also linear, consequently so is the minor. Surprisingly, it is still
an open problem to characterize linear matroids up to isomorphism.

The whole theory on matroids starts from Hassler Whitney’s (also independently Takeo Nakasawa’s)
efforts in abstracting our example above. The power of abstraction is again witnessed!

Example 10.4: Matching Matroid

Let G = (V,E) be a given graph and Ω ⊆ V . Define

MM = (Ω, I) where I := {I ⊆ Ω : I is covered by some matching in G}. (152)

It is easy to verify 3’ in Remark 10.1, and MM so defined is called the matching matroid.

Example 10.5: Transversal Matroid

Let Q ⊆ 2Ω. Define the bipartite graph G := (Ω,Q;E) where ∀ω ∈ Ω, Q ∈ Q, E(ω,Q) = 1 iff ω ∈ Q.
Define

MT := (Ω, I) where I := {I ⊆ Ω : ∃1-1 map π : I → Q such that ∀i ∈ I, i ∈ π(i)}, (153)
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i.e., I is the collection of all partial transversals of Q (w.r.t. Ω). Clearly, MT is a special matching
matroid, called the transversal matroid.
Using Theorem 9.3, the rank function of MT equals the minimum size of vertex covers in the

bipartite graph, which is in the following form (S is the part in X not chosen by the vertex cover
and P is the part in Q not chosen by the vertex cover):

R0
MT

(X) = min
S⊆X

|X − S|+ |{Q ∈ Q : Q ∩ S 6= ∅}| (154)

= min
P⊆Q

|(∪P) ∩X|+ |Q| − |P|. (155)

Transversal matroids are linearly representable in all but finitely many finite fields [].

Remark 10.3: Matching Matroid = Transversal Matroid

Example 10.6: Partition Matroid

Let Ω =
∑n
i=1 Pi be a partition and {k1, . . . , kn} be given natural numbers. Define

MP := (Ω, I) where I := {I ⊆ Ω : |I ∩ Pi| ≤ ki}. (156)

By setting Q to be the disjoint union of Pi, each with ki copies, we see that MP is a special
transversal matroid, called the partition matroid. Note that the k-Uniform matroid Uk,n is a special
partition matroid (with P1 = Ω and k1 = k). The rank function is easily seen to be

R0
MP

(X) =

n∑
i=1

|X ∩ Pi| ∧ ki.

Example 10.7: Algebraic Matroid

Let E be a field extension of the field F and Ω be a finite subset of E. Define

MA := (Ω, I) where I := {I ⊆ Ω : I is algebraically independent over F} (157)

To verify 3’ in Remark 10.1, let I 3 I = {en}∪K, I 3 J = K∪{e1, e2},K = {e3, . . . , en−1}. Assume
to the contrary I ∪ {ei} 6∈ I, i ∈ {1, 2}. Then there exist nonzero polynomials pi ∈ F[x, x3, . . . , xn]
such that p(ei, e3, . . . , en) = 0, i ∈ {1, 2}. W.l.o.g. assume p1 and p2 are irreducible. Since J ∈ I,
p1 and p2 are relatively prime. Define L := F(x1, . . . , xn−1). So pi ∈ L[xn]. Let r be the g.c.d. of
p1 and p2 in L[xn]. As pi are relatively prime, we know r ∈ L[xn] hence r ∈ F[x1, . . . , xn−1]. Now
r =

∑2
i=1 αipi for some αi ∈ L[xn]. So r(e1, . . . , en−1) = 0, contradicting I ∈ I.

Linear matroids are algebraic.
[?] gives an example for algebraic nonlinear matroids and another example for non-algebraic

matroids. Compared to linear matroids, much less is known about algebraic matroids. In particular,
it is not known if the dual of an algebraic matroid is algebraic. However, algebraic matroids over
any field F are closed under taking minors.

As it turns out, greedy algorithms are surprisingly effective in discrete optimization. Let us illustrate
this with an example. Given a matroid M = (Ω,B) and a weight vector w ∈ RΩ, we want to find a basis
B ∈ B so that it has the maximum weight w(B) :=

∑
i∈B wi. Given an independent set I 3 I 6∈ B, let us

call the set

∅ 6= AI ⊆ AImax := {i ∈ Ω− I : I ∪ {i} ∈ I} (158)

admissible iff for all maximum-weight bases B ⊇ I the following basis exchange property holds:

∀i ∈ AI ∃j ∈ B ∩AI s.t. (B − {j}) ∪ {i} ∈ B. (159)
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Notice that AImax itself is admissible in a strong sense: For any basis B ⊇ I we have B ∩AImax 6= ∅, and
for any i ∈ AImax, I 3 I ∪ {i} ⊆ B ∪ {i} 6∈ I hence ∃j ∈ B ∩AImax such that (B − {j}) ∪ {i} ∈ B.
The greedy algorithm, shown in Algorithm 1, only requires an oracle for testing basis and another

oracle for constructing the admissible set AI . If we set AI = AImax then both oracles reduce to testing
independence. An apparent dual version of Algorithm 1 exists (which finds a minimum-weight basis in
the dual matroid).

Algorithm 1: The greedy algorithm for finding a maximum-weight basis
I = ∅.
while I is not a basis do

i∗ ← arg max
i∈AI

wi

I ← I ∪ {i∗}

We now prove that the greedy algorithm works, and more importantly, we show that it is precisely the
matroid structure that makes the greedy algorithm work. Note that for AI = AImax, one easily verifies
that the weights picked by the greedy algorithm is non-increasing, and moreover, the k-th weight is always
bigger than the k-th largest weight of any basis (for otherwise the greedy algorithm would have picked
differently in the k-th stage).

Theorem 10.1: Correctness of the Greedy Algorithm

The greedy algorithm is correct for any matroid. Conversely, given any collection of sets I satisfying
1 and 2 in Definition 10.1, if the greedy algorithm, equipped with the admissible set AImax, always
returns a maximum-weight element in I for any nonnegative weight, then I defines a matroid.
Proof: We show by induction that the independent set I maintained by the greedy algorithm is
always contained in some maximum-weight basis. Initially this is vacuously true. Suppose at some
intermediate stage I ∈ I is contained in some maximum-weight basis B. Suppose the newly added i∗
does not belong to B (otherwise we are done). But by the admissibility of AI there exists j ∈ B ∩AI
such that I∪{i∗} ⊆ (B−{j})∪{i∗} ∈ B, which is also a maximum-weight basis due to the optimality
of i∗.
Conversely, given two sets I, J ∈ I with |J | > |I| = k. Assume I ∪ {j} 6∈ I for every j ∈ J − I.

Define

wi =

 k + 1, i ∈ I
k + 2, i ∈ J − I
0, otherwise

.

The greedy algorithm will pick all elements in I and then pick elements not in I ∪ J , hence it returns
a set in I with weight k(k + 1). On the other hand, had we take all elements in J we would have
a set in I with weight bigger than (k + 1)(k + 2) > k(k + 1), contradicting the optimality of the
greedy algorithm.

We observe that for a nonnegative weight, finding the maximum-weight independent set is the same as
finding the maximum-weight basis, while for an arbitrary weight, finding the maximum-weight independent
set reduces to the subproblem operating on the submatroid with all negatively weighted elements deleted.

Another observation about the greedy Algorithm 1 (using AImax) is that every element that is not chosen
is dominated in some circuit (i.e., having the smallest weight in that circuit): Indeed, suppose j is not
chosen, then there exists the smallest number k such that {i1, . . . , ik}, chosen sequentially by the greedy
algorithm, is dependent when augmenting j. If k = 0 there is nothing to prove, otherwise the fact that
the greedy algorithm chose wk implies that wk ≥ wj . On the other hand, if the element j is dominated in
some circuit C, then it can be safely discarded: Assume j is contained in some maximum-weight basis B.
Since C − {j} is independent, it is contained in some basis B′. By the enhanced basis exchange property
(cf. Remark 10.4) we know (B − {j}) ∪ {i} and (B′ − {i}) ∪ {j} are again bases. But then we must have
i ∈ C − {j}, i.e., (B − {j}) ∪ {i} is again a maximum-weight basis (due to the minimality of j in C),
hence j can be deleted. Note that the maximum-weight basis in the matroid and the minimum-weight
basis in the dual matroid can be chosen to complement each other. Under this duality we know the
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dominating element in some circuit of the dual matroid can be safely picked and then contracted. This
variation of Algorithm 1 is summarized in Algorithm 2, while yet another similar variation is summarized
in Algorithm 3. The slight difference is on how to avoid picking the same circuit.

Whether or not it is easier to work with the matroid or its dual, testing independence or constructing
circuits, performing deletion or contraction, are of course dependent on the particular problem at hand.

Algorithm 2: Variation 1 of the greedy Algorithm 1
I = ∅, J = ∅.
repeat

Perform Procedure a or a’.
until Convergence;
begin Procedure a

if ∃C ∈ CM then
ω ← arg min

c∈C
wc

J ← J ∪ {ω}
M←M\{ω}

else
I ← ΩM

return

begin Procedure a’
if ∃C∗ ∈ CM∗ then

ω∗ ← arg max
c∈C∗

wc

I ← I ∪ {ω∗}
M←M/{ω∗}.

else
J ← ΩM

return

Definition 10.12: Regular Matroid

A matroid is called regular iff it can be linearly represented in every field, or equivalently, iff it can
be represented as a TUM over R [?, Theorem 6.6.3, page 205]. Clearly the dual, hence minor, of a
regular matroid is regular.

Example 10.8: Graphic Matroid

Let G = (V,E) be a graph. Define

MG := (E, I) where I := {I ⊆ E : I contains no cycle }. (160)

One easily verifies Remark 10.1 hence MG is a matroid, whose independent sets are exactly forests
of the graph G. The rank function for the graphic matroid is given by

R0
MG

(X) = |V | − κ(V,X),

where κ(V,X) is the number of connected components in the subgraph Gs := (V,X). Note that if
the graph G is connected then the bases of MG are exactly spanning trees.
Graphic matroids are regular. Indeed, construct the matrix A ∈ R|V |×|E|, where Av,e = 1 iff the

edge e ∈ E leaves the node v ∈ V , Av,e = −1 iff the edge e enters the node v, and Av,e = 0 iff e does
not meet v. It is easy to see that X ⊆ E contains no cycle iff AX is linearly independent. Therefore
graphic matroids are linearly representable in R by a TUM A, i.e., they are regular.
Consider a connected graph G and apply the greedy Algorithm 1 to it. If we choose AI = AImax

we end up with Kruskal’s algorithm, while if we choose AI to be the set of all edges in E − I that
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Algorithm 3: Variation 2 of the greedy Algorithm 1
I = ∅, J = ∅,K = Ω.
repeat

Either Procedure b or b’.
until convergence;
begin Procedure b

if ∃C ∈ CM and C ⊆ I ∪K then
ω ← arg min

c∈C
wc

J ← J ∪ {ω}
K ← K − {ω}.

else
I ← I ∪K
return

begin Procedure b’
if ∃C∗ ∈ CM∗ and C ⊆ J ∪K then

ω∗ ← arg max
c∈C∗

wc

I ← I ∪ {ω∗}
K ← K − {ω∗}.

else
J ← J ∪K
return

are connected to I we get Prim’s algorithm, and finally if we choose AI to be edges in E − I that
connect different components in the subgraph (V, I) we recover Borůvka’s algorithm (assuming all
weights are different).

Definition 10.13: Matroid Intersection

For two (or more) matroids, we can define their intersection by intersecting their ground sets and
independent classes, respectively.

Note that the intersection need not satisfy (III) in Definition 10.1, as shown in the following example:
Take Ω1 = Ω2 = {1, 2, 3}, I1 = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}}, I2 = {∅, {1}, {1, 2}}, I1 ∩ I2 =
{∅, {1}, {1, 2}}.

Definition 10.14: Matroid Union and Direct Sum

We can define the union (by taking unions of the ground sets and independent sets, respectively)
and the direct sum (by taking disjoint unions of the ground sets and independent sets, respectively)
of two (or more) matroids. It is trivial to verify that we indeed end up with bona fide matroids.

Remark 10.4: Strengthening the Basis Exchangeability

The basis exchangeability properties (II) and (II’) in Definition 10.4 can be unified and strenghthened
as:

(II”). Let B1, B2 ∈ B, for any partition B1 = X1 + Y1 there exists a partition B2 = X2 + Y2 such
that X1 ∪ Y2 ∈ B, X2 ∪ Y1 ∈ B.
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11 Integer Polyhedra
Our main reference in this section is Schrijver [1986].

Definition 11.1: Polyhedron and Polytope

A polyhedron is a point set in, say Rn, defined by finitely many linear inequalities Ax ≤ b where
A ∈ Rm×n and b ∈ Rm. When A,b can be chosen with rational entries, we call the polyhedron
rational. By definition, polyhedra are closed and convex. A bounded (in the sense of any norm)
polyhedron is called polytope.

Let us describe the (nonempty) polyhedron P as the set of linear inequalities {x ∈ Rn : a>i x ≤ bi, i ∈ I}.
Denote I= := {i ∈ I : ∀x ∈ P,a>i x = bi} and denote I≤ := {i ∈ I : ∃x ∈ P,a>i x < bi}. Clearly
I = I= ∪ I≤ and ∀i ∈ I≤, (a>i , bi) is linearly independent of {(a>j , bj) : j ∈ I=}. Collectively we will also
use the notation A≤, A=,b≤,b=. A point x ∈ P is called an inner point if A≤x < b≤.

Proposition 11.1: Inner Point Exists

Every nonempty polyhedron has an inner point.
Proof: For i ∈ I≤, by definition each inequality a>i x ≤ bi admits a point xi ∈ P such that a>i xi < bi.
Take the convex combination of xi’s.

Theorem 11.1: Dimension Formula

For any polyhedron P ⊆ Rn, dim(P) + rank(A=,b=) = n.
Proof: Note first that the affine space H := {x ∈ Rn : A=x = b=} satisfies dim(H) = n −
rank(A=,b=). Center H at an inner point of P we see that dim(P) ≥ n− rank(A=,b=). The other
direction n− rank(A=,b=) ≥ dim(P) is apparent.

Definition 11.2: Face and Facet

The inequality c>x ≤ d is called a valid inequality for the polyhedron P if it is satisfied by all points
in P. A face F of P is defined as F := {x ∈ P : c>x=d}, where c>x ≤ d is a valid inequality. And
we say the inequality c>x ≤ d represents the face F. A maximal proper face is called a facet.

Proposition 11.2: Description of Faces

For any face F of the polyhedron P, there exists I= ⊆ J ⊆ I such that F = {x ∈ P : a>j x = bj ,∀j ∈
J}.
Proof: By definition F = arg max

Ax≤b
c>x. Consider the dual problem y∗ ∈ arg min

y≥0,Ay=c
b>y and let

I∗ := {i ∈ I : y∗ > 0}. It is easy to see that the polyhedron F∗ := {x ∈ Rn : a>i x = bi,∀i ∈
I∗,a>j x ≤ bj ,∀j ∈ I\I∗} coincides with the face F.

It follows immediately that a face of a polyhedron is a polyhedron, and a face of a face is still a face.
Moreover, there is only finitely many faces.

Alert 11.1: Face of Convex Sets

The definition we gave for the face of a polyhedron can be generalized to arbitrary convex sets, and
in that case it is usually called the exposed face. However, in general, an exposed face of an exposed
face (of a convex set) need not be an exposed face (think about the convex hull of a donut).

December 14, 2015 revision: 1 SADO_main 76



11 Integer Polyhedra

Proposition 11.3: Dimension of Facets

Each facet F is represented by the inequality a>i x ≤ bi for some i ∈ I≤, hence dim(F) = dim(P)− 1.

Proof: Since facets by definition are maximal and proper, it follows from Proposition 11.2 that they
are represented by exactly one inequality. The dimension formula follows from Theorem 11.1.

Proposition 11.4: Necessity of Facets

For each facet F of P, one of its representing inequalities is necessary for describing P.
Proof: Let a>r x ≤ br be some representing inequality for the facet F and PF be the polyhedron after
removing all representing inequalities of the facet F. We prove that PF\P 6= ∅. Clearly (a>r , br) is
linearly independent of (A=,b=). Moreover, since a>r x ≤ br represents a facet we must have a>r
linearly independent of A=. Therefore there exists y ∈ Rn such that A=y = 0,a>r y > 0. Take
an inner point x of F, then for some small ε > 0 we have x + εy ∈ PF while x + εy 6∈ P (since
a>r x = br).

Proposition 11.5: Sufficiency of Facets

Every inequality a>r x ≤ br for some r ∈ I≤ that represents a face F of P with dim(F) < dim(P)− 1
is irrelevant for describing P.
Proof: Suppose a>r x ≤ br is not irrelevant, then ∃x such that A=x = b=,a>i x ≤ bi, i ∈ I≤\{r}
and a>r x > br. Take an inner point y of P, then there is some z on the line between x and
y such that A=z = b=,a>i z ≤ bi, i ∈ I≤\{r} and a>r z = br, i.e., z ∈ F. Therefore dim(F) ≥
n− rank(A=,b=;a>r , br) = dim(P)− 1, contradiction.

Combining Proposition 11.4 and Proposition 11.5, we get

Theorem 11.2: Minimal Description of a Polyhedron

Any polyhedron P ⊆ Rn admits a minimal description {x ∈ Rn : a>i x = bi, i = 1, . . . , n −
dim(P),a>j x ≤ bj , j = n− dim(P) + 1, . . . , n− dim(P) + t}, where t is the number of facets of P.
In particular, (A=,b=) is unique up to nonsingular linear transformation while (A≤,b≤) is unique
up to positive scalar multiplication and addition of the row space of (A=,b=).
Proof: The existence of a minimal description is clear. If there exist two different minimal descriptions
of the same polyhedron P = P1 = P2, then also P = P1 ∩P2, whence the uniqueness claim follows.

Proposition 11.6: Facet Characterization

Consider the polyhedron P with equality set (A=,b=), then the proper face F := {x ∈ P : c>x = d}
is a facet iff ∀x ∈ F, e>x = f =⇒ (e>, f) = Range(A=,b=; c>, d)

Proof: ⇒: Follows from Theorem 11.2.
⇐: Since F is proper, (c>, d) is linearly independent of (A=,b=). It follows that rank(A=,b=; c>, d) =

n− dim(P) + 1. On the other hand, the system e>x = f, ∀x ∈ F, with (e; f) indeterminate, has so-
lution space whose dimension equals n−dim(F). Therefore dim(F) = dim(P)−1, i.e., F is a facet.
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Example 11.1: Permutahedron

Let X be the set of all permutations of {1, . . . , n}, we claim its convex hull is

P =

{
x ∈ Rn :

∑
i

xi =

(
n

2

)
,
∑
i∈S

xi ≥
(
|S|+ 1

2

)
,∀S ⊂ {1, . . . , n}

}
. (161)

Indeed, it is easy to see that conv(X) ⊆ P (for X ⊆ P). For the reverse inclusion, we verify
two things: 1). dim(conv(X)) = dim(P), which is clear and ensures us that we did not miss any
equality constraint in conv(X); 2). each facet of conv(X) is represented by some inequality in P.
Once 2) is verified, together with conv(X) ⊆ P we know that conv(X) = conv(X) ∩P hence by
Theorem 11.2 it follows that both the equality constraints in conv(X) and P are equivalent and
therefore P ⊆ conv(X).
To verify 2), let F be a proper nonempty face of conv(X), represented by some linear inequality

a>x ≤ b. Consider Y = argmax{a>x : x ∈ X} and let S be the indexes of the smallest entry in a.
Note that |S| 6= n for otherwise the face F = conv(X) will not be proper. By an exchange argument
we know any permutation y ∈ Y must satisfy yi ∈ {1, . . . , |S|} for any i ∈ S, i.e., it will satisfy the
inequality

∑
i∈S xi ≤

(|S|+1
2

)
with equality. Since |S| 6= n, we have found an inequality in P that

represents the face F.

Proposition 11.7: Minimal Face

Any minimal face of the polyhedron P has the form {a>j x = bj , j ∈ J} for some I= ⊆ J ⊆ I. In
particular, if rank(A=;A≤) = n− k, then P has a minimal face with dimension k.
Proof: Take a minimal face which by Proposition 11.2 can be written as F := {a>i x ≤ bi, i ∈
J ′,a>j x = bj , j ∈ J}. If there exists r ∈ J ′,xr ∈ F such that a>r xr < br, then take an outside point
y which satisfies a>i y ≤ bi,∀i ∈ J\{r}, a>r y > br and a>i y = bi,∀i ∈ J . There exists a point z
on the line between xr and y such that a>i z ≤ bi, i ∈ J ′ − {r} and a>j z = bj , j ∈ J ∪ {r}, i.e., F
contains a smaller face, contradiction. The last claim follows from the fact that P has at least one
minimal face, and the number of (linearly independent) equality constraints that define any face
cannot exceed the rank of A.

Proposition 11.8: Extreme Point and Ray

p is an extreme point of the polyhedron P iff it is a zero-dimensional face of P; r is an extreme Ray
iff cone(r) is a one-dimensional face of the associated polyhedral cone P0+ := {x ∈ Rn : Ax ≤ 0}.

Proof: We only prove the extreme direction case.
⇒: If r is a one-dimensional face, then for some A′ with rank(A′) = n− 1 we have A′r = 0. Let

r1, r2 ∈ P0+ satisfy r = r1+r2

2 , then A′r1 ≤ 0, A′r2 ≤ 0 while A′r1 +A′r2 = 0 hence A′r1 = A′r2 = 0.
But rank(A′) = n− 1, therefore we must have r1 = r2 = r.
⇐: Consider the minimal face containing r, whose dimension is at least 2. We can find an inner

point r′ in the same minimal face such that r′ 6= cone(r), hence r = 1
2 (r + εr′) + 1

2 (r− εr′) for some
small ε > 0.

Theorem 11.3: Minkowski-Weyl Theorem

Polyhedral sets are precisely those in the form

{x ∈ Rn : x =
∑
i

λipi +
∑
j

µjrj +
∑
k

νk`k,
∑
i

λi = 1, λi ≥ 0, µj ≥ 0}. (162)
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In particular, `k can be chosen as some basis of the lineality space L of the polyhedron P, and pi, rj
can be chosen as the extreme points and extreme rays of P ∩ L⊥, respectively.
Proof: Consider the polyhedron P with lineality space L, then P = L + (P ∩ L⊥). We only
need to consider the set P′ := P ∩ L⊥ which contains no lines. Let Q := {x ∈ Rn : x =∑
i λipi +

∑
j µjrj ,

∑
i λi = 1, λi ≥ 0, µj ≥ 0} with pi, rj being the extreme points and rays of P′.

Clearly Q ⊆ P′. Suppose there exists z ∈ P′\Q, i.e., the system∑
i

λipi +
∑
j

µjrj = z,
∑
i

λi = 1, λi ≥ 0, µj ≥ 0

has no solution. By Farkas’ lemma, there exists (y>, c) such that p>i y − c ≥ 0,∀i, r>j y ≥ 0,∀j and
z>y − c < 0. Consider the linear program minx∈P′ x

>y, if the optimal value is finite then it is
attained by some extreme point (since P′ contains no lines hence any face of it contains no lines
either). Therefore the optima value is lower bounded by c, contradicting to z>y < c, z ∈ P′. On the
other hand, if the linear program is unbounded (from below), then it is unbounded on some extreme
ray (since P′ contains no lines), i.e., for some rk, r

>
k y < 0, again contradiction.

Conversely, if any set is written in the claimed form, it is the projection of a polyhedron, hence is
itself a polyhedron.

To explicitly find the representing vectors `k,pi, rj for the polyhedron P = {x ∈ Rn : Ax ≤ b},
we first find the basis for the lineality space by solving Ax = 0. Then consider P′ = {x ∈ Rn :
Ax ≤ b, `>k x = 0,∀k} and find its zero-dimensional faces (by solving A′x = b′, `>k x = 0,∀k). Lastly
consider P′0+ and find its one-dimensional faces (by solving A′′x = 0, `>k x = 0,∀k). Clearly, if A,b
are rational, all representing vectors `k,pi, rj can be chosen rational too.

Definition 11.3: Blocking and Antiblocking Polar

Let P = {x ∈ Rn+ : Ax ≥ 1} where A ∈ Rm×n+ with nonzero rows, define its blocking polar as

Pb := {y ∈ Rn+ : y>x ≥ 1,∀x ∈ P}. (163)

Similarly let Q = {x ∈ Rn+ : Ax ≤ 1} where A ∈ Rm×n+ with nonzero rows, define its antiblocking
polar as

Qa := {y ∈ Rn+ : y>x ≤ 1,∀x ∈ Q}. (164)

Proposition 11.9: (Anti)blocking Polar is Self-dual

Let pi,qj be extreme points of P and Q respectively, then

Pb = {y ∈ Rn+ : y>pi ≥ 1}, (165)

(Pb)b = P, (166)

Qa = {y ∈ Rn+ : y>qj ≤ 1}, (167)
(Qa)a = Q. (168)

Proof: Note that P = conv({pi}) + Rn+ (for A ∈ Rm×n+ ). Since Pb ⊆ Rn+, (165) follows. Clearly
P ⊆ (Pa)a while on the other hand ai ∈ Pa hence also (Pa)a ⊆ P.

For A ∈ Rm×n+ and B ∈ Rr×n+ with nonzero rows, they are called a blocking pair if {x ∈ Rn+ : Ax ≥ 1}
are {y ∈ Rn+ : By ≥ 1} are blocking polar to each other. Define similarly the antiblocking pair.
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Theorem 11.4: Min-Max Duality for (Anti)Blocking Pair

A ∈ Rm×n+ and B ∈ Rr×n+ with nonzero rows are a blocking pair iff ∀z ∈ Rn+,

max{1>y : A>y ≤ z,y ∈ Rm+} = min
1≤j≤r

z>bj , (169)

an antiblocking pair iff ∀z ∈ Rn+,

min{1>y : A>y ≥ z,y ∈ Rm+} = max
1≤j≤r

z>bj . (170)

Proof: Straightforward linear programming duality.

Proposition 11.10: When does Ax = b Have an Integral Solution?

Fix A ∈ Qm×n and b ∈ Qm. The system Ax = b has an integral solution iff ∀y ∈ Qm, A>y ∈
Zn =⇒ b>y ∈ Z.

Remark 11.1: Finding an Integral Solution

We can also decide if Ax = b has an integral solution in polynomial time: Use Gaussian elimination
to decide if Ax = b has any solution, if so, find a maximum number of linearly independent rows of
A, denoted as A′. Employ (integral) elementary column transformations to reduce A′ to its Hermite
canonical form, i.e., find nonsingular integral U such that A′U =

[
B 0

]
where B is lower triangular

sharing the same rank with A. Then Ax = b has an integral solution iff U
[
B−1b

0

]
is an integral

solution (note that B−1b = B−1A′y =
[
Id 0

]
U−1y, where U−1 is also integral).

The next result tells us when the A matrix will always admit an integral solution for all integral b.

Proposition 11.11: Pseudo-Unimodular (PUM)

Let A ∈ Zm×n with rank(A) = r. The following are equivalent:

(I). A can be converted into
[
Idr 0
0 0

]
using (integral) elementary operations;

(II). the g.c.d. of the order r subdeterminants of A is 1;

(III). ∀b ∈ Zn the system Ax = b either has no solution or has an integral solution;

(IV). ∃A† ∈ Zn×m such that AA†A = A.

An integral matrix satisfying any of the above is called pseudo-unimodular (PUM). Moreover, if
r = m, i.e., A is of full row rank, we have an additional equivalence

(V). A>y ∈ Zn =⇒ y ∈ Zm.

Proof: Note that if we interchange two columns or multiply some column by -1 or add some column to
another column, we do not change the g.c.d. of the subdeterminants: each transformation is invertible
and each subdeterminant after the transformation is an integral combination of the subdeterminants

of the original matrix. Therefore we can convert A to
[
B 0
A′ 0

]
, where B ∈ Zr×r+ is lower triangular

with positive entries on the diagonal. Similarly, using elementary row transformations (from right to
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left) we can further convert A to
[
D 0
0 0

]
, where D ∈ Zr×r+ is diagonal. From here it is clear that

(I), (II) and (III) are all equivalent.

(III) =⇒ (IV): We can, without loss of generality, assume A =

[
B

CB

]
where B ∈ Zr×n is of

full row rank. The linear system AX =

[
Id
C

]
has solutions hence by (III) has an integral solution

X∗ ∈ Zn×r. Now one easily verifies that A† :=
[
X∗ 0n,m−r

]
satisfies AA†A = A.

(IV) =⇒ (III): Suppose the linear system has a solution z (not necessarily integral), then
AA†Az = Az = b, i.e., A†Az = A†b is an integral solution.
(IV) =⇒ (V): Suppose A is of full row rank, then AA† is nonsingular hence ∀y∃w such

that y = (AA†)>w. Therefore if A>y = A>(AA†)>w = (AA†A)>w = A>w is integral, so is
(A†)>A>w = y.

Finally (V) =⇒ (I) can be proved using again elementary transformations.

From the proof it is clear that (integral) elementary transformations preserve PUM. Note that the

equivalence (V) is false if A is not of full row rank, for example A =

[
2
3

]
.

Definition 11.4: Unimodular (UM)

Matrix A ∈ Zm×n with rank(A) = r is called unimodular (UM) if for each submatrix B consisting
of r linearly independent columns of A, the g.c.d. of the order r subdeterminants of B is 1.

Unimodularity is strictly stronger than pseudo-unimodularity: A =

[
1 0 0
0 2 1

]
is not unimodular but

apparently satisfies (II) in Proposition 11.11.

Remark 11.2: Operations Preserving Unimodularity

The following operations clearly preserve unimodularity:

• deleting columns;

• subtracting one row from another;

• permuting, replicating or negating columns/rows;

• adding zero rows/columns;

• taking direct products.

The first property is the main motivation to introduce unimodularity, as it is not possessed by
pseudo-unimodular matrices.

Note that
[
Id
A

]
is always unimodular while

[
Id A

]
need not be: take A =

[
1 2
0 1

]
. Also, subtracting

one column from another does not preserve unimodularity.

We will use the notion of integer polyhedron to characterize unimodularity. Some basic properties of
integral hull and integer polyhedra can be found in [Korte and Vygen, 2012, Chapter 5].

Definition 11.5: Integral Hull and Integer Polyhedra

The integral hull of the polyhedron P is the convex hull of all integral points in P, denoted as PI .
Clearly PI ⊆ P and we call P integral if PI = P.

Recall that a column submatrix is called a basis if its rank is maximal.
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Theorem 11.5: Characterizing Unimodularity

Let A ∈ Zm×n. The following are equivalent:

(I). A is unimodular;

(II). ∀`,u ∈ Zn±∞,∀b ∈ Zm, the polyhedron P := {x ∈ Rn : Ax = b, ` ≤ x ≤ u} is integral;

(III). ∃`,u ∈ Zn±∞,u ≥ 1 + `, |`| ∧ |u| <∞,∀b ∈ Zm, the polyhedron P is integral;

(IV). ∀c ∈ Zn the polyhedron Q := {y ∈ Rm : A>y ≥ c} is integral;

(V). ∃ a basis B that is UM and ∃ a unique (T)UM matrix C such that BC = A;

(VI). ∀ basis B, it is UM and ∃ a unique (T)UM matrix C such that BC = A.

Proof: (I) =⇒ (II): Let A be unimodular and F be a minimal face of P, which is determined
by A′x′ = c where A′ is some column submatrix of A (cf. Proposition 11.7) and c ∈ Zm. From
Remark 11.2 we know A′ is unimodular hence it follows from Proposition 11.11 that F has an integral
point. Since F is chosen arbitrarily, P is integral.

(I) =⇒ (IV): Let F be a minimal face of Q, then F = {y ∈ Rm : B>y = c′}, where B consists of
linearly independent columns of A, therefore is unimodular. Proposition 11.11 implies that F has an
integral point hence Q is integral.

(III) =⇒ (I): We prove the contrapositive. Suppose A is not unimodular, w.l.o.g. let A =
[
B C

]
with rank(A) = r, B ∈ Zm×r has full column rank and the order r subdeterminants of B have g.c.d.
greater than 1. Therefore by Proposition 11.11 ∃y′ 6∈ Zr such that By′ ∈ Zm. If necessary adding

integers so that `1:r ≤ y′ ≤ u1:r. Set y =

[
y′

y′′

]
where y′′i equals the finite entry in {`r+i, ur+i}.

Consider the polyhedron {x ∈ Rn : Ax = Ay, ` ≤ x ≤ u}, it has a non-integral extreme point
{Bx1:r = By′,xr+1:n = y′′} , contradiction.
(IV) =⇒ (I): We prove the contrapositive. Suppose A is not unimodular, then by definition
∃B ∈ Zm×r consisting of r linearly independent columns of A such that the order r subdeterminants
of B have g.c.d. greater than 1. Therefore by Proposition 11.11 ∃c ∈ Zr such that the system
B>y = c has no integral solution, although some real-valued solution y′ does exist (since B is of full
column rank). Consider the polyhedronQ := {y : A>y ≥

⌊
A>y′

⌋
}. Its face F := {y ∈ Q : B>y = c}

is nonempty (y′ ∈ F) and contains no integral points, contradicting the fact that Q is integral.
Finally we turn to the equivalence between (I), (V) and (VI). From Remark 11.2 we know that

(integral) elementary row transformations preserve unimodularity. Moreover, the claims in (V) and
(VI) are robust w.r.t. (integral) elementary row transformations as well. Therefore we may assume

A =

[
U D
0 0

]
, where U is a nonsingular matrix sharing the same rank with A. Take B =

[
U
0

]
,

then C =
[
Id U−1D

]
. Under (V), B is UM and C is UM (equivalently TUM, see (I) and (II) in

Theorem 11.6 below). Checking the determinants verifies that BC = A is also UM, hence proves
that (V) =⇒ (I). On the other hand, if A is UM, then U = Id and any basis of

[
U D

]
must have

determinant ±1. Therefore w.l.o.g. B =

[
Id
0

]
is UM and C =

[
Id D

]
is UM (equivalently TUM),

proving (I) =⇒ (VI).

From the proof of (I) =⇒ (II) and (I) =⇒ (IV) it is clear that the column inheritability
of unimodularity is the key (as compared to pseudo-unimodularity). On the other hand, pseudo-
unimodularity is sufficient for proving ¬ (I) =⇒ ¬ (III) and ¬ (I) =⇒ ¬ (IV).

Remark 11.3: Testing Unimodularity

The UM factorization shown in (VI) of Theorem 11.5 can be employed to reduce testing UM to
testing TUM (defined below): Find a basis B in A (using Gaussian elimination); use (integral)
elementary column transformations to convert B to its Hermite canonical form, i.e., find nonsingular
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UM matrix U such that B>U =
[
Id 0

]
; finally check if U>A = U>BC =

[
C
0

]
is TUM.

Definition 11.6: Totally Unimodular (TUM)

A ∈ {1, 0,−1}m×n is totally unimodular (TUM) if all its subdeterminants belong to {1, 0,−1}.

There is an important property of TUM that we would like to mention: Recall that the columns of
A ∈ Fm×n are linearly independent (over the scalar field F) iff there exists a submatrix A′ ∈ Fn×n with
detF(A′) 6= 0. Now let A ∈ {1, 0,−1}m×n, if its columns are linearly independent over GF(2), i.e., the
scalar field with two elements 0 and 1, then they are also linearly independent over R, since for any square
submatrix A′, detR(A′) ≡ detGF(2)(A

′) mod 2. If A is furthermore TUM, then the reverse implication is
also true because detR(A′) = {1, 0,−1}.

Remark 11.4: Operations Preserving TUM

The following operations, which can be verified using (V) in Theorem 11.6 below, preserve TUM:

• transposing;

• permuting, negating, replicating or deleting columns/rows;

• adding a row/column with at most one nonzero entry, being ±1;

• pivoting, i.e., replacing
[

1 c>

b D

]
by either

[
1 c>

0 D − bc>

]
,
[

1 0
b D − bc>

]
, or

[
−1 c>

b D − bc>

]
;

• 1-sum: A⊕1 B :=

[
A 0
0 B

]
;

• 2-sum:
[
A a

]
⊕2

[
b>

B

]
:=

[
A ab>

0 B

]
;

• 3-sum:
[
A a a
c> 0 1

]
⊕3

[
1 0 b>

d d B

]
:=

[
A ab>

dc> B

]
.

A beautiful result of Seymour shows that every totally unimodular matrix arises from these
operations on the so-called network matrices and two special totally unimodular matrices:

1 −1 0 0 −1
−1 1 −1 0 0

0 −1 1 −1 0
0 0 −1 1 −1
−1 0 0 −1 1

 , and


1 1 1 1 1
1 1 1 0 0
1 0 1 1 0
1 0 0 1 1
1 1 0 0 1

 . (171)

Moreover, it implies a polynomial-time algorithm for determining total unimodularity!

Example 11.2: 2-sum or 3-sum do not preserve UM

[
1 1

]
and

[
2
3

]
are both UM while their 2-sum

[
1 2
0 3

]
is not UM. Similarly,

[
1 0 0
1 0 1

]
and[

1 0 1
1 1 2

]
are both UM while their 3-sum

[
1 0
1 2

]
is not UM. Also, the last two pivoting rules do

not preserve UM: take
[
1 2
1 3

]
.
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Proposition 11.12

Let A ∈ Rm×n be of full row rank. The following are equivalent:

(I). ∀ basis B, the matrix B−1A is integral;

(II). ∀ basis B, the matrix B−1A is (T)UM;

(III). ∃ basis B such that the matrix B−1A is (T)UM.

Proof: Simply note that all claims are robust w.r.t. left multiplying A with any nonsingular matrix,
hence we can assume w.l.o.g. that A =

[
Idm C

]
(after permuting the columns if necessary). Then

all claims are easily seen to be equivalent as requiring C to be TUM.
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Theorem 11.6: Characterizing TUM

Let A ∈ {1, 0,−1}m×n, the following are equivalent:

(I). A is TUM;

(II).
[
Id A

]
is (T)UM;

(III). ∀`,u ∈ Zn±∞,∀c,d ∈ Zm±∞, the polyhedron {x ∈ Rn : c ≤ Ax ≤ d, ` ≤ x ≤ u} is integral;

(IV). ∃`,u ∈ Zn±∞,u ≥ 1 + `, |u| ∧ |`| < ∞,∃c,d ∈ Zn±∞,d ≥ 1 + c, |c| ∧ |d| < ∞,∀b ∈ Zm the
polyhedron {x ∈ Rn : c ≤ Ax− b ≤ d, ` ≤ x ≤ u} is integral;

(V). ∀S ⊆ {1, . . . , n}, ∃S1 + S2 = S such that
∑
j∈S1

A:,j −
∑
j∈S2

A:,j ∈ {1, 0,−1}m;

(VI). ∀ nonsingular submatrix B of A, ∃i such that |{j : Bi,j 6= 0}| is odd;

(VII). ∀ square, hence also rectangular, submatrix B of A, if
∑
iBi,: and

∑
j B:,j are even vectors

then
∑
ij Bij is divisible by 4;

(VIII). ∀ nonsingular submatrix B of A, |det(B)| 6= 2;

(IX). ∀ integral b,y ≥ 0 and ∀k ∈ N such that Ay ≤ kb, ∃ integral xi ∈ {x ≥ 0 : Ax ≤ b}, i =

1, . . . , k such that y =
∑k
i=1 xi;

(X). ∀ nonsingular submatrix B of A and the g.c.d. of the entries in y>B for y = 1, hence also for
all {1, 0,−1}-valued y, is 1.

Proof: (I) ⇐⇒ (II) is obvious while (II) =⇒ (III) =⇒ (IV) =⇒ (II) follows from Theorem 11.5.
(III) =⇒ (V): Consider the polyhedron {x ∈ Rn : 0 ≤ x ≤ 1S ,

⌊
1
2 ·A1S

⌋
≤ Ax ≤

⌈
1
2 ·A1S

⌉
}.

Clearly it is not empty and since A is unimodular it is integral by (III). Let y be an extreme point,
which is integral, then 1S − 2y gives the desired partition.

(V) =⇒ (VI): By (V) there exists a {±1}-valued vector z such that Bz is {1, 0,−1}-valued. If
∀i, |{j : Bi,j 6= 0}| is even, then B|z| is an even vector, therefore Bz = 0. But z 6= 0, contradicting
to the non-singularity of B.
(V) =⇒ (VII): Since

∑
j B:,j is an even vector, by (V) we can partition the columns of B into

two classes whose column sums coincide. Since
∑
iBi,: is an even vector, it follows that

∑
ij Bij is

divisible by 4.
(VIII) =⇒ (I): We prove the contrapositive. Suppose A is not TUM, then ∃ square submatrix

B ∈ Rt×t with |det(B)| ≥ 2. We will exhibit a further square submatrix of B that has determinant
either 2 or −2. Consider the matrix C :=

[
B Idt

]
. Iteratively adding or subtracting rows from

or to other rows and multiplication of columns by -1, we convert C to C ′ so that 1). C ′ remains
{1, 0,−1}-valued; 2). Idt remains a column submatrix of C ′ (not necessarily in the same positions as
in C); 3). C ′ contains among its first t columns as many columns of Idt as possible. Note that the
subdeterminants of the first t columns of C ′ remain the same as those of C (up to sign changes).
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Permuting if necessary we may assume C ′ =

[
Idk B1 0k,t−k

0t−k,k B2 Idt−k

]
. Clearly k < t since otherwise

|det(Idk)| = |det(B)| > 2. Therefore ∃k + 1 ≤ i, j ≤ t with C ′ij = 1. By the maximality of C ′ there

must then exist a submatrix
[

1 ±1
±1 −1

]
in the first t columns. This submatrix has determinant −2.

(VI) or (VII) =⇒ (VIII): We use induction. Suppose the theorem is true for all proper submatrices
of A. Suppose (VIII) is false, then detR(A) = ±2 ≡ 0 mod 2, therefore A is singular over GF(2)
(since A is {1, 0,−1}-valued). On the other hand, any proper subcolumn matrix of A is linearly
independent over R (since detR(A) 6= 0) hence also linearly independent over GF(2) (since any proper
submatrix of A is TUM by the induction hypothesis). Therefore we must have A1 ≡ 0 mod 2,
which contradicts (VI).

Similarly one can show that A>1 ≡ 0 mod 2. Partition A as
[
α b>

c A′

]
. By the induction

hypothesis, the submatrix B :=
[
c A′

]
is TUM hence by (V) ∃x ∈ {1,−1}n such that Bx ∈

{1, 0,−1}m−1. However B1 ≡ 0 mod 2 hence we conclude that By = 0. The equality A
[
x C

]
=[

β b>

0 A′

]
, where C :=

[
0

Idn−1

]
, tells us that |β| = |det(A)| = 2 because det(A′) = ±1. Moreover,

1>A(1 − x) ≡ 0 mod 4 due to the fact 1 − x ≡ 0 mod 2 and the previously established result
A>1 ≡ 0 mod 2. Finally note that 1>Ax = β ≡ 2 mod 4 hence 1>A1 ≡ 2 mod 4, contradicting
to (VII).
(III) =⇒ (IX): We use induction. k = 1 holds trivially. Let k ≥ 2 and consider the polyhedron
{x : 0 ≤ x ≤ y, Ay− kb+b ≤ Ax ≤ b}, which is nonempty (containing k−1y) hence integral. Take
any extreme point xk and note that y′ := y − xk ≥ 0 and Ay′ ≤ (k − 1)b.
(IX) =⇒ (IV): Let x0 be an arbitrary extreme point of P := {x ≥ 0 : Ax ≤ b}. Take k ∈ N

so that y := kx0 is integral. Since y ≥ 0, Ay ≤ kb, by (IX) kx0 =
∑k
i=1 xi, with xi being integral

vectors in P. Clearly we must then have k = 1 hence x0 is integral.
(I) =⇒ (X): Clearly B−1 is integral. Let k be the g.c.d. of the entries in y>B, then k−1y> =

(k−1y>B)B−1 is integral. Since y is {1, 0,−1}-valued, we must have k = 1.
(X) =⇒ (VI): Simply take y = 1.

Definition 11.7: (Box) Totally Dual Integral (TDI)

The system Ax ≤ b is called box totally dual integral iff ∀`,u ∈ Fn,∀c ∈ Zn, the dual problem of
max{c>x : Ax ≤ b, ` ≤ x ≤ u} has an integral solution (whenever there exists one). The system is
simply called totally dual integral if ` = −∞,u =∞.

Proposition 11.13: Box-TDI Implies TDI

Box-TDI ∀`,u ∈ Fn implies Box-TDI ∀`,u ∈ Fn±∞.
Proof: Let `,u ∈ Fn±∞ and assume the dual of max{c>x : Ax ≤ b, ` ≤ x ≤ u} has a minimizer.
By the LP duality the primal problem has a maximizer, say x∗. Consider max{c>x : Ax ≤
b,x∗ − 1`=−∞ ≤ x ≤ x∗ + 1u=∞}, of which x∗ is still a maximizer, hence by assumption its dual
has an integral solution. By KKT conditions, this dual integral solution (after dropping zeros if
necessary) remains optimal for the dual of the original LP.

Theorem 11.7: (Box) TDI Implies Primal Integrality

If the system Ax ≤ b, A ∈ Qm×n,b ∈ Zm is (box) TDI, then the underlying polyhedron is integral.

Proof: By Proposition 11.13, we only need to consider the TDI case. By definition the dual LP
always has an integral solution hence the primal LP always has integral value, whence the integrality
of the polyhedron.
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Theorem 11.8: Characterization of Box-TDI

A rational polyhedron P ⊆ Rn is box-TDI iff ∀c ∈ Qn,∃d ∈ Zn such that bcc ≤ d ≤ dce and every
maximizer of max{c>x : x ∈ P} also maximizes max{d>x : x ∈ P}.
Proof: ⇒: We use induction to prove that ∀k ≤ n there exists d ∈ Zn such that di ≤ dcie, di = ci if
ci ∈ Z, di ≥ bcic for all i ≤ k, and the claim in Proposition 11.13 holds.
Let Ax ≤ b be a box-TDI representation of P, and let x∗ ∈ Fn be an arbitrary point in the

relative interior of the optimum set of max{c>x : x ∈ P}. Let k = 0 and consider

max{x> dce : Ax ≤ b,xi ≤ x∗i if ci 6∈ Z}.

Clearly, x∗ remains feasible and because of (dce−c)>(x∗−x) ≥ 0 it is actually optimal. By box-TDI,
the dual LP has an integral optimum y, z ≥ 0 such that A>y + z = dce ,b>y + z>x∗ = dce> x∗

and zi = 0 if ci ∈ Z. Take d := dce − z, then using y as a dual certificate we verify that x∗ is
optimal for max{x>d : x ∈ P}. Since x∗ is chosen in the relative interior, we know all maximizers
of max{c>x : x ∈ P} remain optimal for max{x>d : x ∈ P}. This completes the proof for k = 0.
Now we prove for k + 1. By the induction hypothesis we know ∃d ∈ Zn such that di ≤ dcie,

di = ci if ci ∈ Z, di ≥ bcic for all i ≤ k, and the claim in Proposition 11.13 holds. Suppose
dk+1 < bck+1c. Consider the convex combination f of d and c such that fk+1 = bck+1c. Note that
x∗ remains optimal for max{f>x : x ∈ P}, therefore by the induction hypothesis, ∃e ∈ Zn such
that ei ≤ dfie, ei = fi if fi ∈ Z, ei ≥ bfic for all i ≤ k, and the claim in Proposition 11.13 holds.
Clearly, ei ≤ dfie ≤ dcie; if ci ∈ Z, then ci = di = fi = ei; ek+1 = fk+1 = bck+1c; and finally
ei ≥ bfic ≥ bcic for i ≤ k. Thus we have proved the case for k + 1. Let k = n completes the proof.
⇐: We know every rational polyhedron admits a TDI representation [Korte and Vygen, 2012,

Theorem 5.17, page 110]. Let Ax ≤ b be such a TDI representation. We need only prove that
Ax ≤ b is box-TDI. Consider max{e>x : Ax ≤ b, ` ≤ x ≤ u} with some maximizer x∗. By LP
duality, there exist y, z,w ≥ 0 such that

A>y + z−w = e

b>y + u>z− `>w = e>x∗

ziwi = 0,∀i.

Define c = A>y = e− z + w. By assumption ∃d ∈ Zn such that bcc ≤ d ≤ dce and such that each
maximizer of max{c>x : Ax ≤ b} also maximizes max{d>x : Ax ≤ b}. Using y as a dual certificate
we verify that x∗ is optimal for max{c>x : Ax ≤ b} hence also optimal for max{d>x : Ax ≤ b}.
Since Ax ≤ b is TDI, there exists v ∈ Zm+ such that A>v = d and b>v = d>x∗. Define g = (e−d)+

and h = (d − e)+. Note that x∗i ≤ ui =⇒ zi = 0 =⇒ ci ≥ ei =⇒ di ≥ ei =⇒ gi = 0 hence
g>(u− x∗) = 0. Similarly h>(x∗ − `) = 0. Therefore

A>v + g − h = A>v + e− d = e

b>v + u>g − `>h = d>x∗ + u>g − `>h = d>x∗ + g>x∗ − h>x∗ = e>x∗,

i.e., (v,g,h) is an integral solution of the dual of max{e>x : Ax ≤ b, ` ≤ x ≤ u} (for integral e).

It follows from the proof that any TDI representation of a box-TDI polyhedron is actually box-TDI.

Next, we discuss the “robustness” of TDI under various operations. Clearly multiplying both sides by
an arbitrary scalar does not preserve TDI, however, division is a different story:

Proposition 11.14

If Ax ≤ b is (box)TDI then k−1A ≤ αb is also (box)TDI for all k ∈ N and α ∈ R+.
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Even more interestingly, we have

Theorem 11.9

For each rational system Ax ≤ b there exists k ∈ N such that (k−1A)x ≤ (k−1b) is TDI.
Proof: As mentioned before, there is a rational TDI system Cx ≤ d that yields the same polyhedron
as Ax ≤ b. For any row c of C, min{b>y : y ≥ 0, A>y = c} has a rational minimizer, whose
components has kc the least common multiple of their denominators. Take k as the least common
multiple of all kc.
Consider e ∈ Zn with δ = max{e>x : Ax ≤ b} = min{b>y : y ≥ 0, A>y = e} < ∞. Since

Cx ≤ d is TDI, (e>, δ) is a nonnegative integral combination of (c>, d), which itself is a nonnegative
integral combination of (k−1a>, k−1b). Therefore ∃z ∈ k−1Zn+ such that b>z = δ, A>z = e. This
easily implies the TDI of {(k−1A)x ≤ (k−1b)}.

Proposition 11.15

If Ax ≤ b is (box)TDI, then ∀w ∈ Rn, Ax ≤ b−Aw is (box)TDI.

Proposition 11.16

Let Aix ≤ bi, i ∈ {1, 2} represent the same polyhedron. If each inequality in A1x ≤ b1 is a
nonnegative integral combination of the inequalities in A2x ≤ b2, then (box)TDI of the former
implies (box)TDI of the latter.

Proposition 11.17: Adding/Removing Slacks

Consider the rational system Ax ≤ b. Let a ∈ Zn, β ∈ Q. The system Ax ≤ b,a>x ≤ β is (box)TDI
iff Ax ≤ b,a>x + η = β, η ≥ 0 is (box)TDI (with η an added slack variable).

Proposition 11.18: Intersection and Projection

Intersection and projection to a coordinate hyperplane preserves box-TDI.
Proof: Consider intersection to, say x1 = α. It amounts to adding α ≤ x1 ≤ α, hence maintains
box-TDI. For projection, apply Theorem 11.8 (by padding zero to c).

Proposition 11.19: Repetition

If Ax ≤ b is (box)TDI, then ax0 +Ax ≤ b is also (box)TDI, where a is the first column of A and
x0 is a new variable.
Proof: The claim for the TDI case follows from the definition. Apply Theorem 11.8 for box-TDI.

The next result shows that box-TDI polyhedra are quite special.

Proposition 11.20

The box-TDI polyhedron admits the representation Ax ≤ b for some {1, 0,−1}-valued matrix A.
Proof: Let Cx ≤ d be some box-TDI system representing the box-TDI polyhedron P. Note that
p ∈ P iff

max{−1>z + 1>w : Cx + Cw + Cz ≤ d,x = p, z ≥ 0,w ≤ 0} ≥ 0. (172)
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By Proposition 11.19, Cx + Cw + Cz ≤ d is box-TDI, hence (172) is equivalent to

min{d>y − y>Cp : y ≥ 0,−1 ≤ C>y ≤ 1, y integral, C>y integral} ≥ 0.

Therefore

P = {x : (y>C)x ≤ d>y, for all y ≥ 0,−1 ≤ C>y ≤ 1, y integral, C>y integral}.

Note that there are finitely many C>y satisfying the above while the right hand side d>y is at-
tainable by some y satisfying above. In summary, P is defined by some {1, 0,−1}-valued matrix A.

Proposition 11.21: Domination

If P is box-TDI, then its dominant Q := {z : z ≥ x for some x ∈ P} is also box-TDI.
Proof: This also follows easily from Theorem 11.8.

Proposition 11.22: Substitution

If P is box-TDI, then its dominant Q := {z : z ≥ x for some x ∈ P} is also box-TDI.
Proof: This also follows easily from Theorem 11.8.

Proposition 11.23: Schur Complement

If P is box-TDI, then its dominant Q := {z : z ≥ x for some x ∈ P} is also box-TDI.
Proof: This also follows easily from Theorem 11.8.

Example 11.3: Operations Not Preserving TDI

The system A =

[
1 5
1 6

]
,b =

[
1
1

]
is TDI, however, Ax−Ay ≤ b,x ≥ 0,y ≥ 0 is not TDI.

The systemsAx ≤ bi withA =


1 0
1 2
0 1
0 −1

 ,b1 =


0
2
1
0

 ,b2 =


0
0
1
0

 are both TDI, however, Ax ≤ b1+b2

is not TDI.

Theorem 11.10: Carathéodory’s Theorem

(173)
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