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Abstract

We present the proof of the Danskin-Valadier theorem, i.e. when the directional derivative of the
supremum of a collection of functions admits a natural representation.

1 Preliminary

Consider a collection of extended real-valued functions fi : X 7→ R̄, where i ∈ I is some index set, X is some
real vector space, and R̄ := R ∪ {±∞}. Define the supremum (i.e. upper envelop) of the collection as

f(x) := sup
i∈I

fi(x). (1)

We are interested in studying the directional derivative of f , hopefully relating it to the directional derivatives
of fi.

Recall that the directional derivative of g, along direction d, is defined as

g′(x; d) := lim
t↓0

g(x+ td)− g(x)

t
.

It should be clear that g′(x;αd) = αg′(x; d),∀α ≥ 0. We can similarly define the left directional derivative

g′l(x; d) := lim
t↑0

g(x+ td)− g(x)

t
= −g′(x;−d).

The last equality enables us to focus exclusively on the usual directional derivative (but make immediate
claims for the left directional derivative as well). Note that g′l(x; d) = g′(x; d), i.e. g′(x; d) = −g′(x;−d) iff
g′(x;αd) = αg′(x; d) for all α ∈ R. We say g is Gâteaux differentiable at x if g′(x; d) is a linear functional of
d. (In fact, we usually require g′(x; d) ∈ X ∗ if X is a topological vector space (t.v.s.).)

2 General case

Throughout this section we will tacitly assume the directional differentiability of fi at the point x for all
i ∈ I, along direction d.

Let us start with an easy proposition. Note that no topology on the index set I is needed.

Proposition 1 Define f(x) := supi∈I fi(x) and Ix := {i ∈ I : fi(x) = f(x)}. Fix a direction d ∈ X and a
point x ∈ X with f(x) ∈ R, then

lim inf
t↓0

f(x+ td)− f(x)

t
≥ sup
i∈Ix

f ′i(x; d) (2)

In particular, if for some ix ∈ Ix, fix and f are both Gâteaux differentiable at x, then f ′(x; d) = f ′ix(x; d).
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Proof: If Ix = ∅, then nothing needs to prove (since inf ∅ =∞, sup ∅ = −∞ by definition). Fix ix ∈ Ix. By
definition fix(x) = f(x) ≥ fi(x), hence

lim inf
t↓0

f(x+ td)− f(x)

t
≥ lim inf

t↓0

fix(x+ td)− fix(x)

t
= f ′ix(x; d).

Since ix is chosen arbitrarily from the set Ix, the proof is complete.

The last claim in Proposition 1 is nice, however, it depends on the differentiability of the envelop function,
a property that is usually hard to verify in the first place. Nevertheless, for absolutely continuous functions,
we have an almost free lunch:

Proposition 2 (Milgrom-Segal) Suppose ∀i, t 7→ fi(x + td) is absolutely continuous on some interval
[a, b] and supi∈I |f ′i(x+ td; d)| ∈ L1([a, b]), then t 7→ f(x+ td) := supi∈I fi(x+ td) is absolutely continuous
on [a, b]. If in addition, ∀i, fi is differentiable1 and Ix := {i ∈ I : fi(x) = f(x)} 6= ∅ a.e., then choose
(arbitrarily!) it ∈ Ix+td,

f(x+ td) = f(x+ ad) +

∫ t

a

f ′is(x+ sd; d)ds. (3)

Proof: Note that

f(x+ td)− f(x+ sd) ≤ sup
i∈I
|fi(x+ td)− fi(x+ sd)| = sup

i∈I
|
∫ t

s

f ′i(x+ rd; d)dr| ≤
∫ t

s

sup
i∈I
|f ′i(x+ rd; d)|dr,

hence the absolute continuity of the envelop function. (3) follows from the last claim in Proposition 1.

The reverse part of Proposition 1 is more interesting hence deserves a name.

Theorem 1 (Danskin) Define f(x) := supi∈I fi(x). Fix a direction d ∈ X and a point x ∈ X with
f(x) ∈ R, fi(x+ td) ∈ R, ∀i and ∀|t| sufficiently small. Suppose

1. I is countably compact2;

2. ∃ t0 > 0 such that ∀i ∈ I, fi(x+ td) is absolutely continuous on [0, t0] (for instance, when
∫ t0

0
|f ′i(x+

td; d)|dt <∞);

3. The map i 7→ fi(x) is upper semicontinuous (u.s.c.) and (t, i) 7→ f ′i(x+ td; d) is u.s.c. at (0, i);

then the directional derivative of f exists and is given by the formula

f ′(x; d) = max
i∈Ix

f ′i(x; d), where Ix := {i ∈ I : fi(x) = f(x)}. (4)

Proof: By assumption 3, fi(x), as a function of i, is u.s.c., hence the supremum in the definition of f is
attained (for I is assumed countably compact). This proves that Ix 6= ∅. Applying the u.s.c. of fi(x) again
we know Ix is closed hence also countably compact. A similar argument then justifies our notation, i.e. max
instead of sup in (4), and establishes the finiteness of the right-hand side in (4).

Thanks to Proposition 1, it suffices to prove

S := lim sup
t↓0

f(x+ td)− f(x)

t
≤ max

i∈Ix
f ′i(x; d),

from which the theorem will follow. Let 0 < tn ↓ 0 such that ∆(tn) := f(x+tnd)−f(x)
tn

→ S. Choose in ∈ I
such that3 fin(x + tnd) ≥ f(x + tnd) − εn where εn > 0, εn/tn → 0. Since I is countably compact, the

1if |I| ≤ ℵ0, then a.e. differentiability is enough.
2Those who are not familiar with this notion can safely treat it as compact set in a metric space (and consequently replace

all nets in the proof with sequences), while those who are really curious about it might want to read [Yu, 2012].
3Using (??) and the finiteness of f(x) to argue that f(x+ tnd) <∞ for all |tn| sufficiently small.
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product space {tn, 0}×{∆(tn), S}×I remains countably compact, hence we can choose a convergent subnet
(tα,∆(tα), iα) such that tα → 0,∆(tα)→ S, iα → i∗ 3 I. Clearly

f(x+ tαd)− f(x)

tα
=
fiα(x+ tαd)− fiα(x)

tα
+
fiα(x)− f(x)

tα
+ εα/tα ≤

fiα(x+ tαd)− fiα(x)

tα
+ εα/tα.

Assumption 2 implies that the map t 7→ fiα(x + td) is absolutely continuous on [0, tα], hence ∃0 ≤ t̂α ≤ tα
such that4

fiα(x+ tαd)− fiα(x)

tα
=

1

tα

∫ tα

0

f ′iα(x+ td; d)dt ≤ f ′iα(x+ t̂αd; d).

Taking limit we obtain

S = lim sup
tα→0

f(x+ tαd)− f(x)

tα
≤ lim sup

tα→0

fiα(x+ tαd)− fiα(x)

tα
≤ lim sup

t̂α→0

f ′iα(x+ t̂αd; d) ≤ f ′i∗(x; d), (5)

where the last inequality is due to assumption 3.
The proof will be complete once we show i∗ ∈ Ix. Note first that from (5), we have

lim sup
tα→0

fiα(x+ tαd)− lim sup
tα→0

fiα(x) ≤ lim sup
tα→0

(
fiα(x+ tαd)− fiα(x)

)
= 0,

hence

f(x) ≥ fi∗(x) ≥ lim sup
tα→0

fiα(x) ≥ lim sup
tα→0

fiα(x+ tαd) ≥ lim inf
tα→0

fiα(x+ tαd) = lim inf
tα→0

f(x+ tαd) ≥ f(x),

where the last inequality is due to (2).

Remark 1 It is clear that if f := infi∈I fi, then −f = supi∈I −fi, hence only assumption 3 (and the
formula (4)) need some obvious change.

Next we give a simplified version of Theorem 1 that is hopefully easier to apply.

Corollary 1 Suppose f(x, y) : X × Y 7→ R is u.s.c. on y for each x and its partial derivative ∇xf(x, y) is
jointly continuous, where X is an open subset of some t.v.s., Y is countably compact, then

φ(x) := max
y∈Y

f(x, y)

is u.s.c. and admits directional derivative in all directions, in particular,

φ′(x; d) = max
y∈Yx

〈d;∇xf(x, y)〉 , where Yx := {y ∈ Y : f(x, y) = φ(x)}. (6)

Remark 2 It is clear that we may replace max by min in the corollary (but change u.s.c. to l.s.c.). If f(x, y)
is jointly continuous and Y is actually compact5, then the envelop function φ is also continuous (Berge’s
maximum theorem).

Theorem 1 needs the (somewhat annoying) countable compactness assumption. Fortunately, we can
remove it by (slightly) strengthening assumptions 2 and 3. Note that when compactness is lost, the maximum
is not necessarily attained, hence we need to introduce maximizing sequences. Let us denote Îx as the
collection of all maximizing sequences {in} ⊆ I such that fin(x)→ f(x).

Theorem 2 Fix a direction d ∈ X and a point x ∈ X with f(x) ∈ R, fi(x+ td) ∈ R, ∀i and ∀|t| sufficiently
small. Suppose

4Suppose not, then 1
tα

∫ tα
0 f ′iα (x+ td; d)dt = sup0≤t≤tα

f ′iα (x+ td; d), hence f ′iα (x+ td; d) = sup0≤t≤tα
f ′iα (x+ td; d) a.e..

5The stronger compactness assumption is necessary: There exists some countably compact space X whose square X ×X is
not even pseudocompact, see [Gillman and Jerison, 1960][page 135, Example 9.15]. Augmenting with [Engelking, 1989][page
238, Problem 3.12.21] we know there exists a continuous function f : X ×X 7→ R whose pointwise supremum over the countably
compact space X is not continuous. This argument is due to AliReza Olfati. We conjecture that sequentially compactness is
not sufficient for the continuity of φ either (but note that AliReza’s counterexample will not work).
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1. The maps fi are equi-directionally differentiable at x along direction d, i.e.

∀ε > 0,∃τ > 0, s.t. ∀0 ≤ t ≤ τ,∀i ∈ I,
∣∣∣∣fi(x+ td)− fi(x)

t
− f ′i(x; d)

∣∣∣∣ ≤ ε;
2. supi∈I f

′
i(x; d) <∞;

then the directional derivative of f exists and is given by the formula

f ′(x; d) = sup
{in}∈Îx

lim sup
n→∞

f ′in(x; d). (7)

If in addition

3. ∀x̄ near x, Ix̄ := {i ∈ I : fi(x̄) = f(x̄)} 6= ∅,

then

f ′(x; d) = lim
t↓0

f ′it(x; d), where it ∈ Ix+td is arbitrary! (8)

Proof: The proof is almost the same as that of Theorem 1 (in fact easier).
Let us first prove Proposition 1 again. Let 0 < tn → 0, 0 < εn/tn → 0. Let δ > 0 and choose N > 0 such

that ∀n ≥ N, εn/tn ≤ δ, and (by assumption 1)

∀i ∈ I, fi(x+ tnd)− fi(x)

tn
≥ f ′i(x; d)− δ.

Fix (arbitrarily) {im} ∈ Îx, then fim(x)→ f(x) hence for m large

f(x+ tnd)− f(x)

tn
≥ f(x+ tnd)− fim(x)

tn
− εn/tn ≥

fim(x+ tnd)− fim(x)

tn
− δ ≥ f ′im(x; d)− 2δ. (9)

Since {im} and δ > 0 is chosen arbitrarily, we have proved

lim inf
tn↓0

f(x+ tnd)− f(x)

tn
≥ sup
{im}∈Îx

lim sup
m→∞

f ′im(x; d).

Next we prove the other half inequality, i.e.

lim sup
tn↓0

f(x+ tnd)− f(x)

tn
≤ sup
{im}∈Îx

lim sup
m→∞

f ′im(x; d),

from which (7) will follow.
Let in ∈ I be such that6 fin(x + tnd) ≥ f(x + tnd) − εn where εn/tn → 0. (Don’t confuse in with the

sequence {im} in the previous paragraph.) By the definition of in,

f(x+ tnd)− f(x)

tn
≤ fin(x+ tnd)− f(x)

tn
+
εn
tn
≤ fin(x+ tnd)− fin(x)

tn
+
εn
tn
≤ f ′in(x; d) +

εn
tn

+ δ,

where δ > 0 is arbitrary, and the last inequality is due to assumption 1.
The only thing left to prove is to show that {in} ∈ Îx. Indeed, for n large,

f(x) ≥ fin(x) ≥ fin(x+ tnd)− tnf ′in(x)− tnδ.

But the latter part converges to f(x) due to assumption 2 and the fact that f(x + tnd) ≥ fin(x + tnd) ≥
f(x+ tnd)− εn while f(x+ tnd)→ f(x) (see (9)).

Similar arguments as in the previous paragraph shows that the right-hand side of (8) is upper bounded
by the right-hand side in (7). On the other hand,

f(x+ td)− f(x)

t
≤ fit(x+ td)− fit(x)

t
= f ′it(x; d) + o(t),

due to assumption 1 and 3. Therefore (8) follows by sandwiching.

6Argue similarly as in the proof of Theorem 1 that f(x+ tnd) <∞ for all |t| sufficiently small.
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Remark 3 Had f := infi∈I fi, we only need to change assumption 2 to infi∈I f
′
i(x; d) > −∞. Theorem

2 was proved first by [Bernhard and Rapaport, 1995] under some unnecessary assumptions. Our treatment
here combines some idea presented in [Milgrom and Segal, 2002]. Note that Corollary 1 also follows from
Theorem 2: the joint continuity of ∇xf(x, y) over the compact set Y implies the equi-differentiability of
f(x, y), hence Theorem 2 holds, in particular, (8), the u.s.c. of the envelop function, and Proposition 1
yield the corollary. This argument appeared in [Milgrom and Segal, 2002] but seems to rely on the stronger
compactness assumption of Y.

Corollary 2 Suppose fi : X 7→ R, i ∈ I, |I| <∞ all have directional derivative at x along direction d, then
their pointwise supremum f := maxi∈I fi has directional derivative given by

f ′(x; d) = max
i∈Ix

f ′i(x; d), where Ix = {i ∈ I : fi(x) = f(x)}.

3 Convex case

In this section we put an additional assumption on fi, that is, they are all convex functions. Again, we start
with an easy proposition.

Proposition 3 Define f(x) := supi∈I fi(x). Then7

∂f(x) ⊇ conv

( ⋃
i∈Ix

∂fi(x)

)
, where Ix := {i ∈ I : fi(x) = f(x)}. (10)

Proof: Take i ∈ Ix, g ∈ ∂fi(x), then ∀y ∈ X

f(y) ≥ fi(y) ≥ fi(x) + 〈y − x; g〉 = f(x) + 〈y − x; g〉 ,

hence g ∈ ∂f(x). The proof is complete by noticing that the subdifferential is always convex and weak-*
closed.

Remark 4 Note that in Proposition 3, we do not require fi to be convex. From a practical point of view,
this easy proposition is enough for many purposes, for instance, when one needs a subgradient for f(x). The
reverse inclusion is more difficult but of theoretical value, as we shall see in an example.

Theorem 3 Define f(x) := supi∈I fi(x) where fi are convex. Fix a point x ∈ X with f(x) ∈ R. Suppose

1. I is countably compact;

2. ∃ a neighborhood U of x such that ∀y ∈ U , i 7→ fi(y) is u.s.c.;

3. ∀i ∈ I, the convex function fi is u.s.c. at x;

then the directional derivative of f is given by the formula

f ′(x; d) = sup
i∈Ix

f ′i(x; d), where Ix := {i ∈ I : fi(x) = f(x)}. (11)

Moreover, if assumption 3 is strengthened to “continuous at x”, then

∂f(x) = conv

( ⋃
i∈Ix

∂fi(x)

)
. (12)

Proof: The envelop f is apparently convex hence the existence of the directional derivative. By assumption
1 and 2, we know Ix is not empty. Since Proposition 1 remains true, we only need to prove

f ′(x; d) ≤ sup
i∈Ix

f ′i(x; d). (13)

7The closure is always taken w.r.t. the weak-* topology on X ∗ induced by X .
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Fix ε > 0, 0 < tn ↓ 0 and consider the set

In :=

{
i ∈ I :

fi(x+ tnd)− f(x)

tn
≥ f ′(x; d)− ε

}
.

Since x+ tnd ∈ U eventually, we know In is a non-empty closed set (assumption 2). Also, since

t 7→ fi(x+ td)− f(x)

tn
=
fi(x+ td)− fi(x)

t
+
fi(x)− f(x)

t

is apparently nondecreasing (due to convexity of fi), ∃i∗ ∈ ∩nIn 6= ∅ (assumption 1). Hence

fi∗(x+ tnd)− f(x)

tn
≥ f ′(x; d)− ε.

Multiplying both sides by tn and then letting tn ↓ 0 we obtain i∗ ∈ Ix (assumption 3), hence the required
inequality (13).

The lefthand side in (12) always contains the righthand side (cf. Proposition 3), while the other direc-
tion follows from the l.s.c. of f ′(x; ·) (being a pointwise supremum of continuous functions f ′i(x; ·), whose
continuity is guaranteed by the continuity of fi at x).

Remark 5 The above beautiful proof is taken from [Aubin, 1998], see also [Hiriart-Urruty and Lemaréchal,
1993]. Comparing Theorem 1 and 3 we see that the extra convexity assumption dispenses the assumptions
on the directional derivatives, which justifies our separate treatment for the convex case.

Not surprisingly, our next step is to trade the countable compactness assumption for “uniform continuity”.

Theorem 4 Define f(x) := supi∈I fi(x). Fix a point x ∈ X with f(x) ∈ R. Suppose

1. The maps fi are equi-directionally differentiable at x along any direction d;

2. ∃ a neighborhood U of x such that ∀y ∈ U , i 7→ fi(y) is u.s.c.;

3. ∀i ∈ I, the convex function fi is u.s.c. at x;

then the directional derivative of f is given by the formula

f ′(x; d) = sup
i∈Ix

f ′i(x; d), where Ix := {i ∈ I : fi(x) = f(x)}. (14)

Moreover, if assumption 3 is strengthened to “continuous at x”, then

∂f(x) = conv

( ⋃
i∈Ix

∂fi(x)

)
. (15)

Theorem 5 Define f(x) := supi∈I fi(x). Fix a point x ∈ X with f(x) ∈ R. Suppose

1. ∃ a neighborhood U of x such that ∀y ∈ U , i 7→ fi(y) is u.s.c.;

2. ∀i ∈ I, the convex function fi is u.s.c. at x;

then the directional derivative of f is given by the formula

f ′(x; d) = sup
i∈Ix

f ′i(x; d), where Ix := {i ∈ I : fi(x) = f(x)}. (16)

Moreover, if assumption 2 is strengthened to “continuous at x”, then

∂f(x) = conv

( ⋃
i∈Ix

∂fi(x)

)
. (17)
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4 Minimax case

The next theorem about the “stability” of Nash equilibria is well-known in game theory. Nevertheless, we
include a proof (for the sake of the writer, who has just started to learn game theory ,).

Theorem 6 Consider a game with k players, action spaces X i, and payoff functions fi(·, p) where p ∈ P is
a perturbation parameter. Suppose

1. ∀i, X i is compact;

2. ∀p ∈ P, the Nash equilibrium set Πk
i=1X ip is nonempty;

3. ∀i, fi : Πk
i=1X i × P 7→ R is jointly continuous;

then the equilibrium correspondence ϕ : p� Πk
i=1X ip is upper hemicontinuous.

Proof: Take (pα, xα) ∈ Gr(ϕ) such that pα → p̄. Due to compactness, we can assume xα → x̄ (by passing
to a subnet if necessary). The proof is complete once we show x̄ ∈ ϕ(p̄).

Suppose not, then ∃j,∃x̃j ∈ X j such that fj(x̄
j , x̄−j , p̄) < fj(x̃

j , x̄−j , p̄). By assumption 2 we have
fj(x

j
α, x
−j
α , pα) < fj(x̃

j , x−jα , pα), ∀α “large”. This contradicts (pα, xα) ∈ Gr(ϕ).

Now we are ready for a wonderful theorem.

Theorem 7 (Milgrom-Segal) Define V (p) := infx∈X supy∈Y f(x, y, p) and fix a direction d. Suppose

1. X and Y are compact, P is an open subset of some real vector space;

2. f : X ×Y ×P → R and its (partial) directional derivative f ′p(·, ·, ·; d) : X ×Y ×P 7→ R are continuous;

3. ∀p ∈ P, the Nash equilibrium (saddle-point) Xp × Yp 6= ∅;

then the value function V is continuous and its directional derivative (along direction d) satisfies

V ′(p; d) = min
x∈Xp

max
y∈Yp

f ′p(x, y, p; d) = max
y∈Yp

min
x∈Xp

f ′p(x, y, p; d). (18)

Proof: Under the stated assumptions, the value function satisfies

V (p) = min
x∈X

max
y∈Y

f(x, y, p) = max
x∈X

min
y∈Y

f(x, y, p)

and is continuous (due to Berge’s maximum theorem).
Denote (xp, yp) ∈ Xp × Yp, by definition, for t > 0

f(xp+td, yp, p+ td)− f(xp+td, yp, p)

t
≤ V (p+ td)− V (p)

t
≤ f(xp, yp+td, p+ td)− f(xp, yp+td, p)

t
.

Apply the mean value theorem on both sides:

f ′p(xp+td, yp, p+ r(t)d; d) ≤ V (p+ td)− V (p)

t
≤ f ′p(xp, yp+td, p+ s(t)d; d),

where 0 ≤ r(t), s(t) ≤ t. Note that both r(t) and s(t) are (right) continuous at t = 0. Since (xp, yp) ∈ Xp×Yp
is arbitrary,

max
y∈Yp

f ′p(xp+td, y, p+ r(t)d; d) ≤ V (p+ td)− V (p)

t
≤ min
x∈Xp

f ′p(x, yp+td, p+ s(t)d; d).

The function g(y, p̃) := min
x∈Xp

f ′p(x, y, p̃; d) is continuous due to Berge’s maximum theorem. Combining with

Theorem 6, we know the function h(p̃) := max
y∈Yp̃

g(y, p̃) is upper semicontinuous. Hence

lim sup
t↓0

min
x∈Xp

f ′p(x, yp+td, p+ s(t)d; d) = max
y∈Yp

min
x∈Xp

f ′p(x, y, p; d),
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and similarly (by considering −f ′p(x, y, p; d))

lim inf
t↓0

max
y∈Yp

f ′p(xp+td, y, p+ r(t)d; d) = min
x∈Xp

max
y∈Yp

f ′p(x, y, p; d).

The proof is complete by invoking the weak duality.

Remark 6 When X ,Y and P are all convex, f is (jointly) convex in (x, p), then the value function V is
also convex. However, (18) does not provide us a formula for the subdifferential of V (unless |Yp| = 1). The
strong duality appeared in (18) is surprising and probably hard to come up with (before seeing the proof).
Assumption 3 is satisfied when the payoff function f is quasiconvex in x and quasiconcave in y for each
p ∈ P (cf. Sion’s minimax theorem).

Next we present an application of Theorem 7, where we are interested in studying how the value function
of the optimization problem

V (p) := sup
x∈X :g(x,p)≥0

f(x, p) (19)

behaves when the perturbation parameter p changes. The tool we use is the Lagrangian multipliers.

Corollary 3 Fix a direction d. Suppose that

1. X is compact convex, P is comapct;

2. f : X ×P 7→ R and g : X ×P 7→ Rk are (jointly) continuous and concave in x for each p ∈ P, f ′p(·, ·; d)
and g′(·, ·; d) are (jointly) continuous;

3. ∃x̃ ∈ X such that minp∈P g(x̃, p) > 0 (Slater’s condition);

then the value function (19) admits directional derivative (along direction d), given by

∀p ∈ intP, V ′(p; d) = max
x∈Xp

min
y∈Yp

L′p(x, y, p; d) = min
y∈Yp

max
x∈Xp

L′p(x, y, p; d), (20)

where L(x, y, p) := f(x, p) +
k∑
i=1

yigi(x, p) is the Lagrangian and Yp := Argmin
y∈Rk+

(
sup
x∈X

L(x, y, t)

)
.

Proof: The theory of Lagrangian multipliers implies

V (p) = sup
x∈X

inf
y∈Rk+

L(x, y, p).

All assumptions in Theorem 7 are met except the compactness of Y. Fix yp ∈ Yp, then

V (p) ≥ L(x̃, yp, p) ≥ f(x̃, p) + yipg
i(x̃, p),

hence yip ≤ supp∈P
V (p)−f(x̃,p)
gi(x̃,p) <∞ due to continuity and compactness. Therefore Y = Rk+ can be replaced

by some compact set in Rk+.

It is also possible to discuss the absolute continuity of the value function. We record this result from
[Milgrom and Segal, 2002] for completeness.

Proposition 4 Suppose that ∀x ∈ X ,∀y ∈ Y, the map t 7→ f(x, y, p + td) is absolutely continuous on
some interval [a, b], that the saddle-point set Xt × Yt 6= ∅ a.e., and that t 7→ sup(x,y)∈X×Y f(x, y, p + td) ∈
L1([a, b]), then the value function V (t) := infx∈X supy∈Y f(x, y, p+td) is absolutely continuous. If in addition,
∪t∈[a,b]{t}×Xt×Yt has at most ℵ0 many isolated points, f ′p(x, y, p+td; d) is (separately) continuous in x and
y, and the family {f(x, y, p+ td}(x,y)∈X×Y is equidifferentiable, then pick (arbitrarily!) (xt, yt) ∈ Xt × Yt,

V (t) = V (a) +

∫ t

a

f ′p(xs, ys, p+ sd; d)ds. (21)
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Proof: The absolute continuity of V follows from repeated application of Proposition 2.
To prove (21), fix s and pick any (xs, ys) ∈ Xs×Ys, since there are only at most ℵ0 many isolated points,

we know (s, xs, ys) is a limit point a.s., hence ∃ distinct (tα, xtα , ytα) → (s, xs, ys). W.l.o.g., take tα ≥ s,
then

f(xtα , ys, p+ tαd)− f(xtα , ys, p+ sd)

tα − s
≤ V (tα)− V (s)

tα − s
≤ f(xs, ytα , p+ tαd)− f(xs, ytα , p+ sd)

tα − s
.

Using equidifferentiability,

f ′p(xtα , ys, p+ sd; d) + o(tα − s) ≤
V (tα)− V (s)

tα − s
≤ f ′p(xs, ytα , p+ sd; d) + o(tα − s).

Applying the separate continuity in x and y then completes the proof.
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