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1 Prelude

Notations Used Throughout

• C for convex set, S for arbitrary set, K for convex cone,

• g(·) is for arbitrary functions, not necessarily convex,

• f(·) is for convex functions, for simplicity, we assume f(·) is closed, proper, continuous, and differen-
tiable when needed,

• min (max) means inf (sup) when needed,

• w.r.t.: with respect to; w.l.o.g.: without loss of generality; u.s.c.: upper semi-continuous; l.s.c.: lower
semi-continuous; int: interior point; RHS: right hand side; w.p.1: with probability 1.

Historical Note

• 60s: Linear Programming, Simplex Method

• 70s-80s: (Convex) Nonlinear Programming, Ellipsoid Method, Interior-Point Method

• 90s: Convexification almost everywhere
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• Now: Large-scale optimization, First-order gradient method

But...
Neither of poly-time solvability and convexity implies the other.

NP-Hard convex problems abound.

2 Basic Convex Analysis

Convex Sets and Functions

Definition 1 (Convex set). A point set C is said to be convex if ∀ λ ∈ [0, 1], x, y ∈ C, we have λx+(1−λ)y ∈ C.

Definition 2 (Convex function). A function f(·) is said to be convex if

1. domf is convex, and,

2. ∀ λ ∈ [0, 1], x, y ∈ domf , we have f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y);

Or equivalently, f(·) is convex if its epigraph {
(
x
t

)
: f(x) ≤ t} is a convex set.

• Function h(·) is concave iff −h(·) is convex,

• h(·) is called affine (linear) iff it’s both convex and concave,

• No concave set. Affine set: drop the constraint on λ.

More on Convex functions

Definition 3 (Strongly Convex Function). f(x) is said to be µ-strongly convex with respect to a norm ‖ · ‖
iff dom f is convex and ∀λ ∈ [0, 1],

f(λx+ (1− λ)y) + µ · λ(1− λ)
2

‖x− y‖2 ≤ λf(x) + (1− λ)f(y).

Proposition 1 (Sufficient Conditions for µ-Strong Convexity). 1. Zero Order: definition

2. First Order: ∀x, y ∈ dom f,

f(y) ≥ f(x) + 〈∇f(x), x− y〉+
µ

2
‖x− y‖2.

3. Second Order: ∀x, y ∈ dom f,
〈∇2f(x)y, y〉 ≥ µ‖y‖2.

Elementary Convex Functions (to name a few)

• Negative entropy x log x is convex on x > 0,

• `p-norm ‖x‖p :=
[∑

i |xi|p
]1/p

is convex when p ≥ 1, concave otherwise (except p = 0),

• Log-sum-exp function log
∑
i exp(xi) is convex, same is true for the matrix version log Tr exp(X) on

symmetric matrices,

• Quadratic-over-linear function xTY −1x is jointly convex in x and Y � 0, what if Y � 0?

• Log-determinant log detX is concave on X � 0, what about log detX−1?
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• Tr X−1 is convex on X � 0,

• The largest element x[1] = maxi xi is convex; moreover, sum of largest k elements is convex; what
about smallest analogies?

• The largest eigenvalue of symmetric matrices is convex; moreover, sum of largest k eigenvalues of
symmetric matrices is also convex; can we drop the condition symmetric?

Compositions

Proposition 2 (Affine Transform). AC := {Ax : x ∈ C} and A−1C := {x : Ax ∈ C} are convex sets.
Similarly, (Af)(x) := min

Ay=x
f(y) and (fA)(x) := f(Ax) are convex.

Proposition 3 (Sufficient but NOT Necessary). f ◦ g is convex if

• g(·) is convex and f(·) is non-decreasing, or

• g(·) is concave and f(·) is non-increasing.

Proof. For simplicity, assume f ◦ g is twice differentiable. Use the second-order sufficient condition.

Remark: One needs to check if domf ◦ g is convex! However, this is unnecessary if we consider extended-
value functions.

Operators Preserving Convexity

Proposition 4 (Algebraic). For θ > 0, λC := {θx : x ∈ C} is convex; θf(x) is convex; and f1(x) + f2(x) is
convex.

Proposition 5 (Intersection v.s. Supremum). • Intersection of arbitrary collection of convex sets is
convex;

• Similarly, pointwise supremum of arbitrary collection of convex functions is convex.

Proposition 6 (Sum v.s. Infimal Convolution). • C1 + C2 := {x1 + x2 : xi ∈ Ci} is convex;

• Similarly, (f1�f2)(x) := infy{f1(y) + f2(x− y)} is convex.

Proof. Consider affine transform.

What about union v.s. infimum? Needs extra convexification.

Convex Hull

Definition 4 (Convex Hull). The convex hull of S, denoted convS, is the smallest convex set containing S,
i.e. the intersection of all convex sets containing S.

Similarly, the convex hull of g(x), denoted convg, is the greatest convex function dominated by g, i.e.
the pointwise supremum of all convex functions dominated by g.

Theorem 5 (Carathéodory, 1911). The convex hull of any set S ∈ Rn is:

{x : x =
n+1∑
i=1

λixi, xi ∈ S, λi ≥ 0,
n+1∑
i=1

λi = 1}.

We will see how to compute convg later.
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Cones and Conic Hull

Definition 6 (Cone and Positively Homogeneous Function). A set S is called a cone if ∀x ∈ S, θ ≥ 0, we
have θx ∈ S. Similarly, a function g(x) is called positively homogeneous if ∀θ ≥ 0, g(θx) = θg(x).
K is a convex cone if it is a cone and is convex, specifically, if ∀x1, x2 ∈ K, θ1, θ2 ≥ 0,⇒ θ1x1 + θ2x2 ∈ K.
Similarly, f(x) is positively homogeneous convex if it is positively homogeneous and convex, specifically,

if ∀x1, x2 ∈ domf, θ1, θ2 ≥ 0,⇒ f(θ1x1 + θ2x2) ≤ θ1f(x1) + θ2f(x2).

Remark: Under the above definitions, cones always contain the origin, and positively homogeneous func-
tions equal 0 at the origin.

Definition 7 (Conic Hull). The conic hull of S is the smallest convex cone containing S. Similarly, the
conic hull of g(x), denoted coneg, is the greatest positively homogeneous convex function dominated by g.

Theorem 8 (Carathéodory, 1911). The conic hull of any set S ∈ Rn is:

{x : x =
n∑
i=1

θixi, xi ∈ S, θi ≥ 0, }.

For convex function f(x), its conic hull is:

(conef)(x) = min
θ≥0

θ · f(θ−1x).

How to compute coneg? Hint: coneg = cone convg, why?

Elementary Convex Sets (to name a few)

• Hyperplane aTx = α is convex,

• Half space aTx ≤ α is convex,

• Affine set Ax = b is convex (proof?),

• Polyhedra set Ax ≤ b is convex (proof?),

Proposition 7 (Level sets). (Sub)level sets of f(x), defined as {x : f(x) ≤ α} are convex.

Proof. Consider the intersection of the epigraph of f(x) and the hyperplane
(
0
1

)T (x
t

)
= α.

Remark: A function, with all level sets being convex, is not necessarily convex! We call such functions,
with convex domain, quasi-convex.

Convince yourself the `0-norm, defined as ‖x‖0 =
∑
i I[xi 6= 0], is not convex. Show that -‖x‖0 on x ≥ 0

is quasi-convex.

• Ellipsoid {x : (x− xc)TP−1(x− xc) ≤ 1, P � 0} or {xc + P 1/2u : ‖u‖2 ≤ 1} is convex,

• Nonnegative orthant x ≥ 0 is a convex cone,

• All positive (semi)definite matrices compose a convex cone (positive (semi)definite cone) X � 0 (X �
0),

• All norm cones {
(
x
t

)
: ‖x‖ ≤ t} are convex, in particular, for the Euclidean norm, the cone is called

second order cone or Lorentz cone or ice-cream cone.

Remark: This is essentially saying that all norms are convex. `0-norm is not convex? No, but it’s not
a “norm” either. People call it “norm” unjustly.
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3 Convex Optimization

Unconstrained
Consider the simple problem:

min
x

f(x), (1)

where f(·) is defined in the whole space.

Theorem 9 (First-order Optimality Condition). A sufficient and necessary condition for x? to be the
minimizer of (1) is:

0 ∈ ∂f(x?). (2)

When f(·) is differentiable, (2) reduces to ∇f(x?) = 0.

Remark:

• The minimizer is unique when f(·) is strictly convex,

• For general nonconvex functions g(·), the condition in (2) gives only critical (stationary) points, which
could be minimizer, maximizer, or nothing (saddle-point).

Simply Constrained
Consider the constrained problem:

min
x∈C

f(x), (3)

where f(·) is defined in the whole space.
Is ∇f(x?) = 0 still the optimality condition? If you think so, consider the example:

min
x∈[1,2]

x.

Theorem 10 (First-order Optimality Condition). A sufficient and necessary condition for x? to be the
minimizer of (3) is (assuming differentiability):

∀x ∈ C, (x− x?)T∇f(x?) ≥ 0. (4)

Verify this condition is indeed satisfied by the example above.

General Convex Program
We say a problem is convex if it is of the following form:

min
x∈C

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m
Ax = b,

where fi(x), i = 0, . . . ,m are all convex.
Remark:

• The equality constraint must be affine! But affine functions are free to appear in inequality constraints.

• The objective function, being convex, is to be minimized. Sometimes we see maximizing a concave
function, no difference (why?).

• The inequality constraints are ≤, which lead to a convex feasible region (why?).

• To summarize, convex programs are to minimize a convex function over a convex feasible region.
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Two Optimization Strategies
Usually, unconstrained problems are easier to handle than constrained ones, and there are two typical

ways to convert constrained problems into unconstrained ones.

Example 11 (Barrier Method). Given the convex program, determine the feasible region (needs to be com-
pact), and then construct a barrier function, say b(x), which is convex and quickly grows to ∞ when x, the
decision variable, approaches the boundary of the feasible region. Consider the following composite problem:

min
x

f(x) + λ · b(x).

If we initialize with an interior point of the feasible region, we will stay within the feasible region (why?).
Now minimizing the composite function and gradually decreasing the parameter λ to 0. The so-called
interior-point method in each iteration takes a Newton step w.r.t. x and then updates λ in a clever way.

Example 12 (Penalty Method). While the barrier method enforces feasibility in each step, the penalty method
penalizes the solver if any equality constraint is violated, hence we first convert any inequality constraint
fi(x) ≤ 0 to an equality one by the trick

[
h(x) := max{fi(x), 0}

]
= 0 (convex?). Then consider, similarly,

the composite problem:
min
x

f(x) + λ · h(x).

Now minimizing the composite function and gradually increasing the parameter λ to ∞. Note that the max
function is not smooth, usually one could square the function h(·) to get some smoothness.

Remark: The bigger λ is, the harder the composite problem is, so we start with a gentle λ, gradually
increase it while using the x we got from previous λ as our initialization, the so-called “warm-start” trick.
How about the λ in the barrier method?

Linear Programming (LP)

Standard Form

min
x

cTx

s.t. x ≥ 0
Ax = b

General Form

min
x

cTx

s.t. Bx ≤ d
Ax = b

Example 13 (Piecewise-linear Minimization).

min
x

f(x) := max
i
aTi x+ bi

This does not look like an LP, but can be equivalently reformulated as one:

min
x,t

t s.t. aTi x+ bi ≤ t, ∀i.

Remark: Important trick, learn it!
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Quadratic Programming (QP)

Standard Form

min
x

1
2
xTPx+ qTx+ r

s.t. x ≥ 0
Ax = b

General Form

min
x

1
2
xTPx+ qTx+ r

s.t. Bx ≤ d
Ax = b

Remark: P must be positive semidefinite! Otherwise the problem is non-convex, and in fact NP-Hard.
Example 14 (LASSO).

min
w

1
2
‖Aw − b‖22 + λ‖w‖1

Example 15 (Compressed Sensing).

min
w

1
2
‖Aw − b‖22 s.t. ‖w‖1 ≤ C

Example 16 (Support Vector Machines).

min
w,b

∑
i

[
yi(wTxi + b)− 1

]
+

+
λ

2
‖w‖22

Reformulate them as QPs (but never solve them as QPs!).
Example 17 (Fitting data with Convex functions).

min
f

1
2

∑
i

[f(xi)− yi]2 s.t. f(·) is convex

Using convexity, one can show that the optimal f(·) has the form:

f(x) = max
i
yi + gTi (x− xi).

Turn the functional optimization problem into finite dimensional optimization w.r.t. gi’s. Show that it is
indeed a QP.

Fitting with monotone convex functions? Overfitting issues?

Quadratically Constrained Quadratic Programming (QCQP)

General Form

min
x

1
2
xTP0x+ qT0 x+ r0

s.t.
1
2
xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m

Ax = b

Remark: Pi, i = 0, . . . ,m must be positive semidefinite! Otherwise the problem is non-convex, and in
fact NP-Hard.
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Example 18 (Euclidean Projection).

min
‖x‖2≤1

1
2
‖x− x0‖22

We will use Lagrangian duality to solve this trivial problem.

Second Order Cone Programming (SOCP)

Standard Form

min
x

cTx

s.t. ‖Bix+ di‖2 ≤ fTi x+ γi, i = 1, . . . ,m
Ax = b

Remark: It’s the `2-norm, not squared, in the inequality constraints (otherwise the problem is a ?).
Example 19 (Chance Constrained Linear Programming). Oftentimes, our data is corrupted by noise and we
might want a probabilistic (v.s. deterministic) guarantee:

min
x

cTx s.t. Pai(a
T
i x ≤ 0) ≥ 1− ε

Assume ai’s follow the normal distribution with known mean āi and covariance matrix Σi, can reformulate
the problem as an SOCP:

min
x

cTx

s.t. āTi x+ Φ−1(1− ε)‖Σ1/2
i x‖2 ≤ 0

What if the distribution is not normal? Not known beforehand?
Example 20 (Robust LP). Another approach is to construct a robust region and optimize w.r.t. the worst-
case scenario:

min
x

cTx

s.t.
[

max
ai∈Ei

aTi x
]
≤ 0

Popular choices for Ei are the box constraint ‖ai‖∞ ≤ 1 or the ellipsoid constraint (ai−āi)TΣ−1
i (ai−āi) ≤

1.
We will use Lagrangian duality to turn the latter case to an SOCP. How about the former case?

Semidefinite Programming (SDP)

Standard Primal Form

min
x

cTx

s.t.
∑
i

xiFi +G � 0

Ax = b

Standard Dual Form

min
X

Tr(GX)

s.t. Tr(FiX) + ci = 0
X � 0

Remark: We will learn how to transform primal problems into dual problems (and vice versa) later.
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Example 21 (Largest Eigenvalue). Let Si’s be symmetric matrices, consider

min
x

λmax

[∑
i

xiSi

]
Reformulate:

min
x,t

t s.t.
∑
i

xiSi � tI

Example 22 (2nd Smallest Eigenvalue of Graph Laplacian). We’ve seen the graph Laplacian L(x). In some
applications, we need to consider the following problem:

max
x≥0

λ2[L(x)],

where λ2(·) means the second smallest eigenvalue. Does this problem belong to convex optimization? Re-
formulate it as an SDP. Hint: The smallest eigenvalue of a Laplacian matrix is always 0.

Before moving on to the next example, we need another theorem, which is interesting in its own right:

Theorem 23 (Maximizing Convex Functions).

max
x∈S

f(x) = max
x∈convS

f(x).

Remark: We are talking about maximizing a convex function now!
Example 24 (Yet Another Eigenvalue Example). We know the largest eigenvalue (of a symmetric matrix)
can be efficiently computed. We show that it can in fact be reformulated as an SDP (illustration only, do
NOT compute eigenvalues by solving SDPs!)

The largest eigenvalue problem, mathematically, is:

max
xT x=1

xTAx,

where A is assumed to be symmetric.
Use the previous cool theorem to show that the following reformulation is equivalent:

max
M�0

Tr(AM) s.t. Tr(M) = 1

Generalization to the sum of k largest eigenvalues? Smallest ones?

NP-Hard Convex Problem
Consider the following problem:

max
x

xTAx s.t. x ∈ ∆n, (5)

where ∆n := {x : xi ≥ 0,
∑
i xi = 1} is the standard simplex. (5) is known to be NP-Hard since it embodies

the maximum clique problem. It is trivial to see (5) is the same as

max
X,x

Tr(AX) s.t. X = xxT , x ∈ ∆n, (6)

which is further equivalent to

max
X

Tr(AX) s.t.
∑

ij
Xij = 1, X ∈ K, (7)

where K := conv{xxT : x ≥ 0} is the so-called completely positive cone. Verify by yourself K is indeed a
convex cone.

Remark: The equivalence of (6) and (7) comes from the fact that the extreme points of their feasible
regions agree, hence the identity of convex hulls.
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Geometric Programming (mainly based on Ref. 5)

Notice that during this subsection, we always assume xi’s are positive.

Definition 25 (Monomial). We call c · xa1
1 xa2

2 . . . xan
n monomial when c > 0 and ai ∈ R.

Definition 26 (Posynomial). The sum (product) of finite number of monomials.

Remark: Posynomial = Positive + Polynomial.

Definition 27 (Generalized Posynomial). Any function formed from addition, multiplication, positive frac-
tional power, pointwise maximum of (generalized) posynomials.

Example 28 (Simple Instances). • 0.5, x, x1/x
3
2,
√
x1/x2 are monomials;

• (1 + x1x2)3, 2x−3
1 + 3x2 are posynomials;

• x−1.1
1 +(1+x2/x3)3.101, max{((x2+1)1.3+x−1

3 )1.92+x0.7
1 , 2x1+x0.9

2 x−3.9
3 } are generalized posynomials;

• −0.11, x1 − x2, x
2 + cos(x), (1 + x1/x2)−1.1, max{x0.7,−1.1} are not generalized posynomials;

Let pi(·), i = 0, . . . ,m be generalized posynomials and mj(·) be monomials.

Standard Form

min
x

p0(x)

s.t. pi(x) ≤ 1, i = 1, . . . ,m
mj(x) = 1, j = 1, . . . , n,

Convex Form

min
y

log p0(ey)

s.t. log pi(ey) ≤ 0, i = 1, . . . ,m
logmj(ey) = 0, j = 1, . . . , n

GPP does not look like convex in its standard form, however, using the following proposition, it can be
easily turned into convex (by changing variables x = ey and applying the monotonic transform log(·)):

Proposition 8 (Generalized Log-Sum-Exp). If p(x) is a generalized posynomial, then f(y) := log p(ey) is
convex. Immediately, we know p(ey) is also convex.

One can usually reduce GPPs to programs that only involve posynomials. This is best illustrated by an
example. Consider, say, the constraint:

(1 + max{x1, x2})(1 + x1 + (0.1x1x
−0.5
3 + x1.6

2 x0.4
3 )1.5)1.7 ≤ 1

By introducing new variables, this complicated constraint can be simplified to:

t1t
1.7
2 ≤ 1

1 + x1 ≤ t1, 1 + x2 ≤ t1
1 + x1 + t1.53 ≤ t2

0.1x1x
−0.5
3 + x1.6

2 x0.4
3 ≤ t3

Through this example, we see monotonicity is the key guarantee of the applicability of our trick. Interestingly,
this monotonicity-based trick goes even beyond GPPs, and we illustrate it by more examples.
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Example 29 (Fraction). Consider first the constraints:

p1(x)
m(x)− p2(x)

+ p3(x) ≤ 1 and p2(x) < m(x),

where pi(x) are generalized posynomials and m(x) is a monomial. Obviously, they do not fall into GPPs.
However, it is easily seen that the two constraints are equivalent to

t+ p3(x) ≤ 1 and
p2(x)
m(x)

< 1 and
p2(x)
m(x)

+
p1(x)
t ·m(x)

≤ 1,

which indeed fall into GPPs.

Example 30 (Exponential). Suppose we have an exponential constraint ep(x) ≤ t, this clearly does not fall
into GPPs. However, by changing variables, we get ep(e

y) ≤ es, which is equivalent to p(ey) ≤ s. This latter
constraint is obviously convex since p(ey) is a convex function, according to our generalized log-sum-exp
proposition.

Example 31 (Logarithmic). Instead if we have a logarithmic constraint p1(x) + log p2(x) ≤ 1, we can still
convert it into GPPs. Changing variables we get p1(ey) + log p2(ey) ≤ 1, which is clearly convex since both
functions on the LHS are convex.

Summary
We have seen six different categories of general convex problems, and in fact they form a hierarchy

(exclude GPPs):

• The power of these categories monotonically increases, that is, every category (except SDP) is a special
case of the later one. Verify this by yourself;

• The computational complexity monotonically increases as well, and this reminds us that whenever
possible to formulate our problem as an instance of lower hierarchy, never formulate it as an instance
of higher hierarchy;

• We’ve seen that many problems (including non-convex ones) do not seem like to fall into these five
categories at first, but can be (equivalently) reformulated as so. This usually requires some efforts but
you have learnt some tricks.

4 Fenchel Conjugate

Fenchel Conjugate

Definition 32. The Fenchel conjugate of g(x) (not necessarily convex) is:

g∗(x∗) = max
x

xTx∗ − g(x).

Fenchel inequality: g(x) + g∗(x∗) ≥ xTx∗ (when equality holds?).
Remark: (f1 + f2)∗ = f∗1 �f∗2 6= f∗1 + f∗2 , assuming closedness.

Proposition 9. Fenchel conjugate is always (closed) convex.

Theorem 33 (Double Conjugation is the Convex Hull).

g∗∗ = cl conv g.

Special case: f∗∗ = cl f.

Remark: A special case of Fenchel conjugate is called Legendre conjugate, where f(·) is restricted to be
differentiable and strictly convex (i.e. both f(·) and f∗(·) are differentiable).
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Fenchel Conjugate Examples

Quadratic function
Let f(x) = 1/2xTQx+ aTx+ α,Q � 0, what is f∗(·)?

Want to solve maxx xTx∗− 1/2xTQx− aTx−α, set the derivative to zero (why?), get x = Q−1(x∗− a).
Plug in back, f∗(x∗) = 1/2(x∗ − a)TQ−1(x∗ − a) + aTQ−1(x∗ − a) + α.

Norms
Set Q = I, a = 0, α = 0 in the above example, we know the Euclidean norm ‖ · ‖2 is self-conjugate. More
generally, the conjugate of ‖ · ‖p is ‖ · ‖q if 1/p+ 1/q = 1, p ≥ 1. Specifically, ‖ · ‖1 and ‖ · ‖∞ are conjugate
pairs.

Matrix norms are similar to their vector cousins. In particular, Frobenius norm is self-conjugate, and the
conjugate of the spectral norm (largest singular value) is the trace norm (sum of singular values).

More Interesting Examples
In many cases, one really needs to minimize the `0-norm, which is unfortunately non-convex. The remedy

is to instead minimize the so-called tightest convex approximation, namely, conv‖ · ‖0.
We’ve seen that g∗∗ = convg, so let’s compute conv‖ · ‖0.

Step 1: (‖ · ‖0)∗(x∗) = maxx xTx∗ − ‖x‖0 =
{

0, x∗ = 0
∞, otherwise

Step 2: (‖ · ‖0)∗∗(x) = maxx∗ xTx∗ − (‖ · ‖0)∗(x∗) = 0.
Hence, (conv‖ · ‖0)(x) = 0 ! Is this correct? Draw a graph to verify. Is this a meaningful surrogate for

‖ · ‖0? Not really...
Stare at the graph you drew. What prevents us from obtaining a meaningful surrogate? How to get

around?
Yes, we need some kind of truncation! Consider the `0-norm restricted to the `∞-ball region ‖x‖∞ ≤ 1.

Redo it.
Step 1: (‖ · ‖0)∗(x∗) = max

‖x‖∞≤1
xTx∗ − ‖x‖0 =

∑
i(|x∗i | − 1)+

Step 2: (‖ · ‖0)∗∗(x) = maxx∗ xTx∗ − (‖ · ‖0)∗(x∗) =
{
‖x‖1, ‖x‖∞ ≤ 1
∞, otherwise .

Does the result coincide with your intuition? Check your graph.
Remark: Use Von Neumann’s lemma to prove the analogy in the matrix case, i.e. the rank function.
We will see another interesting connection when discussing the Lagrangian duality.
Let us now truncate the `0-norm differently. To simplify the calculations, we can w.l.o.g. assume below

x ≥ 0 (or x∗ ≥ 0) and its components are ordered in decreasing manner. Consider first restricting the
`0-norm to the `1-ball ‖x‖1 ≤ 1.

Step 1: (‖ · ‖0)∗(x∗) = max
‖x‖1≤1

xTx∗ − ‖x‖0 = (‖x∗‖∞ − 1)+

Step 2: (‖ · ‖0)∗∗(x) = maxx∗ xTx∗ − (‖ · ‖0)∗(x∗) =
{
‖x‖1, ‖x‖1 ≤ 1
∞, otherwise . Notice that the maximizer of

x∗ is at 1.
Next consider the general case, that is, restricting the `0-norm to the `p-ball ‖x‖p ≤ 1. Assume of course,

p ≥ 1, and let 1/p+ 1/q = 1.
Step 1: (‖ ·‖0)∗(x∗) = max

‖x‖p≤1
xTx∗−‖x‖0 = max

0≤k≤n
‖x∗[1:k]‖q−k, where x[1:k] denotes the largest (in terms

of absolute values) k components of x.
Convince yourself the RHS, which has to be convex, is indeed convex. Also you can verify that this

formula is correct for the previous two special examples p = 1,∞.

Step 2: (‖ · ‖0)∗∗(x) = maxx∗ xTx∗ − (‖ · ‖0)∗(x∗) =
{
‖x‖1, ‖x‖p ≤ 1
∞, otherwise . To see why, suppose first

‖x‖p > 1, set y/a = arg max
‖x∗‖q≤1

xTx∗, then (‖ · ‖0)∗∗(x) ≥ xT y − (‖ · ‖0)∗(y) ≥ a‖x‖p − a, letting a → ∞
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proves the otherwise case. Since the `q-norm is decreasing as a function of q, we have the inequality (for any
q ≥ 1):

xTx∗− (‖ · ‖0)∗(x∗) = xTx∗−
[

max
0≤k≤n

‖x∗[1:k]‖q − k
]
≤ xTx∗−

[
max

0≤k≤n
‖x∗[1:k]‖∞− k

]
= xTx∗− (‖x∗‖∞− 1)+

Maximizing both sides (w.r.t. x∗) gives us (‖ · ‖0)∗∗(x) ≤ ‖x‖1, for any truncation p ≥ 1, and the equality
is indeed attained, again, at 1.

5 Minimax Theorem

Weak Duality

Theorem 34 (Weak Duality).
min
x∈M

max
y∈N

g(x, y) ≥ max
y∈N

min
x∈M

g(x, y).

Interpretation: It matters who plays first in games (but not always).

Proof. Step 1: ∀x0 ∈M,y0 ∈ N , we have g(x0, y0) ≥ min
x∈M

g(x, y0);

Step 2: Maximize w.r.t. y0 on both sides:

∀x0 ∈M, max
y0∈N

g(x0, y0) ≥ max
y0∈N

min
x∈M

g(x, y0)

Step 3: Minimize w.r.t. x0 on both sides, but note that the RHS does not depend on x0 at all.

Strong Duality

Theorem 35 (Sion, 1958). Let g(x, y) be l.s.c. and quasi-convex on x ∈ M , u.s.c. and quasi-concave on
y ∈ N , while M and N are convex sets and one of them is compact, then

min
x∈M

max
y∈N

g(x, y) = max
y∈N

min
x∈M

g(x, y).

Remark: Don’t forget to check the crucial “compact” assumption!
Note: Sion’s original proof used the KKM lemma and Helly’s theorem, which is a bit advanced for us.

Instead, we consider a rather elementary proof provided by Hidetoshi Komiya (1988).
Advertisement: Consider seriously reading the proof, since this’s probably the only chance in your life to

fully appreciate this celebrated theorem. Oh, math!
Proof : We need only to show min max g(x, y) ≤ max min g(x, y), and we can w.l.o.g. assume M is

compact (otherwise consider −g(x, y)). We prove two technical lemmas first.

Lemma 36 (Key). If y1, y2 ∈ N and α ∈ R satisfy α < min
x∈M

max{g(x, y1), g(x, y2)}, then ∃y0 ∈ N with

α < min
x∈M

g(x, y0).

Proof : Assume to the contrary, min
x∈M

g(x, y) ≥ α,∀y ∈ N . Let Cz = {x ∈ M : g(x, z) ≤ α}. Notice that

∀z ∈ [y1, y2], Cz is closed (l.s.c.), convex (quasi-convexity) and non-empty (otherwise we are done). We also
know Cy1 , Cy2 are disjoint (given condition).

Because of quasi-concavity, g(x, z) ≥ min{g(x, y1), g(x, y2)}, hence Cz belongs to either Cy1 or Cy2
(convex sets must be connected), which then divides [y1, y2] into two disjoint parts. Pick any part and
choose two points z′, z′′ in it. For any sequence lim zn = z in this part, using quasi-concavity again and u.s.c.
we have g(x, z) ≥ lim sup g(x, zn) ≥ min{g(x, z′), g(x, z′′)}. Thus both parts are closed, which is impossible.

�
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Lemma 37 (Induction). If α < min
x∈M

max
1≤i≤n

g(x, yi), then ∃y0 ∈ N with α < min
x∈M

g(x, y0).

Proof : Induction from the previous lemma. �
Now we are ready to prove Sion’s theorem. Let α < min max g (what if such α does not exist?) and

let My be the compact set {x ∈ M : g(x, y) ≤ α} for each y ∈ N . Then
⋂
y∈N

My is empty, and hence by

the compactness assumption on M , there are finite points y1, . . . yn ∈ N such that
⋂
yi

Myi
is empty, that is

α < min
x∈M

max
1≤i≤n

g(x, yi). By the induction lemma, we know ∃y0 such that α < minx∈M g(x, y0), and hence

α < max min g. Since α can be chosen arbitrarily, we get min max g ≤ max min g. �
Remark: We used u.s.c., quasi-concavity, quasi-convexity in the key lemma, l.s.c. and compactness in

the main proof. It can be shown that neither of these assumptions can be appreciably weakened.

Variations

Theorem 38 (Von Neumann, 1928).

min
x∈∆m

max
y∈∆n

xTAy = max
y∈∆n

min
x∈∆m

xTAy,

where ∆m := {x : xi ≥ 0,
m∑
i=1

xi = 1} is the standard simplex.

Proof. Immediate from Sion’s theorem.

Theorem 39 (Ky Fan, 1953). Let g(x, y) be convex-concave-like on M × N , where i). M any space, N
compact on which g is u.s.c.; or ii). N any space, M compact on which g is l.s.c., then

min
x∈M

max
y∈N

g(x, y) = max
y∈N

min
x∈M

g(x, y).

Remark: We can apply either Sion’s theorem or Ky Fan’s theorem when g(x, y) is convex-concave,
however, note that Ky Fan’s theorem does not require (explicitly) any convexity on the domain M and N !

Proof : We resort to an elementary proof based on the separation theorem, appeared first in J. M.
Borwein and D. Zhuang (1986).

Let α < min max g, as in the proof of Sion’s theorem, ∃ finite points y1, . . . yn ∈ N such that α <
min
x∈M

max
1≤i≤n

g(x, yi). Now consider the set

C := {(z, r) ∈ Rn+1
∣∣ ∃x ∈M, g(x, yi) ≤ r + zi, i = 1, . . . , n}.

C is obviously convex since g is convex-like (in x). Also by construction, (0n, α) 6∈ C. By the separation
theorem, ∃ θi, γ such that ∑

i
θizi + γr ≥ γα, ∀(z, r) ∈ C.

Notice that C + Rn+1
+ ⊆ C, therefore θi, γ ≥ 0. Moreover, ∀x ∈M , the point (0n, max

1≤i≤n
g(x, yi) + 1) ∈ int C,

meaning that γ 6= 0 (otherwise contradicting the separation). Consider the point (g(x, y1) + r, . . . , g(x, yn) +
r,−r) ∈ C, we know

∑
i θi[g(x, yi) + r]− γr ≥ γα⇒

∑
i
θi

γ g(x, yi) + r(
∑
i
θi

γ − 1) ≥ α. Since r can be chosen
arbitrarily in R, we must have

∑
i
θi

γ = 1. Hence by concave-like, ∃y0 such that g(x, y0) ≥ α,∀x. �

Minimax Examples

Example 40 (It matters a lot who plays first!).

min
x

max
y

x+ y =∞,

max
y

min
x

x+ y = −∞.
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Example 41 (It does not matter who plays first!). Let’s assure compactness on the y space:

min
x

max
0≤y≤1

x+ y = −∞,

do we still need to compute max min in this case?

Example 42 (Sion’s theorem is not necessary).

min
x

max
y≤0

x+ y = −∞,

No compactness, but strong duality still holds.

Alternative Optimization
A simple strategy for the following problem

min
x∈M

min
y∈N

f(x, y)

is to alternatively fix one of x and y while minimize w.r.t the other. Under appropriate conditions, this strat-
egy, called decomposition method or coordinate descent or Gauss-Seidel update etc., converges to optimum.

Remark: To understand “under appropriate conditions”, consider:

min
x

min
y

x2 s.t. x+ y = 1.

Initialize x0 randomly, will the alternative strategy converge to optimum? So the minimum requirement is
decision variables do not interact through constraints.

Can we apply this alternative strategy to minimax problems?

Think...

The answer is NO. Consider the following trivial example:

min
−1≤x≤1

max
−1≤y≤1

xy

The true saddle-point is obviously (0,0). However, if we use alternative strategy, suppose we initialize x0

randomly, w.p.1 x0 6= 0, assume x0 > 0:
Maximize w.r.t. y gives y0 = 1;
Minimize w.r.t. x gives x1 = −1;
Maximize w.r.t. y again gives y1 = −1;
Minimize w.r.t. x again gives x2 = 1;
and oscillate so on.
The analysis is similar when x0 < 0, hence w.p.1 the alternative strategy does not converge!

6 Lagrangian Duality

Kuhn-Tucker (KT) Vector
Recall the convex program (which we call primal from now on):

min
x∈C

f0(x) (8)

s.t. fi(x) ≤ 0, i = 1, . . . ,m (9)
aTj x = bj , j = 1, . . . , n (10)
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Assume you are given a KT vector, µi ≥ 0, νj , which ensure you the minimum (being finite) of

min
x∈C

L(x, µ, ν) := f0(x) +
∑

i
µifi(x) +

∑
j
νj(aTj x− bj) (11)

equals that of the primal (8). We will call L(x, µ, ν) the Lagrangian from now on. Obviously, any minimizer
of (8) must be also a minimizer of (11), therefore if we were able to collect all minimizers of (11), we can pick
those of (8) by simply verifying constraints (9) and (10). Notice that the KT vector turns the constrained
problem (8) into an unconstrained one (11)!

Existence and KKT Conditions
Before we discuss how to find a KT vector, we need to be sure about its existence.

Theorem 43 (Slater’s Condition). Assume the primal (8) is bounded from below, and ∃x0, in the relative
interior of the feasible region, satisfies the (non-affine) inequalities strictly, then a KT vector (not necessarily
unique) exists.

Let x? be any minimizer of primal (8), and (µ?, ν?) be any KT vector, then they must satisfy the KKT
conditions:

fi(x?) ≤ 0, aTj x
? = bj (12)
µ?i ≥ 0 (13)

0 ∈ ∂f0(x?) +
∑

i
µ?i ∂fi(x

?) +
∑

j
ν?j aj (14)

The remarkable thing is KKT conditions, being necessary for non-convex problems, are sufficient as well
for convex programs!

How to find a KT vector?
A KT vector, when exists, can be found, simultaneously with the minimizer x? of primal, by solving the

saddle-point problem:
min
x∈C

max
µ≥0,ν

L(x, µ, ν) = max
µ≥0,ν

min
x∈C

L(x, µ, ν). (15)

Remark: The strong duality holds from Sion’s theorem, but notice that we need compactness on one of
the domains, and here existence of a KT vector ensures this (why?).

Denote g(µ, ν) := minx∈C L(x, µ, ν), show by yourself it is always concave even for non-convex primals,
hence the RHS of (15) is always a convex program, and we will call it the dual problem.

Remark: The Lagragian multipliers method might seem “stupid” since we are now doing some extra
work in order to find x?, however, the catch is the dual problem, compared to the primal, has very simple
constraints. Moreover, since the dual problem is always convex, a common trick to solve (to some extent)
non-convex problems is to consider their duals.

The Decomposition Principle (taken from Ref. 2)
Most times the complexity of our problem is not linear, hence by decomposing the problem into small

pieces, we could reduce (oftentimes significantly) the complexity. We now illustrate the decomposition
principle by a simple example:

min
x∈Rn

∑
i
fi(xi) s.t.

∑
i
xi = 1.

Wouldn’t it be nice if we had a KT vector λ? Since the problem

min
x

∑
i
[fi(xi) + λxi]− λ

can be solved separably for each xi. Consider the dual:

max
λ

min
x

∑
i
[fi(xi) + λxi]− λ.
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Using Fenchel conjugates of fi(x), the dual can be written compactly as:

min
λ

λ+
∑

i
f∗i (−λ),

hence we’ve reduced a convex program in Rn into n + 1 convex problems in R.

Primal-Dual Examples
Let us finish this mini-tutorial by some promised examples.

Example 44 (Primal-Dual SDPs). Consider the primal SDP:

min
x

cTx

s.t.
∑

i
xiFi +G � 0

The dual problem is
max
X�0

min
x
cTx+ Tr

[
X(
∑

i
xiFi +G)

]
,

solving the inner problem (i.e. setting derivate w.r.t. xi to 0) gives the standard dual SDP formulation.
Remark: Using this example to show that the double dual of a convex program is itself.

Example 45 (Euclidean Projection Revisited).

min
‖x‖22≤1

‖x− x0‖22

Assume ‖x0‖ > 1, otherwise the minimizer is x0 itself. The dual is:

max
λ≥0

min
x

[
‖x− x0‖22 + λ(‖x‖22 − 1)

]
.

Solving the inner problem (x? = x0
1+λ ) simplifies the dual to:

max
λ≥0

‖x0‖22 ·
λ

1 + λ
− λ.

Solving this 1-dimensional problem (just setting the derivative to 0, why?) gives λ? = ‖x0‖2 − 1, hence
x? = x0/‖x0‖2. Does the solution coincide with your geometric intuition? Of course, there is no necessity
to use the powerful Lagrangian multipliers to solve this trivial problem, but the point is we can now start
to use the same procedure to solve slightly harder problems, such as projection to the `1 ball.
Example 46 (Robust LP Revisited).

min
x

cTx

s.t.
[

max
a∈E

aTx
]
≤ 0

We use Lagrangian multipliers to solve the red:

max
a

min
λ≤0

aTx+ λ · [(a− ā)TΣ−1(a− ā)− 1]

Swap max and min, solve a? = ā− 1
2λΣx, plug in back, we get

min
λ≤0
−λ− 1

4λ
xTΣx+ āTx.

Solving λ? = −‖Σ
1/2x‖2

2 , plug in back, we get[
max
a∈E

aTx
]

= ‖Σ1/2x‖2 + āTx,

which confirms the robust LP is indeed an SOCP.
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