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Abstract

We propose MT-MAG, a novel machine learning-based software tool for the complete or

partial hierarchically-structured taxonomic classification of metagenome-assembled

genomes (MAGs). MT-MAG is alignment-free, with k-mer frequencies being the only feature

used to distinguish a DNA sequence from another (herein k = 7). MT-MAG is capable of

classifying large and diverse metagenomic datasets: a total of 245.68 Gbp in the training

sets, and 9.6 Gbp in the test sets analyzed in this study. In addition to complete classifica-

tions, MT-MAG offers a “partial classification” option, whereby a classification at a higher

taxonomic level is provided for MAGs that cannot be classified to the Species level. MT-

MAG outputs complete or partial classification paths, and interpretable numerical classifica-

tion confidences of its classifications, at all taxonomic ranks. To assess the performance of

MT-MAG, we define a “weighted classification accuracy,” with a weighting scheme reflecting

the fact that partial classifications at different ranks are not equally informative. For the two

benchmarking datasets analyzed (genomes from human gut microbiome species, and bac-

terial and archaeal genomes assembled from cow rumen metagenomic sequences), MT-

MAG achieves an average of 87.32% in weighted classification accuracy. At the Species

level, MT-MAG outperforms DeepMicrobes, the only other comparable software tool, by an

average of 34.79% in weighted classification accuracy. In addition, MT-MAG is able to

completely classify an average of 67.70% of the sequences at the Species level, compared

with DeepMicrobes which only classifies 47.45%. Moreover, MT-MAG provides additional

information for sequences that it could not classify at the Species level, resulting in the par-

tial or complete classification of 95.13%, of the genomes in the datasets analyzed. Lastly,

unlike other taxonomic assignment tools (e.g., GDTB-Tk), MT-MAG is an alignment-free

and genetic marker-free tool, able to provide additional bioinformatics analysis to confirm

existing or tentative taxonomic assignments.
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Introduction

Metagenome assembled genomes (MAGs) are a technological innovation that has allowed

detailed insights into environmental microbial communities, and has strengthened under-

standing of the uncultured majority of microorganisms [1, 2]. Accurate taxonomic assignment

for these environmentally-derived genomes is a necessary step for identifying populations,

making connections across communities and environments, and anchoring hypotheses on

metabolic function and roles in biogeochemical cycles [3, 4].

As methods for determining phylogeny, evolutionary relationships, and taxonomy, evolved

from physical to molecular characteristics, so did many species definitions change. Recently,

microbial taxonomy underwent drastic changes through the Genome Taxonomy Database

(GTDB, http://gtdb.ecogenomic.org/) in an effort to ensure that taxonomic classifications

were standardized, normalized, and evolutionary consistent. In the first GTDB release (i.e.,

GTDB release 80) nearly 58% of the approximately 84,000 genomes with an attached National

Center for Biotechnology Information (NCBI) taxonomy saw a difference in nomenclature

above Species-level [5]. With the fourth release (i.e., GTDB release 89) of GTDB, over 30% of

the nearly 114,000 genomes with an NCBI taxonomy (out of 143,000 total genomes in GTDB

at the time) saw a change in the assigned Species taxon [6].

In the absence of a definitive ground truth, any existing and newly proposed Species clus-

ters would benefit from additional bioinformatics analysis by complementary genome-based

classification methods, to confirm tentative taxonomic assignments. Even though existing tax-

onomic assignment tools (e.g., Kraken 2 [7], BERTax [8], GTDB-Tk [9]) have achieved good

classification accuracies on benchmarked tasks, they are constrained by various limitations, as

described below.

Alignment-based tools (e.g., GTDB-Tk [9]) require DNA sequences to be aligned to refer-

ence sequences to obtain sequence similarities [10]. In addition, alignment-based tools assume

that homologous sequences are composed of a series of linearly arranged and more or less con-

served sequence stretches, assumptions that may not always hold due to high mutation rates,

frequent genetic recombination events, etc. [11]. Lastly, the utility of alignment-based tools is

limited by their often prohibitive consumption of runtime and computational memory.

Genetic marker-based tools such as IDTAXA [3] and GTDB-Tk [9] rely on taxonomic

markers (e.g., 16S ribosomal RNA genes, internal transcribed spacers) to identify microorgan-

isms. The use of genetic marker-based tools is limited by the fact that partial genomes fre-

quently lack major markers. The absence of major markers could be caused, e.g., by the

genome not being sequenced to a sufficient depth to assemble well, resulting in markers of

interest possibly missing from the assembly [12]. An additional reason could be that fragments

carrying the markers do not bin with the rest of the genome, which is a frequent problem with

16S ribosomal RNA genes [13].

At the other end of the spectrum, alignment-free tools based on k-mer frequencies (e.g.,

DeepMicrobes [14], CLARK [15]) do not rely on alignment or genetic markers, and instead

use k-mer frequencies as the input feature. However, existing k-mer-based tools are also lim-

ited by, e.g., the fact that they are only capable of taxonomic assignment at specific taxonomic

levels (e.g., Genus, Species), and a lack of interpretability of their predicted taxonomic

assignments.

To address these limitations, we propose MT-MAG, a machine learning-based taxonomic

assignment tool for metagenome-assembled genomes. Unlike most other tools (e.g.,

GTDB-Tk) MT-MAG is an alignment-free and genetic marker-free software tool. MT-MAG

uses only their k-mer frequencies to distinguish DNA sequences from one another (for the

datasets in this paper, the optimal value of k was empirically determined to be k = 7). In
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addition, by using a hierarchical local classification approach MT-MAG is able to provide par-

tial classifications (at higher taxonomic levels than, e.g., Species) for MAGs that it cannot con-

fidently classify at the Species level. Lastly, for a query genome, MT-MAG outputs not only a

classification path, but also a numerical classification confidence of its prediction, at each taxo-

nomic rank. The main contributions of this paper are:

• Partial Classification: A feature of MT-MAG is that it outputs partial classifications for the

majority of sequences that it cannot confidently classify at the Species level. This results in an

average of 95.13% of the genomes in the datasets analyzed being either partially or

completely classified. In particular, MT-MAG completely classifies, on average, 88.84% of

the test sequences to the Phylum level, 88.39% to the Class level, 86.81% to the Order level,

81.17% to the Family level, and 71.13% to the Genus level.

• Interpretability: MT-MAG outputs numerical classification confidences for its classifica-

tions, at all taxonomic ranks along the classification path.

• Weighted Classification Accuracy: To assess the performance of MT-MAG, we introduce

the “weighted classification accuracy,” a performance metric defined as the weighted sum of

the proportions of complete and partial classifications. To the best of our knowledge, this is

the first metric that incorporates a weighting scheme which reflects the fact that partial clas-

sifications at different ranks are not equally informative.

• Large Datasets: MT-MAG is capable of classifying large and diverse metagenomic datasets.

The two datasets analyzed in this paper are: genomes from human gut microbiome species

(training set 6.15 Gbp, test set 7.42 Gbp), and bacterial and archaeal genomes assembled

from cow rumen metagenomic sequences (training set 239.53 Gbp, test set 2.18 Gbp).

• Superior Performance: MT-MAG achieves an average of 87.32% in weighted classification

accuracy, for the datasets analyzed. In particular, at the Species level (the only comparable

taxonomic rank with DeepMicrobes), MT-MAG outperforms DeepMicrobes by an average

of 34.79% in weighted classification accuracy. In addition, MT-MAG is able to completely

classify an average of 67.70% of the sequences at the Species level, compared to DeepMic-

robes, which only classifies 47.45%.

Materials, methods, and performance metrics

This section describes the datasets used, outlines the MT-MAG classification algorithm, and

defines the performance metrics used to analyze MT-MAG’s performance and to compare it

with that of DeepMicrobes.

Materials: Datasets and task description

Two different tasks were performed in the computational experiments of this study, called

Task 1 and Task 2. The dataset analyzed in Task 1 was selected for direct performance com-

parison purposes, as it was the dataset analyzed by DeepMicrobes [14]. More specifically, the

MT-MAG training set in Task 1 was based on representative genomes from species in human

gut microbiomes, and the test set comprised high-quality MAGs reconstructed from human

gut microbiomes from a European Nucleotide Archive study [16]. The MT-MAG training set

in Task 2 was based on representative and non-representative microbial genomes from GTDB

r202, and the test set comprised 913 “draft” bacterial and archaeal genomes assembled from

rumen metagenomic sequence data derived from 43 Scottish cattle [17].
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The rationale behind the selection of DeepMicrobes for a benchmark comparison with

MT-MAG is as follows. Like MT-MAG, DeepMicrobes is a machine learning-based align-

ment-free and genetic marker-free metagenomic taxonomic assignment tool that uses k-mer

frequencies as input feature to predict taxonomic assignments of short reads at the Genus and

Species level. DeepMicrobes has demonstrated better performance at the Species level classifi-

cation, and better comparative accuracy in Species abundance estimation over other state-of-

the-art tools, see [7, 15, 18–21]. In addition, like MT-MAG, DeepMicrobes estimates classifica-

tion confidences: The reads with classification confidences below a (constant) threshold are

considered to be unclassified reads, while the rest are considered to be classified reads. Within

the set of classified reads, the reads whose classified Species taxa are the same as their ground-

truth Species taxa are considered to be correctly classified reads. Lastly, to the best of our

knowledge, DeepMicrobes is the only other taxonomic assignment tool that enables probabi-

listic classification using machine learning classifiers and has attempted to classify large data-

sets (e.g., thousands of species), similar to MT-MAG’s design goals.

As MT-MAG and DeepMicrobes have different requirements on their inputs, in that

MT-MAG ideally requires the training sequences to be> 10,000 bp, while DeepMicrobes

operates with short reads, the datasets were prepared separately for MT-MAG and

DeepMicrobes.

We conclude these general remarks on the datasets used in this study with a discussion on

the reference labels that were used for both the training sets and test sets. We first note that the

NCBI [22] labels are outdated, due to the lack of consensus on uncultivated taxa naming con-

ventions [23]. In contrast, in GTDB a consistent naming scheme was achieved by naming

uncultivated taxa as ‘Genus name’ sp1, ‘Genus name’ sp2, and so on [5]. Second, we note that

GTDB provides a complete taxonomic hierarchy with no inconsistencies in naming, based on

standardized phylogenetic distances used to define taxonomic ranks [6]. Third, we observe

that the numerical labels used by DeepMicrobes are not biologically meaningful, and cannot

be extended to other datasets. Consequently, in this study we used as reference labels the labels

obtained by running GTDB-Tk [9] (based on GTDB R06-RS202, April 27, 2021), since they

represent the current consensus of the scientific community on microbial taxonomy.

Task 1: Sparse training set. The dataset for Task 1 was specifically chosen so as to allow a

direct comparison between the quantitative performance of MT-MAG and that of DeepMic-

robes (see “Performance metrics”). Since the genomes that the training sets for Task 1 were

based on comprise only 2.4% of the GTDB at the Species level, in the remainder of the paper

this task will be referred to as Task 1 (sparse).
We first note that we were unable to replicate the classification accuracies reported by

DeepMicrobes, using the datasets and software provided in [14]. Absent the possibility to

reproduce the results in [14]ab initio, and to give DeepMicrobes the best possible scenario for

comparison, we opted for the alternative of using the already trained Species classification

model reported in [14].

The training set for the Species classification model provided by [14], consisted of reads

extracted from 2,505 representative genomes of human gut microbial species. These genomes

were identified previously by a large-scale assembling study of the species in human gut micro-

biomes, and are available at the FTP website ftp://ftp.ebi.ac.uk/pub/databases/metagenomics/

umgs_analyses. This genome set comprised 1,952 MAGs, and 553 microbial gut Species-level

genome representatives from the human-specific reference (HR) database. This 2,505 genome

set was referred to in [14] as “HGR.” Starting from HGR, DeepMicrobes [14] first assigned

each species a numerical label from 0 to 2,504 (inclusive). Secondly, using the ART Illumina

read simulator [24], 100,000 150 basepair (bp) paired-end reads were simulated from HiSeq

2500 error model with the mean fragment size of 200 and standard deviation of 50 bp per
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species. Thirdly, the simulated reads were trimmed from the 30 end to 75–150 bp in equal

probability. Lastly, these trimmed simulated read sets with their numerical labels from 0 to

2504 (inclusive) were used as the input to DeepMicrobes. The total size of the training set of

this Species classification model trained by DeepMicrobes is 56.03 Gbp.

The test set of DeepMicrobes was prepared in [14] in a similar way to the training set, and it

comprised twenty-thousand 75–150 bp trimmed paired-end reads per MAG, simulated using

ART Illumina from 3,269 high-quality MAGs reconstructed from human gut microbiomes

from a European Nucleotide Archive study titled “A new genomic blueprint of the human gut

microbiota” (GBHGM) [16]. The reference taxonomic labels for the test set were derived by

running GTDB-Tk. The total test set size for DeeMicrobes is 14.71 Gbp.

The training set of MT-MAG was prepared as follows. Since MT-MAG uses an enhanced

version of MLDSP as a subprocess (see “Methods: MT-MAG algorithm”), which achieves opti-

mal performance when the input sequence length exceeds 10,000 bp, all contigs in HGR that

were shorter than 5,000 bp were discarded. The remaining 14,358 contigs comprised the train-

ing set of MT-MAG, totalling 6.15 Gbp. The process by which MT-MAG handles the special

case of imbalanced classes, and the special case of the input dataset being too large to be loaded

in memory are described in Section 3 in S1 Appendix.

The test set of MT-MAG comprised 3,269 full MAGs in GBHGM. The total size of the test

set of MT-MAG is 7.42 Gbp.

Finally, to compare the DeepMicrobes classification results with those of MT-MAG, we

post-processed the numerical labels of the reads in the DeepMicrobes training set, as follows.

Recall that the reads in the training set were simulated from real genomes in the HGR data-

base. Post-processing the numerical label of a read in the training set entailed using GTDB-Tk

to obtain the GTDB reference label of its originating genome, and this GTDB label was then

associated to the numerical label of that read.

Task 2: Dense training set. The training sets used in Task 2 were based on genomes com-

prising 7.7% of GTDB taxonomy, hence this task will thereafter be referred to as Task 2
(dense).

The training set of MT-MAG was prepared using GTDB R06-RS202. Note that the sizes of

the genomes in GTDB are significantly larger than those of genomes in HGR. Most GTDB

MAGs contain multiple contigs per genome. All contigs belonging to a given genome were

pseudo-concatenated into a single sequence, by adding the symbol “O” between contigs, so as

to avoid creating artificial k-mers at the junction of contigs. Then, 4 non-overlapping frag-

ments of length 100,000 bp were selected from each such genome, using four random starts.

The 4 obtained fragments belonging to the same genome were again pseudo-concatenated to

form a representative genomic fragment for that genome. To ensure that we had a sufficient

number of representative genomic fragments to perform cross-validation, the above sampling

process was repeated 20 times for each genome, resulting in 20 separate representative geno-

mic fragments with the same genome label. The total size of the training set of MT-MAG is

239.53 Gbp. The process by which MT-MAG handles the special case of imbalanced classes,

and the special case of the input dataset being too large or too small, are described in Section 3

in S1 Appendix.

Regarding the preparation of the training set of DeepMicrobes, we note that the only way to

enable the DeepMicrobes model to handle the training stage of Task 2 (dense) (training set

comprising 49,871 species) is to increase the size of k-mer. However, according to our compu-

tational experiments, k = 12 is the largest value that can be handled by a 24Gb GPU memory.

Thus, to make the benchmarking comparison with MT-MAG possible, we opted to include in

the DeepMicrobes training set only reads from genomes whose species are present in the

DeepMicrobes test set (601 species). Note that, without drastically trimming its training set
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this way, DeepMicrobes would have to load into its memory all 49,871 Species in GTDB, the

value of k would have to be increased to obtain a satisfactory accuracy, and both these factors

would lead to DeepMicrobes crashing due to RAM limitations. Note also that this design deci-

sion actually gives a competitive advantage to DeepMicrobes in this comparison, as it is likely

to increase DeepMicrobes’ classification accuracy by a large amount.

Following this design choice, the training set of DeepMicrobes was prepared from the rep-

resentative and non-representative genomes of the afore-mentioned 601 species, in a similar

way to the training set of DeepMicrobes in Task 1 (sparse). Approximately thirty-thousand

75–150 bp paired-end reads were simulated per species, and each species was assigned a

numerical label between 0 and 600 (see Section 4 in S1 Appendix for details).

The test set of MT-MAG comprised 913 full microbial genomes from metagenomic

sequencing of cow rumen, which were derived from 43 Scottish cattle [17]. The total sequence

length of the test set of MT-MAG is 2.18 Gbp.

The test set of DeepMicrobes (reads) was prepared from the 913 full microbial genomes

[17], in a similar way to the test set of DeepMicrobes in Task 1 (sparse). In the end, 10,000 75–

150bp trimmed simulated paired-end reads per MAG were generated as the input to

DeepMicrobes.

The total size of the test set of DeepMicrobes is 2.04 Gbp, and 18,143,340 reads were

simulated.

Table 1 provides a summary of the total number of basepairs analyzed, number of FASTA

files, number of contigs/reads, and the range of contig/read length for training and test sets in

Task 1 (sparse) and Task 2 (dense), for MT-MAG and DeepMicrobes.

Methods: MT-MAG algorithm

This section describes the hierarchically-structured local classification approach used by

MT-MAG, the eMLDSP subprocess that is at the core of MT-MAG, and the two main phases

of MT-MAG (training and classifying).

A hierarchically-structured local classification approach. Taxonomic assignment is a

problem of hierarchical classification, whereby input items are grouped according to a hierar-

chy. A hierarchy can be formalized as a directed acyclic graph where every node can be

reached by a unique path from the root node (see Fig 1). In machine learning, there are gener-

ally three types of approaches to hierarchical classification [25]. The simplest approach is flat
classification where all parent nodes are ignored, and a single classifier is trained to classify

each instance directly into a leaf node. The second approach is the so-called big bang

Table 1. Summary of total number of basepairs analyzed, number of FASTA files, number of contigs/reads, and the range of contig/read lengths for the training

and test sets in Task 1 (sparse), and Task 2 (dense) for MT-MAG and DeepMicrobes. Note that contigs come directly from the samples, while reads are simulated from

the samples by the ART simulator.

Task ID Dataset type Tool Total seq. length # FASTA files # contigs/reads length range (bp)

Task 1 (sparse) Training MT-MAG 6.15 Gbp 2,505 314,840 100,000

DeepMicrobes 56.03 Gbp 5,010 498,086,752 75–150

Test MT-MAG 7.42 Gbp 3,269 245,564 2,000—1,448,440

DeepMicrobes 14.71 Gbp 6,538 130,760,000 75—150

Task 2 (dense) Training MT-MAG 239.53 Gbp 635,248 2,540,992 100,000

DeepMicrobes 4.02 Gbp 1,202 35,765,154 75–150

Test MT-MAG 2.18 Gbp 913 158,102 2,000—677,578

DeepMicrobes 2.04 Gbp 1,826 18,143,340 75—150

https://doi.org/10.1371/journal.pone.0283536.t001
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classification where a single classifier is trained for all nodes in the hierarchy. The third

approach is the hierarchically-structured local classification, whereby one multi-class classifier

is trained for each parent-to-child relationship. This third approach is an iterative classifying

process where instances classified to a child node are then further classified with the next-level

classifier, where the child node is now the parent node for the next-level classifier.

In contrast with DeepMicrobes which uses flat classification, MT-MAG uses hierarchically-

structured local classification, for reasons detailed below. First, in the case of flat classification,

an erroneous classification of a DNA sequence directly at the Species level is more likely, due

to the very large number of classes at the Species level. This, in turn, results in a higher likeli-

hood of placing the sequence into an erroneous higher-level taxonomic rank, e.g., Order. Such

a serious misplacement is less likely to happen with hierarchically-structured local classifica-

tion, whereby a sequence passes through multiple classifications, from higher to lower taxo-

nomic ranks, thus providing multiple check-points for the identification of an incorrect

classification. For example, an incorrect Order classification could be prevented if any of the

classifications prior to and including this level are deemed “uncertain.”

In addition, in the case of flat classification, if the classification confidence of a sequence

into a Species taxon does not meet the required confidence level, this sequence is simply

deemed “unclassified,” with no further information being provided. In contrast, the hierar-

chically-structured local classification provides the option of partial classification and can out-

put partial classification paths for such sequences, even if their Species level classification is

uncertain.

Finally, flat classification requires significantly more computational time and memory

resources, because it involves a single big classification task wherein all the training sequences

are loaded into memory simultaneously. In contrast, a hierarchically-structured local classifi-

cation approach involves multiple smaller classification tasks and, for each classification task,

one only needs to load into memory the sequences pertaining to the specific parent taxon

being classified at this step in the hierarchy. In particular, for classifications at higher taxo-

nomic ranks, one can use, e.g., only representative genomes as opposed to all of the genomes

available for that parent taxon.

The enhanced MLDSP (eMLDSP) subprocess. MT-MAG uses an enhanced version of

MLDSP, an alignment-free software tool that combines supervised machine learning

Fig 1. A sample hierarchy (taxonomy) with three parent-to-child relationships. A parent node with all its children

nodes forms a parent-to-child relationship. A parent node without a child node is called a leaf node. The level of a node

is the length of path from that node to the root node. The part highlighted in red is a multi-child classification, while

the part highlighted in cyan is a single-child classification.

https://doi.org/10.1371/journal.pone.0283536.g001
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techniques with digital signal processing for ultrafast, accurate, and scalable genome classifica-

tion at all taxonomic ranks [26, 27].

The inputs to MLDSP are pseudo-concatenated DNA sequences, together with their refer-

ence taxonomic labels. After selecting a value for the parameter k, each such input DNA

sequence is converted into a numerical vector containing the counts of all of its k-mers, where

a k-mer is defined as a DNA subsequence of length k that does not contain the symbol “O”

(used during the pseudo-concatenation process), or the symbol “N” (representing an unidenti-

fied nucleotide). Each k-mer count vector is then converted into a k-mer frequency vector, via

dividing its k-mer counts by the total length of the sequence (excluding “O”s and “N”s). These

k-mer frequency vectors are computed via order k Frequency Chaos Game Representation of a

DNA sequence (FCGRk) [28–30], and used as the input to MLDSP.

The optimal value of k is in general dependent on the dataset. For this study, we conducted

preliminary experiments with values of k between 7 and 11, and these values yielded similar

accuracy results. Thus, the value k = 7 was selected, since it resulted in a high classification

accuracy while requiring the least computational resources.

MLDSP consists of two main steps: (a) Preprocessing, whereby several different classifiers’

performance is evaluated by 10-fold cross validation, and (b) Classify, whereby MLDSP first

trains the classifiers using the entire training set (Classify-Training), and then classifies new

DNA sequences in the test set (Classify-Classification) (see Section 1 in S2 Appendix).

MT-MAG uses an enhanced version of MLDSP, called eMLDSP (enhanced MLDSP) as a

subprocess. The eMLDSP subprocess augments MLDSP in several significant ways. First, it

augments MLDSP by adding the capability to handle the special case where the parent taxon

has only one child taxon, as well as by adding the new feature of computing classification con-

fidences for its classifications. Second, it adds a stopping threshold picking algorithm, called

“STP algorithm,” which is at the core of the partial classification option feature of MT-MAG.

Specifically, the STP algorithm provides an individual stopping threshold for each parent-

child pair, at each taxonomic level, as opposed to the one-size-fits-all stopping threshold of

DeepMicrobes at the Species level. Third, eMLDSP combines the hierarchically-structured

local classification with the result of the STP algorithm to output “uncertain classification,” if

the classification confidence is below the stopping threshold.

Fig 2 provides an overview of eMLDSP, including eMLDSP (Preprocessing), eMLDSP

(Classify-Training) and eMLDSP (Classify-Classification).

The MLDSP implementation of the algorithms assumes that the input DNA sequences

belong to multiple child taxa (multi-child classification). If this is the case, in the eMLDSP

(Classify-Training) step, a Quadratic Support Vector Machine (QSVM) classifier called fully
trained QSVM is trained, using the entire training set. In the eMLDSP (Classify-Classification)

step, eMLDSP computes classifications (taxonomic assignments) for the DNA sequences in

the test set by using the fully trained Quadratic Support Vector Machine (QSVM), and the

classification confidences of these classifications using Platt scaling [31]. In contrast with its

precursor, eMLDSP then applies five-fold cross-validation to obtain classifications, and uses a

softmax-max transformation to compute classification confidences, for the entire training set.

Note that, when classifying a sequence belonging to a parent taxon, a single numerical clas-

sification confidence is computed for this classification, namely the confidence of classifying

the sequence into the most likely child taxon of that parent taxon. This classification confi-

dence is computed as the maximum of the posterior likelihoods over all child taxa. These

results are later used for determining the stopping thresholds for each pair of parent and child

taxon.

The case where the training/test sequences belong to a single child taxon (single-child classi-
fication) is not addressed by MLDSP. In this case, in the eMLDSP (Classify-Training) step, a
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QSVM classifier called novelty QSVM is trained, that uses the entire training set, and sets a

fraction (default 10%) of the training set as a second child-class called “outlier taxon,” with the

rest of the training set being referred to as the “original taxon.” In the eMLDSP (Classify-Clas-

sification) step, eMLDSP computes classifications for the DNA sequences in the test set by

classifying using the novelty QSVM, and computes the classification confidences of these clas-

sifications by utilizing a normalizing logit transformation. The eMLDSP (Preprocessing) step

is not applicable here, since there is no need for picking stopping thresholds in the case of sin-

gle-child classifications.

The MT-MAG training phase and classifying phase. MT-MAG comprises two phases,

training and classifying, as described below (Sections 3 and 4 in S2 Appendix for details of the

two phases, and an additional optimization step that combines the two phases into a hybrid

approach).

The MT-MAG training phase (of the training set comprising contigs in the case of Task 1

(sparse), respectively representative genomic fragments in the case of Task 2 (dense), together

with their reference labels) comprises multiple training processes: For each parent taxon, after

Fig 2. Overview of eMLDSP, including the main steps that comprise eMLDSP (Preprocessing) (pink box), eMLDSP (Classify-Training) (yellow box),

and eMLDSP (Classify-Classification) (lavender box). Ellipses represent computation steps. Rectangles represent inputs to, and outputs from,

computation steps. The diamond represents a condition checking. Note that the training dataset consists of (a) DNA sequences, together with (b) their

taxonomic labels; and the inputs to eMLDSP (Preprocessing) and eMLDSP (Classify-Training) consists of the same training set. The output from eMLDSP

(Preprocessing), consisting of predictions and classification confidences for the training set, is used for the STP algorithm in the MT-MAG Training phase

(dotted arrow from the pink box), to calculate stopping thresholds. These stopping thresholds will then be used together with the output from eMLDSP

(Classify-Classification) in the MT-MAG Classifying phase (dotted arrow from the lavender box), to determine final classification results.

https://doi.org/10.1371/journal.pone.0283536.g002
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preparing the training set (discarding short sequences, handling imbalances in the dataset,

etc.), two situations can occur, depending on the number of child taxa:

• Multi-child classification. In contrast to DeepMicrobes which uses a single stopping thresh-

old, MT-MAG has multiple stopping thresholds, one for each parent-child pair.

Concretely, MT-MAG determines a stopping threshold for every parent-child pair, based on

the confidences calculated by eMLDSP (Preprocessing) with the training set as input.

MT-MAG selects the stopping threshold from a list of candidate stopping thresholds, and

searches for the stopping threshold T which results in the fewest number of contigs (resp.

representative genomic fragments) with classification confidences lower than T, while at the

same time resulting in the classification accuracies of the other contigs (resp. representative

genomic fragments) being higher than the value of a user-specified accuracy parameter.

More specifically, a stopping threshold is the result of subtracting a “variability” parameter

from the maximum of (a) the minimum of the candidate thresholds (numbers between 0

and 1) that result in a “constrained accuracy” being greater than the value of a user-specified

parameter (default: 90%), and (b) the average of classification confidences for the contigs

(resp. representative genomic fragments) with correct eMLDSP (Preprocessing) classifica-

tions.

Subsequently, a QSVM classifier (the fully trained QSVM) is trained with the entire training

set of this parent taxon, as part of the eMLDSP (Classify-Training) step.

• Single-child classification. A QSVM classifier called novelty QSVM is trained in the eMLDSP

(Classify-Training) step. The novelty QSVM sets a fraction of the contigs (resp. representa-

tive genomic fragments) in the training set as a second child-class, called outlier taxon. The

default fraction is set to 10%.

The MT-MAG classifying phase (of the test set comprising test genomes with known refer-

ence labels, or unknown genomes) proceeds as follows. When, in the process of hierarchically-

structured local classification, MT-MAG has classified a test/unknown genome into a parent

taxon, and attempts to classify it further into one of its child taxa, two possibilities can occur:

• Multi-child classification. If the parent taxon has multiple child taxa, then the fully trained

QSVM is used to classify the test/unknown genome into one of the child taxa, and this result

is also used to compute a classification confidence as part of the eMLDSP (Classify-Classifi-

cation) step. If this classification confidence is below the stopping threshold for this parent-

child pair, then this classification is considered uncertain, and no further attempts are made

to classify this test/unknown genome from the child taxon into its own child taxa.

• Single-child classification. If the parent taxon has a single child taxon, then the novelty

QSVM is used to classify the test/unknown genome into either the child taxon or the outlier

taxon as part of the eMLDSP (Classify-Classification) step, and the result is used to compute

a classification confidence. If the output is the outlier taxon, then this classification is consid-

ered uncertain and no further classifications are attempted.

Given a test/unknown genome, the output of MT-MAG is either (i) a complete classifica-

tion path down to the Species level, if all the intermediate classification confidences are greater

than or equal to the stopping thresholds, or (ii) a partial classification path, down to the lowest

taxonomic rank with a high enough classification confidence. In either case, the output of

MT-MAG also includes the classification confidence for each taxon along the classification

path.

Fig 3 illustrates the MT-MAG training phase and classifying phase for classifying two

genomes belonging to a given parent taxon, into one of its two child taxa (multi-child
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classification). In the MT-MAG training phase, the classifications and classification confi-

dences outputted in eMLDSP (Preprocessing) for the training set from all folds are used for

determining the stopping thresholds for every child taxon of this parent taxon. Furthermore,

in eMLDSP (Classify-Training), a fully trained QSVM is trained by using the entire training

Fig 3. MT-MAG pipeline for classifying two genomes, genome a and genome b, from the parent taxon Genus 1 into its two child taxa, Species 1, and

Species 2 (multi-child classification). Blue ellipses represent computation steps. Gray rectangles represent inputs to, and outputs from, computation steps.

In the MT-MAG training phase (yellow box), the training set is prepared and given as the input to eMLDSP (Preprocessing).

https://doi.org/10.1371/journal.pone.0283536.g003
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data. In the MT-MAG classifying phase, the test set is given as the input to eMLDSP (Classify-

Classification), together with the fully trained QSVM from the training phase. For each

genome in the test set, the output of eMLDSP (Classify-Classification) is a classification,

together with a numerical confidence (between 0 and 1) of that classification. This classifica-

tion confidence is then compared with the stopping threshold of that parent taxon and child

taxon pair. If the classification confidence is lower than the stopping threshold, then the output

is “uncertain classification,” and further classification into children of this child taxon will not

be attempted. See Section 2 in S2 Appendix for a visual illustration of the single-child classifi-

cation scenario, similar to Fig 3.

Performance metrics

In this section, we define the terminology and the performance metrics used to discuss and

assess the performance of MT-MAG’s classification of test genomes.

A classification of a genome x from taxonomic rank tr1 to taxonomic rank tr2, is called a
classification at tr2. Given a taxonomic rank tr, we call the classification of x a complete classifi-
cation at tr if, for each classification on the classification path for x:

• if multi-child, the classification confidence of classifying x at any taxonomic level higher than

and including tr, is greater than or equal to the respective stopping threshold, and

• if single-child, it is classified as the original single-child taxon.

The classification of x is called an uncertain classification at tr if:

(a) for the classification at tr,

• if multi-child, the confidence of the classification at tr is strictly less than the stopping

threshold of this parent-child pair,

• if single-child, it is classified to the outlier taxon;

(b) for each classification at ranks higher than tr,

• if multi-child, the confidence of the classification is greater than or equal to its correspond-

ing stopping threshold,

• if single-child, it is classified to the original single-child taxon.

There are three possible causes for the uncertain classification of x to tr. First, x belongs to

tr, but MT-MAG fails to confidently classify it to tr. Second, x belongs to another existing

taxon with the same parent taxon as tr, and MT-MAG successfully identifies this. Third, x
belongs to another taxon with the same parent taxon as tr, that does not exist in the training

set. Here, MT-MAG’s uncertain classification suggests the discovery of a new taxon with the

same parent taxon as tr.
If the classification is uncertain a rank higher than tr, we call it an unattempted classification

at tr. At the end of the MT-MAG classifying phase for an input genome x, if the classification

of x is uncertain at any taxonomic rank lower than the first non-root rank, then we say that x
is partially classified. On the other hand, if the output of the classifying phase is that x is

completely classified at the lowest taxonomic rank (herein Species), then we say that x is

completely classified.

We note that for a given test genome, the output of its classification at rank tr can be only

one of the following: complete classification at tr (if classifications all the way down to tr
exceed their thresholds), uncertain classification at tr (if classifications at all higher ranks
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exceed their thresholds, but the classification at tr is below the threshold), or unattempted clas-

sification at tr (if the classification at any rank higher than the one right above tr is below the

threshold).

We also say that a classification of x is a correct classification down to tr if it is a complete

classification at tr, and a correct classification at all taxonomic ranks higher than, and includ-

ing, tr. By definition, all genomes have correct classifications down to the root.

Lastly, the length of the classification path of x is defined as either (i) the number of taxa in

the taxonomy, if x is completely classified at the lowest taxonomic rank, or (ii) the number of

taxa predicted before the uncertain classification, if the output is “uncertain classification.”

As an example, in Fig 4, the classification of genome x is a complete classification at rank 1,

an uncertain classification at rank 2, and an unattempted classification at rank 3. In addition,

if the reference taxon of genome x at rank 1 is “rank 1 group 1”, then the classification of

genome x is a correct classification at rank 1, as well as a correct classification down to rank 1.

Note that, for each classification of a parent taxon, the number of stopping thresholds equals

the number of that parent’s child taxa. In contrast, each such classification has associated with

it a single classification confidence, that of classifying the genome into a single, “best-guess,”

child taxon.

Fig 4. Example of the classification path for a genome x. The pre-calculated stopping thresholds are listed under the

corresponding taxon labels. The classification confidences are listed inside blue-bordered rectangles. MT-MAG

classifies x from root into “rank 1 group 1” with confidence 0.99, which is greater than the stopping threshold for “rank

1 group 1” (0.94), so MT-MAG continues its classification for x. In the next iteration MT-MAG classifies x from “rank

1 group 1” into “rank 2 group 2” with confidence 0.90, but since this is below the stopping threshold of the parent into

its child “rank 2 group 2” (0.92), this classification is deemed “uncertain” and MT-MAG does not attempt further

classifications. The path in cyan indicates complete classification(s), the path in yellow indicates uncertain

classification(s), and the part in red indicates unattempted classifications.

https://doi.org/10.1371/journal.pone.0283536.g004
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With this terminology, for a given taxonomic rank trj in a list of increasingly lower taxo-

nomic ranks tr0, tr1, . . ., tri, where tr0 is the root, we define the following performance metrics

(the subscript g indicates that these metrics refer to genomes):

• CAg(trj) (constrained accuracy): the proportion of the test genomes with correct classifica-

tions down to trj, to the test genomes with complete classifications at trj.

• AAg(trj) (absolute accuracy): the proportion of the test genomes with correct classifications

down to trj, to all test genomes.

• WAg(trj) (weighted classification accuracy) is the ratio between the weighted sum computed

as described below, and the number of test genomes.

Given a test genome with a classification path of length 0� h� i, (where i is the maximum

length of a classification path), its weight is:

• If it has a correct classification down to trj (i.e., complete classification at trj, and it a correct

classification at trj), then the weight is 1.

• If, on the other hand, there exists a 0< p< j, such that the test genome has a correct classi-

fication down to trp, but does not have a correct classification at trp+1 (the latter condition

avoids double counting), then the weight of the test genome is

maxf0;
1

j
p �

1

2
ðminfh; jg � pÞ

� �

g:

With the formula above, genomes that do not have correct classifications down to any tax-

onomic rank below the root will have weight 0 (the underlying assumption is that the test

genomes are always assumed to belong to the root). The term p is intended to give positive

weights to the correct classifications down to trp. The term � 1

2
ðminðh; jÞ � pÞ is intended

to penalize incorrect classifications after taxonomic rank trp by 0.5, while taking the maxi-

mum between the calculated result and 0 is meant to disallow negative weights.

This weighting scheme reflects the fact that partial classifications at different ranks are not

equally informative. For example, a correct classification of a test genome down to the Phy-

lum level is less informative than a correct classification of a test genome down to the

Genus level.

Hereafter, weighted classification accuracy will sometimes be called just weighted accuracy.

• CRg(trj) (complete classification rate): the proportion of the test genomes with complete clas-

sifications at trj, to all test genomes.

Given a taxonomic rank trj, the three accuracies CAg(trj), AAg(trj) and WAg(trj) are num-

bers between 0 and 1, with CAg(trj)�AAg(trj), and where higher values indicate better perfor-

mance. The complete classification rate CRg(trj) is a number between 0 and 1, and a higher

value indicates a higher proportion of genomes that are completely classified at trj. See Section

3 in S3 Appendix for the formal definitions of these performance metrics.

Results

In this section, we first present a detailed analysis of the features of MT-MAG: (i) the capability

to classify a DNA sequence at all taxonomic ranks, (ii) the capability to output an interpretable

classification confidence for the classification at each taxonomic rank along the classification

path, and (iii) the capability to output a “partial classification” path when the classification con-

fidence of a classification does not meet a given threshold. Second, since DeepMicrobes is able

to classify only at the Species level, we summarize the results of a comparative analysis of the
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performance of MT-MAG with that of DeepMicrobes at the Species level. Note that, in the

comparative analysis, some genomes were excluded from the test sets as follows: the genomes

for which the GTDB taxon is “unnamed species” were excluded in both Task 1 and Task 2,

and the genomes for which the reference GTDB species did not exist in the training set were

excluded in Task 1 (see Section 2 in S3 Appendix).

Experiments for DeepMicrobes were run using Vector Institute’s Vaughan cluster with

GPUs of rtx6000, t4v1,p100 and t4v2 with 24 GB memory. Experiments for MT-MAG were

run on a workstation with x86_64 CPU.

MT-MAG features

Classifications at all taxonomic ranks. In contrast with DeepMicrobes which only classi-

fies reads at the Species level, a significant feature of MT-MAG is its capability to classify

genomes at all taxonomic ranks. Table 2 provides a summary of MT-MAG’s performance met-

rics, at all taxonomic ranks, for both Task 1 (sparse) and Task 2 (dense). Table 3 provides a

summary of the percentages of the test sequences completely classified by MT-MAG vs. classi-

fied by DeepMicrobes, at all taxonomic ranks.

In Task 1 (sparse) MT-MAG accuracies range between 82% and 97% (see Table 2). Specifi-

cally, the MT-MAG constrained accuracies CAg(tr) are above 99% at all taxonomic ranks,

except at the Species level CAg(Species), where they drop to 81.53%. The increase in the num-

ber of incorrect classifications at the Species level explains, in part, the 5.93% drop in weighted

accuracy WAg(tr) from the Genus to the Species level. In addition, due to its partial classifica-

tion capability, MT-MAG is able to completely classify 93.80% of the test genomes to the Phy-

lum and Class levels, 92.40% to the Order level, 82.67% to the Family level, and 71.96% to the

Genus level, with 70.65% of the test genomes being completely classified to the Species level

(see Table 3). In contrast, in Task 1, DeepMicrobes classifies only 45.02% of the test reads at

the Species level, and it does not assess other taxonomic levels.

In Task 2 (dense) MT-MAG has a satisfactory performance all around, with constrained

accuracies CAg(tr) above 96% at all taxonomic ranks (see Table 2). In addition, due to its

Table 2. Summary of MT-MAG performance metrics at all taxonomic ranks, for Task 1 (sparse) and Task 2 (dense): Constrained accuracy CAg(tr), absolute accu-

racy AAg(tr), weighted accuracy WAg(tr), and complete classification rate CRg(tr) (higher is better).

Task ID Taxonomic Rank CAg(tr)(%) AAg(tr)(%) WAg(tr)(%) CRg(tr)(%)

Task 1 (sparse) Phylum 100.00 93.80 93.80 93.80

Class 100.00 93.80 93.80 93.80

Order 99.56 91.99 93.13 92.40

Family 100.00 82.67 90.52 82.67

Genus 99.39 71.53 86.68 71.96

Species 81.53 57.60 80.75 70.65

Average 96.75 81.90 89.78 84.21

Task 2 (dense) Domain 99.66 96.13 95.97 96.46

Phylum 97.50 83.82 88.34 83.87

Class 97.74 81.10 85.62 82.98

Order 97.96 79.56 83.90 81.22

Family 98.06 78.12 82.59 79.67

Genus 96.70 67.96 79.95 70.28

Species 98.63 63.87 77.59 64.75

Average 98.03 78.36 84.85 79.89

https://doi.org/10.1371/journal.pone.0283536.t002
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partial classification capability, MT-MAG completely classifies 83.87% of the test genomes to

the Phylum level, 82.98% to the Class level, 81.22% to the Order level, 79.67% to the Family

level, and 70.29% to the Genus level, with 64.75% of the test genomes being completely classi-

fied to the Species level (see Table 3). In contrast, in Task 2, DeepMicrobes only classifies

49.88% of the test reads to the Species level, and does not assess other taxonomic levels.

Overall, for the two benchmarking datasets, MT-MAG completely classifies an average of

67.70% of the test sequences (to the Species level). In addition, MT-MAG provides partial clas-

sifications for the majority of the remaining sequences. This results in 93.80% of genomes ana-

lyzed in Task 1 (sparse) and 96.46% of genomes analyzed in Task 2 (dense) being partially

classified or completely classified. In particular, due to its partial classification capability,

MT-MAG completely classifies on average 88.84% of the test sequences to the Phylum level,

88.39% to the Class level, 86.81% to the Order level, 81.17% to the Family level, and 71.13% to

the Genus level. Moreover, MT-MAG provides additional information for sequences that it

could not classify at the Species level, resulting in an average of the partial or complete classifi-

cation of 95.13% (i.e., (93.80%+96.46%)/2 = 95.13%), of the genomes in the datasets analyzed.

Numerical classification confidences. In addition to the final classification path,

MT-MAG also outputs numerical classification confidences along the classification path, indi-

cating how confident MT-MAG is in the classification, at each taxonomic rank. For example,

the final classification path for genome x, illustrated in Fig 4 is interpreted as MT-MAG being

99% confident in classifying x from “root” to “rank 1 group 1,” and 90% confident in classify-

ing x from “rank 1 group 1” to “rank 2 group 2.” However, since the confidence of the latter

classification is strictly less than the pre-calculated stopping threshold of 92%, this classifica-

tion is deemed “uncertain” and no further classifications are attempted for genome x.

As an example of a complete classification down to the Species level, in Task 2 (dense) the

final classification path for genome hRUG888 is “Domain Bacteria (confidence 97%)! Phy-

lum Bacteroidota (confidence 97%)! Class Bacteroidia (confidence 100%)!Order Bacter-

oidales (confidence 100%)! Family Muribaculaceae (confidence 99%)! Genus Sodaliphilus
(confidence 99%)! Species Sodaliphilus sp900314215 (confidence 99%).” As an example of a

Table 3. Summary of proportion of test sequences completely classified by MT-MAG (quantified as CRg(tr)) vs. classified by DeepMicrobes (quantified as CRr), at

all taxonomic ranks. A higher CRg(tr) (respectively CRr) is better, as it signifies that a higher proportion of genomes (resp. reads) have been completely classified (resp.

classified).

Task ID Taxonomic Rank MT-MAG CRg(tr)(%) DeepMicrobes CRr(%)

Task 1 (sparse) Phylum 93.80 —

Class 93.80 —

Order 92.40 —

Family 82.67 —

Genus 71.96 —

Species 70.65 45.02

Task 2 (dense) Domain 96.46 —

Phylum 83.87 —

Class 82.98 —

Order 81.22 —

Family 79.67 —

Genus 70.28 —

Species 64.75 49.88

Dash denotes not applicable.

https://doi.org/10.1371/journal.pone.0283536.t003
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partial classification path, the final classification path for genome RUG412 is “Domain Bacteria

(confidence 93%)! Phylum Bacteroidota (confidence 100%)! Class Bacteroidia (confi-

dence 100%)!Order Bacteroidales (confidence 100%)! Family Muribaculaceae (confi-

dence 98%)! Genus Sodaliphilus (confidence 99%)! Species Sodaliphilus sp900318645

(uncertain).” The last output means that MT-MAG is uncertain regarding its classification of

RUG412 from Genus Sodaliphilus into Species Sodaliphilus sp900318645.

Species level comparison of MT-MAG with DeepMicrobes

In this section, we compare the performance of MT-MAG against the performance of Deep-

Microbes at the Species level, the only taxonomic rank at which DeepMicrobes classifies. The

performance metrics we define here are used to assess the quality of DeepMicrobes’s classifica-

tion, and are defined analogously to the performance metrics for MT-MAG. The subscript r
indicates that these metrics refer to reads, and the exact definitions of the terms used can be

found in, “Materials: Datasets and task description”. These performance metrics are:

• CAr (constrained accuracy): the proportion of correctly classified test reads, to classified test

reads.

• AAr (absolute accuracy): the proportion of correctly classified reads, to all test reads.

• WAr (weighted classification accuracy): the proportion of correctly classified reads. Note

that in this case WAr coincides with AAr, since DeepMicrobes does not provide any classifi-

cation at ranks other than Species. (hereafter, weighted classification accuracy will sometimes

simply be called weighted accuracy.)

• CRr (classified rate): the proportion of classified test reads to all test reads. Note the difference

in the definition between CRg(tr) for MT-MAG (complete classification rate for genomes, at

rank tr), and CRr (classified rate for reads, at the Species level) for DeepMicrobes.

The three accuracies CAr, AAr and WAr are numbers between 0 and 1, with CAr� AAr,

and where higher values indicate better performance. The classified rate CRr is a number

between 0 and 1, and a higher value indicates a higher proportion of classified reads, at the

Species level (for exact definitions, see Section 3 in S3 Appendix).

Since DeepMicrobes only makes classifications at the Species level, to compare its perfor-

mance with that of MT-MAG, we set the parameter tr (taxonomic rank) to Species in

MT-MAG, and proceeded to compare CAr with CAg(Species), AAr with AAg(Species), WAr

with WAg(Species), and CRr with CRg(Species).

Of all the metrics we defined, we posit that the most informative metric for comparing

MT-MAG with DeepMicrobes is the weighted (classification) accuracy at the Species level.

Indeed, in the case of MT-MAG, WAg(Species) combines, into a single numerical indicator,

the information on the proportion of genomes that MT-MAG correctly classifies together with

that of genomes that it partially classifies. In the case of DeepMicrobes, WAr combines the

information on the proportion of reads that it correctly classifies together with that of reads

that it is unable to classify. In addition to this main comparison performance metric, and for a

more nuanced discussion, in the following we also compare the other performance metrics,

namely CAr with CAg(Species), AAr with AAg(Species), and CRr with CRg(Species).

Table 4 summarizes the MT-MAG and DeepMicrobes constrained accuracies, absolute

accuracies, and weighted accuracies, as well as the complete classification rates of MT-MAG,

respectively the classified rates of DeepMicrobes.

For Task 1 (sparse), as seen in Table 4, MT-MAG demonstrates significantly better overall

performance than DeepMicrobes, with the weighted accuracy of MT-MAG being 38.81%
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higher than that of DeepMicrobes. Regarding other performance metrics, the constrained

accuracy of DeepMicrobes 11.61% higher than that of MT-MAG, the absolute accuracy for

MT-MAG is 15.66% higher than that of DeepMicrobes, and the complete classification rate of

MT-MAG is 25.63% higher than the classified rate of DeepMicrobes. The latter indicates that

MT-MAG completely classifies significantly more sequences than DeepMicrobes, though

DeepMicrobes demonstrates a slightly higher constrained classification accuracy for the classi-

fied sequences.

For Task 2 (dense), as seen in Table 4, MT-MAG demonstrates significantly better overall

performance than DeepMicrobes, with the weighted accuracy of MT-MAG being 30.77%

higher than that of DeepMicrobes. Comparing the other performance metrics, the constrained

accuracy of MT-MAG is 4.76% higher than that of DeepMicrobes, the absolute accuracy for

MT-MAG is 17.05% higher than that of DeepMicrobes, and the complete classification rate of

MT-MAG is 14.87% higher than the classified rate of DeepMicrobes. This indicates that

MT-MAG not only completely classifies significantly more sequences than DeepMicrobes, but

also demonstrates a slightly higher MT-MAG classification accuracy for the completely classi-

fied sequences.

Overall, for Task 1 (sparse) and Task 2 (dense), MT-MAG outperforms DeepMicrobes by

an average of 34.79% in weighted accuracy. In addition, MT-MAG is able to completely clas-

sify an average of 67.70% of the sequences at the Species level, the only comparable taxonomic

rank of DeepMicrobes, which only classifies 47.45%.

Discussion

We proposed MT-MAG, a novel alignment-free and genetic marker-free software tool that uses

machine learning to obtain taxonomic assignments of metagenome-assembled genomes.

MT-MAG employs k-mer frequencies (here in k = 7) as the only feature used to distinguish

between DNA sequences. MT-MAG has a partial classification option, whereby MT-MAG

outputs a partial classification at a higher taxonomic rank for the MAGs that it cannot confi-

dently classify to the lowest taxonomic rank (e.g., Species). In addition, MT-MAG outputs

interpretable numerical classification confidences of its classifications, at each taxonomic rank.

To assess the performance of MT-MAG, we defined a “weighted accuracy,” with a

weighting scheme reflecting the fact that partial classifications at different ranks are not

Table 4. Summary of MT-MAG and DeepMicrobes accuracy statistics, as well as the complete classification rates of MT-MAG and the classified rates of DeepMic-

robes. The inputs are genomes in the case of MT-MAG, and reads in the case of DeepMicrobes.

Task ID Metric MT-MAG(%) DeepMicrobes(%)

Task 1 (sparse) CAg(Species)/CAr 81.53 93.14

AAg(Species)/AAr 57.60 41.94

WAgðSpeciesÞ=WAr 80:75 41:94

CRg(Species)/CRr 70.65 45.02

Task 2 (dense) CAg(Species)/CAr 98.63 93.87

AAg(Species)/AAr 63.87 46.82

WAgðSpeciesÞ=WAr 77:59 46:82

CRg(Species)/CRr 64.75 49.88

A higher value indicates better performance (in boldface). The metric that best captures the performance of the methods is the weighted accuracy (in blue), since this

metric combines information about sequences that have been completely classified with information about the sequences that have not been completely classified to the

Species level.

https://doi.org/10.1371/journal.pone.0283536.t004
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equally informative. Compared with DeepMicrobes (the only other machine learning tool

for taxonomic assignment of metagenomic data, with confidence scores), for the two data-

sets analyzed (genomes from human gut microbiome species, respectively bacterial and

archaeal genomes assembled from cow rumen metagenomic sequences), MT-MAG outper-

forms DeepMicrobes by an average of 34.79% in weighted accuracy. In addition, MT-MAG

is able to completely classify an average of 67.70% of the sequences at the Species level, the

only comparable taxonomic rank of DeepMicrobes, which only classifies 47.45%. Moreover,

a significant feature of MT-MAG is that it provides additional information for the sequences

that are not completely classified at the Species level. This results in 95.13% of the genomes

analyzed being either partially classified or completely classified, averaged over the two

datasets analyzed. In particular, due to its partial classification capability, MT-MAG

completely classifies, on average, 88.84% of the test genomes to the Phylum level, 88.39% to

the Class level, 86.81% to the Order level, 81.17% to the Family level, and 71.13% to the

Genus level.

In addition, MT-MAG is able to be run using a reasonable amount of random access mem-

ory (RAM) and on-chip memory. Indeed, for the computational experiments in this study,

MT-MAG was run on a workstation where each CPU had only 0.02 GB of on-chip RAM.

DeepMicrobes could not be run on this workstation, as it required significantly more memory

resources (several GPUs, each with 24 GB of on-chip memory).

Limitations of MT-MAG include the fact that, being a supervised machine learning classifi-

cation algorithm, its performance relies on the availability of reference taxonomic labels for

the DNA sequences in the training set. In addition, any incorrect or unstable reference labels

in the training set may cause erroneous future classifications. This limitation could be

addressed, e.g., by extending the supervised machine learning approach to semi-supervised

machine learning (where some, but not all, information about the training set is available), or

even to unsupervised machine learning (where the training process does not require any refer-

ence taxonomic labels, see, e.g., [32]).

Second, even though MT-MAG significantly outperforms DeepMicrobes in Task 1 (sparse

training set) and Task 2 (dense training set) in weighted accuracy, there is still room for

improvement in accuracies and complete classification rates. An analysis of the Task 1 (sparse)

training set suggests two possible reasons contributing to incorrect classifications. One reason

is the fact that the training set was the HGR database, which constitutes a very small subset of

the GTDB taxonomy, in terms of both the number of representative genomes and of coverage

of the GTDB taxonomy. This could be addressed by requiring a specific level of coverage for

known taxa, to ensure that feature characteristics are reasonably well-represented. Another

reason is the fact that, due to computational requirements of MLDSP, the training set had to

exclude any contigs shorter than 5,000 bp, and this selection process resulted in the removal of

93% of the available basepairs. This could be addressed by finding ways to relax the selection

criteria for the training set, to allow more sequences to participate in the training process with-

out compromising the classification performance.

Third, the interpretability of classification could be further enhanced by exploring the last

layer of the classifier. For example, the process of computing classification confidences could

be used to identify pairs of child taxa that are difficult to distinguish from each other, which

could potentially be biologically relevant. In addition, while single-child cases are few in the

case of real DNA datasets, we note that their classification confidences are computed via a

transformation of the distances between a test sequence and decision boundaries in the feature

space into a valid probability distribution. To enhance the interpretability of these single-child

class confidences, one could consider applying more interpretable training process and trans-

formations such as those proposed in [33, 34].
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Fourth, the classification accuracy and computational efficiency of MT-MAG could be fur-

ther improved by taking advantage of user-provided information, so that the computation does

not always start from the root of the taxonomy. For example, if the user already knows that an

input genome belongs to Class Bacteroidia, then MT-MAG could bypass the higher taxonomic

ranks and start its training and classifying phases at the Class-to-Order level directly.

Fifth, when defining the weighted accuracy for a classification at given taxonomic rank tr
(i.e., WAg(tri)), the weights used in this computation can be further refined, to reflect the data-

set analyzed. Recall that the intent of defining a weighted classification accuracy was to account

for the fact that partial classifications of a genome at different ranks are not equally informa-

tive. For example, a partial classification of a genome down to the Genus level is intuitively

more informative than a partial classification to, say, the Phylum level, and this is quantified as

follows in the definition of weighted accuracy. The root is assigned weight 0, the last taxo-

nomic rank with a correct classification is assigned weight 1, and intermediate taxonomic

ranks are assigned weights that increase in equal fractional increments, from the root to the

last correctly classified rank. However, this assumption of equal increments at each intermedi-

ate rank could be inadequate if, e.g., some of the intermediate taxonomic ranks are missing

from the path. In such cases, the individual weights of taxonomic ranks could be defined as

being different, with each weight corresponding to the amount of information that a classifica-

tion at that rank contributes.

Lastly, even though MT-MAG achieves superior performance on the datasets analyzed in

this paper, it would be desirable to obtain mathematical proofs of the optimality of the classi-

fier, such as the Bayes optimality proofs in [35].
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