
Batchnorm Allows Unsupervised Radial Attacks

Amur Ghose∗1,2, Apurv Gupta3, Yaoliang Yu1,2, Pascal Poupart1,2
1David R. Cheriton School of Computer Science, University of Waterloo,

2Vector Institute, 3Columbia University
a3ghose@uwaterloo.ca, apurvgupta1996@gmail.com,
yaoliang.yu@uwaterloo.ca,ppoupart@uwaterloo.ca

Abstract

The construction of adversarial examples usually requires the existence of soft or
hard labels for each instance, with respect to which a loss gradient provides the
signal for construction of the example. We show that for batch normalized deep
image recognition architectures, intermediate latents that are produced after a batch
normalization step by themselves suffice to produce adversarial examples using
an intermediate loss solely utilizing angular deviations, without relying on any
label. We motivate our loss through the geometry of batch normed representations
and their concentration of norm on a hypersphere and distributional proximity
to Gaussians. Our losses expand intermediate latent based attacks that usually
require labels. The success of our method implies that leakage of intermediate
representations may create a security breach for deployed models, which persists
even when the model is transferred to downstream usage. Removal of batch norm
weakens our attack, indicating it contributes to this vulnerability. Our attacks
also succeed against LayerNorm empirically, thus being relevant for transformer
architectures, most notably vision transformers which we analyze.

1 Introduction

Adversarial examples xadv are commonly defined as data instances which lie ϵ away in some norm
(usually L∞) from an actual data instance xreal . To humans, ϵ is small and xreal , xadv share labels,
yet to a classifier neural network, they do not. Since their discovery [Szegedy et al., 2013, Goodfellow
et al., 2014], adversarial examples have spurred research in both attacking (i.e., generating adversarial
data instances) [Akhtar and Mian, 2018, Tramer et al., 2020] and defending [Yuan et al., 2019]
neural networks against them. Common methods for generating adversarial images use loss gradients.
A pioneering attack is Fast Gradient Sign Method (FGSM) [Goodfellow et al., 2014], possibly
strengthened via Projected Gradient Descent (PGD) [Madry et al., 2017] - an iterative form of FGSM.
Defenses against these attacks have been derived, including adversarial training [Shrivastava et al.,
2017], where adversarial images are fed to the network for training. Adversarial training is expensive
but powerful [Salman et al., 2019] and scalable [Wong et al., 2020, Shafahi et al., 2019]. Defenses can
give illusory security by obfuscating gradients [Athalye et al., 2018]. An unsaid aspect of defense is
hiding model parameters - changing attacks from the white-box (model parameters known) scenario
to black-box (models only accessible via outputs) scenario, which makes them harder to attack.

We consider the family of intermediate-level attacks, exemplified by members such as Intermediate
Level Attack Projection (ILAP) [Huang et al., 2019] and its variants [Li et al., 2020b]. In this, an
initial direction in the latent space of the hidden intermediate layers is determined via FGSM or
other attacks. Gradient steps then maximally perturb the intermediate hidden representation to find
a suitable xadv, unlike directly using the label. Such methods can outperform the method used for

∗Corresponding author: Amur Ghose, email: a3ghose@uwaterloo.ca

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



the initial direction itself and be more transferable across different models. ILAP uses FGSM to set
initial directions, but once the direction arises, the layers after the intermediate layer play no role.

We now ask : Given an unlabeled data point x along with full access to a deep network upto K layers,
where K is less than the network depth, could we craft an adversarial example out of x without
any other information - e.g., the label of x, any x′ ̸= x - so long as the deep network utilized batch
normalization ? We answer this question positively when x is an image for several popular families
of image recognition architectures, exploiting the hyperspherical geometry of latent spaces to propose
an angular adversarial attack. The label access of the black box case is absent - we do not allow
access to hard labels (true label of x) or soft labels (logits obtained at penultimate layers). We adapt
the method advanced in ILAP to remove the need for label-based FGSM, and proceed instead with
an angular loss based on the geometry of batch normalization. Our concrete contributions are :

• To provide a label-free attack that relies on only gradient access upto intermediate layers
• Ablation of our method to show it is not brittle to choices of intermediate layers, (small

variations between using layers i, i+ 1 if i is sufficiently deep)
• To show prominent vision models - ResNets and EfficientNets - fall to our attack. Removing

batchnorm in ResNets via Fixup neuters the attack - suggesting it is playing a role in this.
• To show that the attack empirically works even for transformer architectures (ViT) that

employ Layernorm over batchnorm.
• To show that these attacks persist in the transfer learning setting, where the models are

frozen upto a certain layer and then fine-tuned for downstream usage.
• To improve the supervised attack case when labels are available by using our loss in

conjunction with the loss from the true label.

This implies that releasing the first K layers of a model publicly as a feature extractor, without any
label access, can create adversarial attacks, which has security implications. Weaknesses persist even
when the unseen, later layers of the network are tuned on different datasets (e.g. CIFAR10/100) -
adversarial examples can be crafted for CIFAR without using the changed, later layers only using
this first K. We exploit the radial geometry of batch normalization and assume the norm of the
neural representations concentrates around a constant, allowing us to exploit the geometry formed.
This indicates batch normalization may make networks not just less robust to conventional attacks
[Galloway et al., 2019], but open up new attacks entirely. We ablate our method and compare to
scenarios of naive baselines and having access to x′ ̸= x to showcase its competitiveness.

1.1 Relation to Related Work

We tie together two areas : analyzing batch normalization from a geometric standpoint under
convergence assumptions, and adversarial attacks with partial knowledge of architectures. Batch
normalization has been analyzed from the standpoint of deep learning theory and model optimiza-
tion [Santurkar et al., 2018]. While its detrimental effects on model robustness [Galloway et al., 2019,
Benz et al., 2020] are known, most analysis focuses on how batch normalization makes the model
weaker to already-existing attacks. We propose that batch normalization might impact the network by
making it more vulnerable to novel attacks. We are to our knowledge the first to connect this with the
concentration of norm phenomenon implied by results such as the dynamics of batch normalization
at high depths [Daneshmand et al., 2021]. These tie into results such as neural collapse [Papyan et al.,
2020], which find that later layers in deep networks have predictable geometric patterns.

Research in adversarial examples has focused in specific settings such as white/grey/black box
settings denoting levels of model access/knowledge. Even in the black box case, it is often assumed
we can feed an input x into the model M under attack and retrieve M(x), the model’s prediction of
the label of x. We consider the case of partial model knowledge and attacking a model with no label
outputs. This is relevant with the presence of large-scale pretraining, where models are fed large
training sets of data unrelated to any one domain to capture the overall distribution of a particular
type of modality, such as GPT-3 [Brown et al., 2020] with natural language. Deployed downstream,
these public models may fine tune on a smaller dataset, and most of their weights are not fine-tuned.
Public models may act as feature extractors that distill large amounts of data beyond dataset scopes.
They output not labels, but representation vectors, and our attack targets this case. Previous works
do use latent representations to construct adversarial examples [Park and Lee, 2021, Creswell et al.,

2



2017, Yu et al., 2021] through moving in latent space towards points of differing labels or maximizing
deviations in latent space [Kos et al., 2018]. Along with the related no-box [Li et al., 2020a, Zhang
et al., 2022b] setting (assuming no model knowledge), these methods require extra parts, such as
representations of instances of different labels as targets to move towards, surrogate models, or some
soft labels, often with gradient access - all of which we do not require. They are also ad hoc in their
choice of layers to attack, but we give a definite answer of which layers and architectures are the
most vulnerable - batch norm layers situated deeper in the network. The closest case to our attack
are label-free, single-stage latent-based attacks [Zhou et al., 2018, Inkawhich et al., 2019, Ganeshan
et al., 2019, Inkawhich et al., 2020b, Zhang et al., 2022a, Wang et al., 2021, Inkawhich et al., 2020a]
which we outperform. These methods use the latent to boost the supervised scenario and not exploit
batch normalization or two-step optimization in an unsupervised setting as we do.

1.2 Setup - FGSM and PGD Attacks

We describe FGSM aka Fast Gradient Sign Method [Goodfellow et al., 2014] for generating an
adversarial example. The task is to find x′ which differs from x in the label assigned by a classifier
C, which outputs a distribution over K classes (K positive numbers that sum to 1).

∥x′ − x∥≤ ϵ and

argmax
i

[C(x)]i ̸= argmax
i

[C(x′)]i
(1)

Generally, we only restrict attacks to cases where argmaxi[C(x)]i is the true label, i.e., C is correct.
The norm ∥.∥ used to define the attack is almost always the L∞ norm, though other choices such as
L2 [Carlini and Wagner, 2017] have been tested as well. We will assume the norm to be L∞ for the
description. Computing x′ (possibly with projection to a valid domain) proceeds as follows:

• Apply C to x to obtain C(x).
• Compute gradient ∇L wrt x where L is the loss between C(x) and the true label vector vl.
• Compute x′

i = xi + ϵ× sign(∇L)i, i.e., move by ±ϵ based on sign of gradient.

We understand the sign function to map to −1, 0, 1 respectively as the argument is < 0, 0, or > 0.
FGSM uses gradient information, which may vary rapidly around x. A stronger variant, the Projected
Gradient Descent (PGD) attack [Madry et al., 2017] uses multiple steps near x taking gradients at
each step. Under PGD, there is a step size α, typically << ϵ, which iteratively updates xt

i as :

xt
i = xt−1

i + α× sign(∇L)t−1
i

With a clamping step on xt
i that enforces the constraint of ∥x′ − x∥≤ ϵ, this step after initializing x0

i
at xi yields much stronger adversarial examples than FGSM at higher t.

1.3 Intermediate Level Attack Projection (ILAP)

These methods - FGSM and PGD - rely on the input and the final layer’s output loss with respect to
the true label. We can consider a neural network N of depth D as :

N(x) = Ni+1,D(N1,i(x))

With 1 based indexing, Nj,k is the neural sub-network via composing layers from depth j to k. Let
zi = N1,i(x) be the latent representation at depth i. Consider xadv from any baseline method, and let

zadvi = N1,i(xadv) ; z
orig
i = N1,i(x) ; ∆

adv
i = zadvi − zorigi

We then seek an alternate adversarial example, xILAP
i which seeks to work with the loss function :

L = ⟨∆adv
i ,∆ILAP

i ⟩ where ∆ILAP
i = zILAP

i − zorigi and zILAP
i = N1,i(x

ILAP
i )

The L can then be plugged into either FGSM or PGD. Put simply, this loss encourages latent space
movement directionally similar to FGSM/PGD. L increases the inner product with ∆adv

i and later
iterations use it over the true loss. This alternate adversarial example is highly transferable - e.g.,
adversarial examples from ResNet18 have higher success rates vs different models such as DenseNet,
when created by an ILAP process than directly using FGSM. It can even beat FGSM on the source
model itself. [Huang et al., 2019] ILAP demonstrates that latent representations provide ammunition
for adversarial attacks, but requires an initial adversarial example xadv created with full model access
and label. To remedy this, we craft an attack needing neither. We show that if the correct layers are
attacked with an angular version of the same loss, the initial adversarial example is unnecessary.

3



2 Geometry of Batch Normalization

Given a minibatch of inputs xi of dimensions n with mean µij and standard deviation σij at index j,
consider batch normalization [Ioffe and Szegedy, 2015] or just BN as:

[BN(xi)]j =
xij − µij

σij
(2)

Such normalization (with affine shift) has become commonplace in neural networks. During training,
the empirical average of the minibatch is used and during testing, computed averages (mean/standard
deviation) are used. By batchnorm, we mean only the batchnorm layer without an affine shift. Layer
normalization [Ba et al., 2016] is an alternate form of normalization that normalizes over all neurons
in a hidden layer. For space reasons, we discuss batch normalization in the main text and layer
normalization in Appendix A. Empirically, our attack succeeds on layer norm and architectures using
it, such as transformers [Vaswani et al., 2017] and vision transformers [Dosovitskiy et al., 2020].

Converged regime: Suppose in training, the sample means/standard deviations in a pre-BN layer
converge to sample statistics. Post-batchnorm, representation vector Z satisfies, at every index j:

E(Zj) = 0, E
(
Z2
j

)
= 1 (3)

i.e., for a layer of dimensionality d and denoting the entire latent vector as Z, E(Z) = 0, E(∥Z∥2) =
d by linearity of expectation. The above convergence is with respect to the training set, but carries
over to the test set (approximately) under the I.I.D assumption when learning takes place. Suppose
∥Z∥2 was concentrated about its expected value - i.e., nearly all ∥Z∥ values were ≈

√
d. We first

discuss the implications of such a scenario and what attacks they allow. We assume that in this latent
space, the inner product determines ‘similarity’. Two latents Za, Zb from different instances Xa, Xb

will be closer as ⟨Za, Zb⟩ rise. Under this metric , the most dissimilar point to Za is parallel to −Za.
We will formulate our attack assuming that ∥Z∥=

√
d i.e. a hyperspherical latent space. After we

have formulated our attack, we consider scenarios of such spaces and concentrations of norm.

2.1 Angular Attack Based on Converged Batchnorm

Let N1,i be the network upto layer i with dimensionality d. If layer i is a batch norm layer (without
affine shift), z = N1,i(x) lies (with converged batchnorm and ∥Z∥’s norm concentrated) approxi-
mately on a shell of radius

√
d. The natural distance metric between two z, z′ is angular distance:

⟨z, z′⟩
∥z∥∥z′∥

where ⟨z, z′⟩ is at a local maximum on the hypersphere ∥z∥ = constant when z = z′ and no gradient
exists. We need another gradient initially, and propose the following attack algorithm. Given a
real example x0 with latent z0 = N1,i(x

0), zt = N1,i(x
t) we consider the loss Lt

init = −∥zt∥=
−∥N1,i(x

t)∥ for the first tinit iterations. We then iteratively generate xt:

xt = xt−1 + α× sign
(
∇Lt−1

init

)
; 1 ≤ t ≤ tinit

After tinit iterations, we modify the angular loss to Lradial, using the deviations obtained so far. Lradial
is angularly defined, denoting zti the latent at depth i and iteration t :

Lradial = −
⟨z0i , zti⟩
∥z0i ∥∥zti∥

; z0i = N1,i(x
0), zti = N1,i(x

t)

We then iteratively update as follows (graphically depicted in Figure 1):

xt = xt−1 + α× sign
(
∇Lt−1

radial

)
; tinit < t ≤ tradial

The figure geometrically depicts how intermediately moving from a point to another in latent space
lowers the radial norm (Ai, left). Directly lowering the radial norm via a path from A0 to A1 (right)
can create an initial deviation. But extending this to C as in the figure ends up with a lower angular
deviation than maximizing angular deviation directly and ending up at Aadv . Methods which directly
increase the L2 deviation starting from an initial method would result in points such as C.

4



x

y

z

A
C Ai

Figure 1: L: A,C are latent image representations. Ai lies on chord AC. Targeted latent space
movements lower norm. R: Initial radial loss towards O forms A1 with implied movement towards
C. A2, . . . , Aadv follow. Implied movement is towards C ′ - further than C from A in θ (angles).

Both losses depend on the layer i. With access till layer D, multiple candidate i values exist. For
simplicity, we only use D,D−1 and replace sign(∇Linit) with 1

2 [sign(∇Linit,D−1)+sign(∇Linit,D)]
where the subscript Linit,D−1 denotes setting i as D − 1, and similarly we set i = D and average the
sign for sign(∇Lradial). This averaged term becomes Ψ in our pseudocode (Algorithm 1). We clamp
xk iterates to satisfy ∥xk − x0∥≤ ϵ. Our attack resembles ILAP, with the initial direction ∆adv

i from
an unsupervised radial loss without labels. We then maximize the angular deviation from the original
latent, and do not “follow the leader” on the original angular deviation after tinit. The intuition is as
follows. The surrogate loss−||zt|| moves along a chord in the hypersphere’s interior from z0 towards
−z0, the most dissimilar point, while latent representations are on the surface . We use the last 2
layers for simplicity - stronger attacks might exist using all layers. Concentration of norm forms the
hypersphere, and the 2-step process is key. 1-step methods, e.g. single-stage works discussed under
related works, use methods such as random initialization and angular minimization, but perform
worse (see Appendix P). The concentration is in L2, but the adversarial example is in the L∞ metric.

Algorithm 1 Angular attack algorithm

Input: Neural Network N ; access of model parameters of N till layer D, N1,i: sub-network of N
upto layer i , a starting real sample x0, perturbation α
Result:Adversarial example xtradial

tinit ← Num iterations with loss Linit ; tradial ← Num iterations with loss Lradial
k ← 1, n← tinit + 1
while k ≤ tinit do
Lk−1

init,i = −∥N1,i(x
k−1)∥ ; Ψ = sign

(
∇Lk−1

init,D−1

)
+ sign

(
∇Lk−1

init,D

)
xk ← xk−1 + α

2 ×Ψ; xk ← clamp(xk, ϵ) ; k ← k + 1
end while
while n ≤ tradial do

Ln−1
radial,i = −

⟨N1,i(x
0), N1,i(x

n−1)⟩
∥N1,i(x0)∥∥N1,i(xn−1)∥

; Ψ = sign
(
∇Ln−1

radial,D−1

)
+ sign

(
∇Ln−1

radial,D

)
xn ← xn−1 + α

2 ×Ψ; xn ← clamp(xn, ϵ) ; n← n+ 1
end while
Return: xtradial

Moving from z0 along −∇∥zt∥ does not move linearly towards the origin when the optimization
is imperfect - e.g. using the gradient sign. We manipulate xi, not zi - it may not be ∃ x′ such that
N1,i(x

′) = γz0, ∀γ, 0 ≤ γ < 1 (the ray joining origin-z0 may lack points with pre-images in x).
Another issue is α movement direction-wise (ignoring sign averaging) - e.g. let Zi ∈ R2, N1,i(x) = x

- the representation as identity map. Let x = (1, ϵ) lie on the hypersphere of radius
√
1 + ϵ2. The sign

of ∇Linit is (−,−) and x0 = (1 − α, ϵ − α) - not necessarily collinear with (0, 0) − (1, ϵ). Batch

5



normalization leaks mean/variance to adversaries. Suppose we had a perfect network N (could find x
mapping to any z, i.e., was onto), and were assured the latent space was a zero mean hypersphere
and we get adversarial instances if we move the latent from z to −z. This would be insufficient if all
latents were translated by some vector c, i.e., the mean of the hypersphere was nonzero. To find the
point opposite z on the new hypersphere (c− (z − c)), we need c. Batch norm gives us this c. This
weakness outweighs knowing z′ arising from x′ of a different label, as we show in the results.

2.2 When Does the Norm Concentrate ?

We assumed that after a batch normalization step, ∥Z∥ concentrates. Consider sufficiency conditions.
Let Zij be the j-th entry of the i-th latent Zi formed from Xi with expectation 0, variance 1 (batch
norm). Consider independent instances Xi and assume no instances indexed by i were used for
training to impact model parameters, which affects the other latents and makes them dependent - i.e.
consider test/validation sets. Then, Zij , Zi′j′ are independent if i ̸= i′,∀j′ = j. Now :

∥Zi∥2=
d∑

j=1

Z2
ij

This sums d random variables (assuming Zi has dimension d) and depends on independence structures
and the marginal distributions of each variable. Under certain cases, independence of Zij , Zij′ can
occur. Suppose Zij was constrained in {−1, 1}, and had to encode 2D Xi’s. Then, Zij , Zij′ are
independent under the optimal encoding, assigning for each Xi a unique D-length code with entries
∈ {−1, 1}. When Zij , Zij′ are independent, ∥Zi∥2=

∑
j Z

2
ij will concentrate around its expected

value of d under mild conditions e.g. bounded 4-th moments of Zij (Chebyshev’s inequality), but
concentration tails may not be sub-Gaussian. By tails of concentrations, we mean bounds of form:

P
(∣∣∥Z2

i ∥−E(∥Z2
i ∥)

∣∣ ≥ δ
)
≤ f(δ)

For example, sub-Gaussian concentration implies f(δ) = O(exp(−δ2)). Suppose each Zij is
marginally distributed as a (sub)-Gaussian. With independence, Chernoff’s inequality leads to a norm
concentration for ∥Z∥ with stronger sub-Gaussian tails over Chebyshev’s (tails of 1

δ2 ). Inequalities
and implied tails can be consulted from e.g. [Vershynin, 2018]. We consider some previous results.
For deep linear models of width(dimensionality) d, we have [Daneshmand et al., 2020, 2021]:

E[DKL(Z||N (0, Id))] = O

(
(1− α)i +

b

α
√
d

)
Z is the distribution after N1,i i.e., i layers, α is a constant, b is the training batch size. The
LHS (termed the orthogonality gap) indicates that the distribution of the latents convergences to
the isotropic Gaussian using KL divergence, which is a stronger condition leading to the latent
norms being clustered around

√
d. Though derived for linear networks, the original paper offers

evidence that the conjecture holds for general multi-layer networks. This indicates deeper
layers i.e., increasing i will have the largest effect on our assumptions holding, as this exponentially
drops the KL divergence to a Gaussian (and concentrates the norm), with a secondary benefit from
increasing width (d). Beyond linear networks, general networks with depth and width reduce to
Gaussian Processes [Yang et al., 2019, Yang and Schoenholz, 2018, Yang and Hu, 2020, Yang, 2019,
Neal, 2012]. These results usually apply to marginal distributions and not independence structures.
Empirically, we find dependence between different variables (measured as correlation) falls as the
network latent grows deeper, which aligns with theory. Dimensionality falls as the network deepens -
recall the toy example of encoding 2D instances with D binary variables which forces independence.
ILAP’s empirical ablation studies found the optimal i to create the latents for the attack occurred in
the range 0.6 to 0.8 (network depth normalized to 1). In sum, we expect our optimal layers for the
latent to lie near the end of the network. Our methods work without assumptions in hyperspherical
representation spaces [Wang and Isola, 2020, Schroff et al., 2015, Mettes et al., 2019]. Analysis and
empirical findings on the concentration and tails is included in Appendix R.

3 Results

We carry out an extensive set of experiments on Imagenet [Russakovsky et al., 2015], utilizing several
ResNet [He et al., 2016] models - ResNet-{18, 34, 50, 101, 152} and EfficientNet models [Tan and

6



0.00 0.03 0.06 0.10
Epsilon values

0

10

20

30

40

50

60

70

80

90

Ac
cu
ra
cy

Resnet18 FGSM
Resnet34 FGSM
Resnet50 FGSM
Resnet101 FGSM
Resnet152 FGSM
Resnet18 Angular
Resnet34 Angular
Resnet50 Angular
Resnet101 Angular
Resnet152 Angular

Original Resnet

0.00 0.03 0.06 0.10
Epsilon values

10

20

30

40

50

60

70

80

90

Ac
cu
ra
cy

Fixup Resnet18 FGSM
Fixup Resnet34 FGSM
Fixup Resnet50 FGSM
Fixup Resnet101 FGSM
Fixup Resnet152 FGSM
Fixup Resnet18 Angular
Fixup Resnet34 Angular
Fixup Resnet50 Angular
Fixup Resnet101 Angular
Fixup Resnet152 Angular

Fixup Resnet

0.00 0.03 0.06 0.10
Epsilon values

0

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

B1 EffNet FGSM
B2 EffNet FGSM
B3 EffNet FGSM
B4 EffNet FGSM
B5 EffNet FGSM
B1 EffNet Angular
B2 EffNet Angular
B3 EffNet Angular
B4 EffNet Angular
B5 EffNet Angular

EfficientNet

Figure 2: Accuracies (%) of networks under FGSM (blue) and our Angular attack (red). (Color
intensity proportional to network size). Accuracies under angular attack are lower without Fixup.

Le, 2019] B-1 to B-5. We chose these models because they have a common structure at construction.
Except a few initial layers, they are constructed by repeatedly stacking the same blocks (“Basic”
or “Bottleneck” blocks for ResNets, and Mobile Convolutional blocks [Howard et al., 2017] for
EfficientNets). Every block possesses at least one batch norm layer, allowing the extraction of the
appropriate latent. All models were ran on Imagenet with a standard normalization pre-processing
step. Results of all attacks on all models, a sanity check with a fixed norm model (explicitly
hyperspherical, i.e. always concentrated in norm), improving supervised (label present) cases on top
of FGSM/PGD, comparisons to single-stage attacks previously proposed, interactions with defence,
ablations, visualizations, statistical testing, confidence intervals and other transfer learning results
and comparisons appear in the Appendices. As the alternative to batchnormed models, we choose
Fixup [Zhang et al., 2019] - a different way to initialize the models. Core results are summarized in
Figure 2. On the batchnorm-free Fixup Resnet, the FGSM attack greatly outperforms our angular
attack. On the other two architectures, this is not the case. FGSM’s performance and clean accuracy
vary far less than the success of the angular attack. That implies overall model quality and robustness
to common attacks remains the same, and vulnerability to the angular attack specifically is what
varies. We train Fixup resnets on imagenet as alternatives to the batchnormed models for Resnet
only, as methods in Fixup do not generalize to efficientnets. Details of these training steps are in the
Appendix B, and we also attach our training and inference codebases. We obtained the models from
publicly available repositories for PyTorch [Paszke et al., 2019], namely torchvision and EfficientNets-
PyTorch, and did not change the original weights. For the choice of ϵ for the adversarial attack, we
chose 0.03, 0.06, 0.1 and carried out all attacks using an α = 0.01 over 40 iterations.

Vision Transformers and LayerNorm. Recently, Layer normalization [Ba et al., 2016] has emerged
as an alternate mode of normalization to batch norm. It finds prominent usage in the transformer
architecture [Vaswani et al., 2017] and for images, in the ViT (Vision Transformer) models. We
used our attacks on the case of ViT models [Dosovitskiy et al., 2020] (B/L)-(16/32). In all cases, the
attacks were successful as with Resnets/batchnorm. This indicates our attack can succeed even when
instead of batch normalization, layer normalization is utilized instead. We discuss this in Appendix
A, but make batch norm the focus as it has more pre-existing theoretical analysis [Daneshmand et al.,
2020].

We examine the results on all Resnets in Tables 1,2,3 with Table 8 denoting clean accuracies. Angular
attacks - especially in terms of their top 5 accuracy, at higher ϵ and on deeper networks - dominate
FGSM attacks, while losing to PGD attacks. No random perturbation performs well. Confidence
intervals rule out a fluke (statistical tests Appendix C). Raw numbers for Fixup Resnets (in Appendix
D) exhibit a different pattern - the angular attack performs as well as a random method, while FGSM,
and PGD perform as normal. EfficientNets (in Appendix E) follow ResNets in their result. In Table 4,
we exhibit the max over single-stage benchmarks among [Zhou et al., 2018, Inkawhich et al., 2019,

7

https://github.com/lukemelas/EfficientNet-PyTorch
https://github.com/lukemelas/EfficientNet-PyTorch


Table 1: Comparison of FGSM and Random noise, Top-1 accuracy, Top-5 in brackets.

Net Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

FGSM Random FGSM Random FGSM Random

Resnet-18 1.95 (21.93) 69.40 (88.94) 1.16 (15.39) 68.58 (88.51) 1.22 (13.74) 67.11 (87.46)
Resnet-34 4.36 (30.54) 73.06 (91.31) 2.95 (23.65) 72.43 (90.96) 3.13 (22.08) 71.23 (90.26)
Resnet-50 8.18 (39.04) 75.79 (92.07) 6.62 (33.33) 74.89 (92.32) 7.10 (32.58) 73.57 (91.58)
Resnet-101 9.93 (43.27) 77.24 (93.52) 8.32 (37.88) 76.79 (93.25) 9.10 (37.61) 75.57 (92.75)
Resnet-152 10.23 (44.65) 77.21 (93.78) 8.76 (39.23) 76.76 (93.48) 9.82 (38.25) 76.28 (92.98)

Table 2: Comparing Angular attacks, top-1/5 accuracy, with confidence intervals on different Resnets.

Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

18 23.416 ±1.22 40.034 ±2.12 2.422 ±0.52 5.980 ±1.12 0.454 ±0.11 1.602 ±0.39
34 7.164 ±1.28 14.320 ±2.48 0.592 ±0.64 1.916 ±0.32 0.216 ±0.04 0.814 ±0.27
50 13.968 ±2.82 24.796 ±5.22 1.418 ±0.22 3.680 ±0.83 0.432 ±0.12 1.478 ±0.26

101 7.012 ±0.62 13.886 ±1.23 0.874 ±0.126 2.606 ±0.78 0.390 ±0.122 1.346 ±0.28
152 5.030 ±0.4 10.438 ±1.02 0.534 ±0.12 1.572 ±0.265 0.248 ±0.05 0.808 ±0.21

Table 3: Comparing PGD attacks, top-1/5 accuracy, with confidence intervals on Resnets.

Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

18 0.006 ±0.001 3.374 ±0.04 0.0 ±0.0 0.484 ±0.04 0.0 ±0.0 0.17 ±0.02
34 0.006 ±0.001 4.386 ±0.03 0.006 ±0.001 0.666 ±0.04 0.004 ±0.001 0.288 ±0.03
50 0.028 ±0.007 8.076 ±1.23 0.006 ±0.002 2.914 ±0.4 0.0 ±0.0 1.956 ±0.3

101 0.032 ±0.07 9.648 ±1.76 0.008 ±0.002 3.902 ±0.62 0.006 ±0.002 2.702 ±0.54
152 0.042 ±0.08 9.864 ±1.83 0.014 ±0.003 4.16 ±0.73 0.015 ±0.004 3.253 ±0.64

Table 4: Comparing single-stage attacks, top-1/5 accuracy, with confidence intervals on Resnets.

Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

18 30.45 48.34 6.98 16.87 3.89 10.22
34 16.78 35.89 1.45 8.32 1.68 4.54
50 22.68 39.10 4.62 10.45 4.71 6.58
101 15.65 34.67 5.82 11.28 5.28 8.95
152 8.29 18.53 1.78 5.67 0.95 3.22

Table 5: Top-1 (& Top-5) accuracy for
Vision Transformers: ϵ = 0.1

Model FGSM PGD Angular
ViT-B-16 35.1 (60.6) 5.7 (18.5) 16.7 (28.5)
ViT-B-32 34.8 (59.4) 5.4 (21.1) 17.8 (31.8)
ViT-L-16 36.0 (65.6) 8.2 (17.7) 14.5 (33.8)
ViT-L-32 34.1 (61.7) 5.8 (22.9) 13.9 (38.5)

Table 6: Top-1/5 accuracy for ResNets,
angular attack not on BN layer, ϵ = 0.03

ResNet Top-1 Top-5
18 27.3 46.2
34 11.5 19.2
50 17.3 28.5
101 11.32 19.5
152 8.2 11.9

Table 7: Resnet-34 ablations. Last 2 layers of the net granted access to are used for angular attack.

Access till ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

8 54.46 ±1.78 77.35 ±0.68 18.44 ±0.45 32.68 ±0.68 4.95 ±0.86 11.68 ±1.26
9 35.84 ±0.78 59.32 ±0.82 6.32 ±0.56 13.84 ±0.56 1.39 ±0.37 13.84 ±1.78

10 26.22 ±1.56 41.5 ±1.45 1.58 ±0.38 3.88 ±1.02 0.60 ±0.12 1.52 ±0.37
11 13.20 ±0.26 22.68 ±0.86 0.94 ±0.31 2.34 ±0.22 0.34 ±0.06 0.92 ±0.17
12 6.40 ±0.72 12.05 ±1.89 0.45 ±0.12 2.27 ±0.56 0.20 ±0.08 0.65 ±0.22

8



Table 8: Clean accuracies for Resnets
ResNet type 18 34 50 101 152
Acc@1 69.75 73.31 76.13 77.37 78.31
Acc@5 89.07 91.42 92.86 93.54 94.04

Table 9: Resnet-18 absolute correlations
Block group 1 2 3
Absolute mean correlation 0.41 0.32 0.19

Table 10: Angular transfer attack results and targeted benchmarks
a) Angular results on CIFAR-100, Resnet-50 b) Targeted benchmark on Resnets

Method ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PGD 0.16 0.20 0.14 0.14 0.14 0.14
Random 64.42 88.18 53.1 79.76 38.63 66.23
FGSM 29.28 59.02 25.86 51.95 15.01 35.14

Angular 2.32 10.79 2.16 9.72 1.88 9.49

Net Type ϵ = 0.03 ϵ = 0.06

Top 1 Top 5 Top 1 Top 5

Resnet-18 25.16 42.58 1.46 5.85
Resnet-34 12.2 21.8 1.9 2.86
Resnet-50 13.55 30.97 0.65 5.16
Resnet-101 5.85 13.66 2.86 6.67
Resnet-152 9.68 16.77 1.29 3.87

Ganeshan et al., 2019, Inkawhich et al., 2020b, Zhang et al., 2022a, Wang et al., 2021, Inkawhich
et al., 2020a]. The performance is worse than our method. We also showcase results of ViT models
on ϵ = 0.1 for imagenet in Table 5. (Results for other values of ϵ are in Appendix F). Finally in
Table 6, we attack Resnets with the angular attack but move the layer being attacked to the layer
before the BN layer. This noticeably weakens the attack, suggesting a relationship between the two.

We examine the drop in accuracy as a function of the access to various blocks. We run our attacks
consistently accessing the 3/4-th layer of a net, i.e., for a Resnet-50 of blocks [3, 4, 6, 3] - total 16 -
we use only the first 12 blocks and sum our angular losses over block 11, 12. On Resnet-34 access
to deeper blocks strongly strengthens the attack in Table 7. This agrees with the theory of batch
normalization discussed previously [Daneshmand et al., 2021] and with the empirical findings of
ILAP [Huang et al., 2019], which found that the most optimal layers to perturb lay between 50%
and 80% of the network’s length. Further depth ablations are in Appendix G. Concentration of
norm relies on convergence of batchnorm and independence. Assuming the former, we can check
independence by examining the absolute, off-diagonal correlations in the correlation matrices of the
latent representations. We note a decorrelation effect with depth, which matches the success of our
attacks. We compare the fall in absolute correlation among the latent dimensions in Table 9, across
three “block groups” of Resnet-18 which has 8 blocks organized as [2, 2, 2, 2]. Correlation - a proxy
for independence - decreases over the last three block groups.

Transfer learning. For transfer learning, we add a linear classifier that can access the last extracted
latent layer of the resnet, and we unfreeze this classifier and the last group of blocks. Every other
layer is frozen. The setup is fine-tuned, downstream, on CIFAR-10 and CIFAR-100 [Krizhevsky et al.,
2009]. We show results on CIFAR-100 with Resnet-50 in Table 10. Although Table 10 indicates that
targeted attacks perform worse than the original angular attacks, it does not mean that we cannot use
the label information. It only means that when we randomly pick an instance of a different label,
the angular attack often does better. But, the combination of label and angular attack can do better
than either attack, so having an instance of a different label can still be very helpful. We provide
some cases where our loss is provided in ensemble with the targeted loss and these perform better
than either (see Appendix H). Results for CIFAR-10 / other resnets/datasets are in Appendix J. Our
method outperforms all but PGD.

Ablation against other cases. The radial loss is an implicit movement towards the opposite point on
a hypersphere. This assumes that the hypersphere exists at all. If we have a different latent Zj from a
point Xj of a different label from Xi, we check if our attack might be more effective using an initial
loss of the form −∥Zi − Zj∥. Increasing this loss would be lowering the distance between Zi, Zj i.e.
moving towards the other point in latent space. Yet, this targeted attack - shown in Table 10 - is
actually inferior to our attack, which lacks the access.

4 Conclusion

We have shown a powerful, label-free attack which only utilizes a portion of all the layers available
for a network to construct adversarial examples that fool the entire network. It succeeds at this
without knowing the label or having gradient access to the full model, and these adversarial methods

9



generalize to the case where the model was fine-tuned afterwards. These results have relevance
at the intersection of the theory and practice of adversarial robustness and the growing study of
batch normalization and its weaknesses and drawbacks. We provide support to the notion that
batch normalization may open up unseen avenues of perturbations that unexpectedly impact model
robustness, a viewpoint supported by previous literature [Galloway et al., 2019, Benz et al., 2020,
Wang et al., 2022]. We also extend our results to LayerNorm, which is increasingly relevant with the
advent of transformer architectures [Dosovitskiy et al., 2020].

Acknowledgments and Disclosure of Funding

Resources used in this work were provided by the Province of Ontario, the Government of
Canada through CIFAR, companies sponsoring the Vector Institute https://vectorinstitute.
ai/partners/ and the Natural Sciences and Engineering Council of Canada.

References
Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep learning in computer vision:

A survey. IEEE Access, 6:14410–14430, 2018.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420, 2018.

Kazuoki Azuma. Weighted sums of certain dependent random variables. Tohoku Mathematical
Journal, Second Series, 19(3):357–367, 1967.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Philipp Benz, Chaoning Zhang, and In So Kweon. Batch normalization increases adversarial
vulnerability: Disentangling usefulness and robustness of model features. 2020.

Sergei Bernstein. On a modification of chebyshev’s inequality and of the error formula of laplace.
Ann. Sci. Inst. Sav. Ukraine, Sect. Math, 1(4):38–49, 1924.

Dean A Bodenham and Niall M Adams. A comparison of efficient approximations for a weighted
sum of chi-squared random variables. Statistics and Computing, 26(4):917–928, 2016.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE symposium on security and privacy (SP), pages 39–57. IEEE, 2017.

Antonia Castaño-Martı́nez and Fernando López-Blázquez. Distribution of a sum of weighted
noncentral chi-square variables. Test, 14(2):397–415, 2005.

Antonia Creswell, Anil A Bharath, and Biswa Sengupta. Latentpoison-adversarial attacks on the
latent space. arXiv preprint arXiv:1711.02879, 2017.

Hadi Daneshmand, Jonas Kohler, Francis Bach, Thomas Hofmann, and Aurelien Lucchi. Batch
normalization provably avoids ranks collapse for randomly initialised deep networks. Advances in
Neural Information Processing Systems, 33:18387–18398, 2020.

Hadi Daneshmand, Amir Joudaki, and Francis Bach. Batch normalization orthogonalizes repre-
sentations in deep random networks. Advances in Neural Information Processing Systems, 34:
4896–4906, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

10

https://vectorinstitute.ai/partners/
https://vectorinstitute.ai/partners/


Angus Galloway, Anna Golubeva, Thomas Tanay, Medhat Moussa, and Graham W Taylor. Batch
normalization is a cause of adversarial vulnerability. arXiv preprint arXiv:1905.02161, 2019.

Aditya Ganeshan, Vivek BS, and R Venkatesh Babu. Fda: Feature disruptive attack. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 8069–8079, 2019.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Torben Hagerup and Christine Rüb. A guided tour of chernoff bounds. Information processing letters,
33(6):305–308, 1990.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Dan Hendrycks and Kevin Gimpel. Early methods for detecting adversarial images. arXiv preprint
arXiv:1608.00530, 2016.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. In The collected
works of Wassily Hoeffding, pages 409–426. Springer, 1994.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Qian Huang, Isay Katsman, Horace He, Zeqi Gu, Serge Belongie, and Ser-Nam Lim. Enhancing
adversarial example transferability with an intermediate level attack. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 4733–4742, 2019.

Nathan Inkawhich, Wei Wen, Hai Helen Li, and Yiran Chen. Feature space perturbations yield more
transferable adversarial examples. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7066–7074, 2019.

Nathan Inkawhich, Kevin Liang, Binghui Wang, Matthew Inkawhich, Lawrence Carin, and Yiran
Chen. Perturbing across the feature hierarchy to improve standard and strict blackbox attack
transferability. Advances in Neural Information Processing Systems, 33:20791–20801, 2020a.

Nathan Inkawhich, Kevin J Liang, Lawrence Carin, and Yiran Chen. Transferable perturbations of
deep feature distributions. arXiv preprint arXiv:2004.12519, 2020b.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Jernej Kos, Ian Fischer, and Dawn Song. Adversarial examples for generative models. In 2018 IEEE
security and privacy workshops (SPW), pages 36–42. IEEE, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model selection.
Annals of Statistics, pages 1302–1338, 2000.

Qizhang Li, Yiwen Guo, and Hao Chen. Practical no-box adversarial attacks against dnns. Advances
in Neural Information Processing Systems, 33:12849–12860, 2020a.

Qizhang Li, Yiwen Guo, and Hao Chen. Yet another intermediate-level attack. In European
Conference on Computer Vision, pages 241–257. Springer, 2020b.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

A Markov. On certain applications of algebraic continued fractions. Unpublished Ph. D. thesis, St
Petersburg, 1884.

11



Colin McDiarmid et al. On the method of bounded differences. Surveys in combinatorics, 141(1):
148–188, 1989.

Pascal Mettes, Elise van der Pol, and Cees Snoek. Hyperspherical prototype networks. Advances in
neural information processing systems, 32, 2019.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business
Media, 2012.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652–24663, 2020.

Geon Yeong Park and Sang Wan Lee. Reliably fast adversarial training via latent adversarial
perturbation. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 7758–7767, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115(3):211–252, 2015.

Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck, and
Greg Yang. Provably robust deep learning via adversarially trained smoothed classifiers. Advances
in Neural Information Processing Systems, 32, 2019.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? Advances in neural information processing systems, 31, 2018.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 815–823, 2015.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer,
Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! Advances in
Neural Information Processing Systems, 32, 2019.

Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang, and Russell Webb.
Learning from simulated and unsupervised images through adversarial training. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 2107–2116, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International conference on machine learning, pages 6105–6114. PMLR, 2019.

Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to
adversarial example defenses. Advances in Neural Information Processing Systems, 33:1633–1645,
2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Roman Vershynin. High-dimensional probability, volume 47 of cambridge series in statistical and
probabilistic mathematics. Cambridge University Press, Cambridge, 7:14–22, 2018.

12



Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Haotao Wang, Aston Zhang, Shuai Zheng, Xingjian Shi, Mu Li, and Zhangyang Wang. Removing
batch normalization boosts adversarial training. In International Conference on Machine Learning,
pages 23433–23445. PMLR, 2022.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. arXiv preprint arXiv:2005.10242, 2020.

Zhibo Wang, Hengchang Guo, Zhifei Zhang, Wenxin Liu, Zhan Qin, and Kui Ren. Feature importance-
aware transferable adversarial attacks. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 7639–7648, 2021.

Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial training.
arXiv preprint arXiv:2001.03994, 2020.

Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,
gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760,
2019.

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

Greg Yang and Sam S Schoenholz. Deep mean field theory: Layerwise variance and width variation
as methods to control gradient explosion. 2018.

Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S Schoenholz. A
mean field theory of batch normalization. arXiv preprint arXiv:1902.08129, 2019.

Yunrui Yu, Xitong Gao, and Cheng-Zhong Xu. Lafeat: piercing through adversarial defenses with
latent features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5735–5745, 2021.

Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial examples: Attacks and defenses for
deep learning. IEEE transactions on neural networks and learning systems, 30(9):2805–2824,
2019.

Anru R Zhang and Yuchen Zhou. On the non-asymptotic and sharp lower tail bounds of random
variables. Stat, 9(1):e314, 2020.

Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning without
normalization. arXiv preprint arXiv:1901.09321, 2019.

Jianping Zhang, Weibin Wu, Jen-tse Huang, Yizhan Huang, Wenxuan Wang, Yuxin Su, and Michael R
Lyu. Improving adversarial transferability via neuron attribution-based attacks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14993–15002,
2022a.

Qilong Zhang, Chaoning Zhang, Chaoqun Li, Jingkuan Song, Lianli Gao, and Heng Tao Shen.
Practical no-box adversarial attacks with training-free hybrid image transformation. arXiv preprint
arXiv:2203.04607, 2022b.

Wen Zhou, Xin Hou, Yongjun Chen, Mengyun Tang, Xiangqi Huang, Xiang Gan, and Yong Yang.
Transferable adversarial perturbations. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 452–467, 2018.

13



A Layer normalization

Layer normalization [Ba et al., 2016] is similar to batch normalization. However, unlike batch norm,
Layer norm computes the mean and standard deviation over all activations in a layer. This further
means it can be used in the online setting or in the test setting without caching statistics, as the
statistics are calculated in real time.

Now, it is clear that if the input is of the form (N,H) where N denotes the minibatch size and H the
hidden dimension, layer normalization ensures that each instance i satisfies, for a layer of dimension
d over all activations Hi,j : ∑

1≤j≤d

Hi,j = 0,
∑

1≤j≤d

H2
i,j = d

i.e. a hyperspherical space. This means our assumptions hold exactly. However, this assumes the layer
normalization occurs over the entire hidden dimension. This may not necessarily be the case. For
example, if the dimensions are (N,C,H,W ) it is possible that normalization only occurs over one of
the dimensions of C,H,W . However, in this case, we can still recover an appropriate hyperspherical
latent by summing over the remaining dimensions.

B Training Details

Recall that we use the losses of the following form (section 2.1 of the main text) :

Lradial = −
⟨z0i , zti⟩
∥z0i ∥∥zti∥

; z0i = N1,i(x
0), zti = N1,i(x

t)

Lt
init = −∥zt∥= −∥N1,i(x

t)∥

We take the last two layers upto which we have access as i, i′ to sum the signs of the angular loss. We
cut the α by 2 to adjust for the sum of the signs, resulting in the overall averaging of signs referenced
in the text. Also, before switching over to the angular loss, we can keep using Linit for more than the
initial iterations. We utilize 20 such iterations before switching, at α′ = α/40. Hence, in total, our
angular PGD attack consists of 20 iterations of finding an unsupervised radial direction of moving
to the antipodal point in latent space, and 20 iterations of maximizing the angular deviation given the
initial movement.

Projection back to the valid PyTorch Tensor space for the adversarial instance (adjusting for nor-
malization layers) proceeds as per normal PGD methods. The ϵ values here are calculated in the
normalized Tensor space i.e. after normalizing the [0, 1] tensor Imagenet image with parameters
of mean as [0.485, 0.456, 0.406] and standard deviation as [0.229, 0.224, 0.225] channelwise. The
projection is such that it respects both the original tensor’s range and the ϵ in the normalized space.

Normalization settings for Imagenet for Resnet were kept as-is from the pytorch examples 2 and also
as per the Fixup repository3 as well as for Efficientnet4. For training, we utilize SGD. Please consult
the attached codebase for all code-based details. Everything was run on a single Tesla V100 GPU,
on Torch 1.6, torchvision 0.7.0. All confidence intervals appearing in this paper were generated by
bootstrapping and asymmetric intervals were written in ± of the max one sided deviation. We use the
Wilcoxon sign-rank test for determination of statistical significance, with p < 10−3 as the cutoff, we
refer to anything more significant than this p-value as passing the test here on. Cosine learning rate is
used to train the Fixup resnet as per [Zhang et al., 2019].

2https://github.com/pytorch/examples/blob/main/imagenet/main.py
3https://github.com/hongyi-zhang/Fixup
4https://github.com/lukemelas/EfficientNet-PyTorch/tree/master/examples/imagenet

14



C Original ResNets

We recall that in this class fall 5 models, namely Resnet-18,34,50,101, and 152. In terms of block
count, they respectively possess 8, 16, 16, 33, 50 layers. All radial attacks are performed with the last
2 layers upto which we have access. Access is granted upto blocks 6, 12, 12, 25, 38 respectively. So
for example, on Resnet-18 the radial attack uses the loss signal from blocks 5, 6 alone to craft the
example. Every value provided in every table is a percentage accuracy metric.

Table 11: Clean accuracies for ResNets

ResNet type 18 34 50 101 152
Acc@1 69.75 73.31 76.13 77.37 78.31
Acc@5 89.07 91.42 92.86 93.54 94.04

Table 12: Comparison of FGSM and Random noise, Top-1 accuracy.
Net Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

FGSM Random FGSM Random FGSM Random

Resnet-18 1.95 69.40 1.16 68.58 1.22 67.11
Resnet-34 4.36 73.06 2.95 72.43 3.13 71.23
Resnet-50 8.18 75.79 6.62 74.89 7.10 73.57
Resnet-101 9.93 77.24 8.32 76.79 9.10 75.57
Resnet-152 10.23 77.21 8.76 76.76 9.82 76.28

Table 13: Comparison of FGSM and Random noise, Top-5 accuracy.
Net Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

FGSM Random FGSM Random FGSM Random

Resnet-18 21.93 88.94 15.39 88.51 13.74 87.46
Resnet-34 30.54 91.31 23.65 90.96 22.08 90.26
Resnet-50 39.04 92.07 33.33 92.32 32.58 91.58
Resnet-101 43.27 93.52 37.88 93.25 37.61 92.75
Resnet-152 44.65 93.78 39.23 93.48 38.25 92.98

Table 14: Comparison of PGD attacks, top-1 and top-5 accuracy, with confidence intervals on different
Resnet types.

Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

18 0.006 ±0.001 3.374 ±0.04 0.0 ±0.0 0.484 ±0.04 0.0 ±0.0 0.17 ±0.02
34 0.006 ±0.001 4.386 ±0.03 0.006 ±0.001 0.666 ±0.04 0.004 ±0.001 0.288 ±0.03
50 0.028 ±0.007 8.076 ±1.23 0.006 ±0.002 2.914 ±0.4 0.0 ±0.0 1.956 ±0.3

101 0.032 ±0.07 9.648 ±1.76 0.008 ±0.002 3.902 ±0.62 0.006 ±0.002 2.702 ±0.54
152 0.042 ±0.08 9.864 ±1.83 0.014 ±0.003 4.16 ±0.73 0.015 ±0.004 3.253 ±0.64

15



Table 15: Comparison of Angular attacks, top-1 and top-5 accuracy, with confidence intervals on
different Resnet types.

Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

18 23.416 ±1.22 40.034 ±2.12 2.422 ±0.52 5.980 ±1.12 0.454 ±0.11 1.602 ±0.39
34 7.164 ±1.28 14.320 ±2.48 0.592 ±0.64 1.916 ±0.32 0.216 ±0.04 0.814 ±0.27
50 13.968 ±2.82 24.796 ±5.22 1.418 ±0.22 3.680 ±0.83 0.432 ±0.12 1.478 ±0.26

101 7.012 ±0.62 13.886 ±1.23 0.874 ±0.126 2.606 ±0.78 0.390 ±0.122 1.346 ±0.28
152 5.030 ±0.4 10.438 ±1.02 0.534 ±0.12 1.572 ±0.265 0.248 ±0.05 0.808 ±0.21

At higher values of ϵ, angular attack outperforms the FGSM one. The confidence intervals (constructed
by bootstrapping, denoted by ±) mark the 5 and 95 percentile confidence intervals and can be used
to gauge statistical significance. The wilcoxon signed rank test passed for every case where the
point estimate of the angular attack was better than the FGSM one, with the exception of top-1 on
Resnet-101.

16



D Fixup ResNets

Just as with original Resnets, here we have 5 models, namely Resnet-18,34,50,101, and 152. In terms
of block count, they respectively possess 8, 16, 16, 33, 50 layers. All radial attacks are performed
with the last 2 layers upto which we have access. Access is granted upto blocks 6, 12, 12, 25, 38
respectively. So for example, on FixUpResnet-18 the radial attack uses the loss signal from blocks
5, 6 alone to craft the example. Every value provided in every table is a percentage accuracy
metric. In short, everything is performed just as with the original Resnets.

Table 16: Clean accuracies for ResNets

ResNet type 18 34 50 101 152
Acc@1 68.212 70.466 72.938 73.596 73.866
Acc@5 87.910 89.470 90.932 91.273 91.528

Table 17: Comparison of FGSM and Random noise, Top-1 accuracy.
Net Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

FGSM Random FGSM Random FGSM Random

Resnet-18 2.09 68.18 1.25 67.61 1.19 66.28
Resnet-34 3.73 70.79 2.18 70.39 2.08 69.36
Resnet-50 5.34 73.29 3.63 72.80 3.51 71.61
Resnet-101 6.37 74.41 4.17 73.93 4.17 72.76
Resnet-152 6.59 74.68 4.71 74.21 4.60 73.06

Table 18: Comparison of FGSM and Random noise, Top-5 accuracy.
Net Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

FGSM Random FGSM Random FGSM Random

Resnet-18 23.17 87.91 14.23 87.56 11.33 86.75
Resnet-34 29.86 89.52 19.71 89.28 16.05 88.58
Resnet-50 33.67 91.12 23.32 90.83 19.95 90.10
Resnet-101 37.22 91.83 26.18 91.63 22.50 91.00
Resnet-152 37.64 92.09 26.29 91.80 22.70 91.24

Table 19: Comparison of PGD attacks, top-1 and top-5 accuracy, with confidence intervals on different
Resnet types.

Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

18 0.034 ±0.003 4.490 ±0.32 0.014 ±0.003 0.322 ±0.05 0.008 ±0.002 0.058 ±0.013
34 0.106 ±0.02 6.524 ±0.8 0.046 ±0.008 0.608 ±0.108 0.030 ±0.007 0.142 ±0.03
50 0.090 ±0.015 5.592 ±1.26 0.016 ±0.003 0.266 ±0.05 0.006 ±0.002 0.022 ±0.005
101 0.140 ±0.03 6.988 ±1.13 0.018 ±0.005 0.317 ±0.04 0.006 ±0.001 0.048 ±0.004
152 0.124 ±0.08 7.474 ±1.18 0.020 ±0.003 0.340 ±0.06 0.004 ±0.001 0.030 ±0.005

17



Table 20: Comparison of Angular attacks, top-1 and top-5 accuracy, with confidence intervals on
different Resnet types.

Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

18 66.972 ±1.78 87.128 ±0.68 62.856 ±0.78 83.970 ±0.68 54.666 ±1.24 77.336 ±1.27
34 69.968 ±0.84 88.972 ±0.67 67.012 ±1.27 86.780 ±0.84 61.868 ±0.94 83.034 ±0.53
50 72.914 ±0.42 90.434 ±0.62 68.368 ±1.2 87.818 ±0.67 61.664 ±1.2 82.570 ±0.87

101 73.306 ±1.07 91.128 ±0.48 69.424 ±0.47 88.686 ±0.34 62.550 ±0.81 83.318 ±0.56
152 73.626 ±0.72 91.412 ±0.37 70.224 ±0.84 89.078 ±0.64 63.700 ±0.84 84.116 ±0.74

Unlike the original resnets, the angular values do not even come close to the FGSM counterparts.
This strongly suggests that removal of batch norm completely fixes this mode of vulnerability.

18



E EfficientNets

Here we have 5 models, namely EfficientNets B1 to B5. In terms of block count, they respectively
possess 23, 23, 26, 32, 39 layers. All radial attacks are performed with the last 2 layers upto which
we have access. Access is granted upto blocks 17, 17, 19, 24, 31 respectively. So for example, on
B1 the radial attack uses the loss signal from blocks 16, 17 alone to craft the example. Every value
provided in every table is a percentage accuracy metric. In short, everything is performed just as
with the original Resnets.

Table 21: Clean accuracies for EfficientNets

Efficientnet type B1 B2 B3 B4 B5
Clean accuracy (top-1) 78.382 79.808 81.532 83.026 83.778
Clean accuracy (top-5) 94.036 94.732 95.646 96.342 96.710

Table 22: Comparison of FGSM and Random noise, Top-1 accuracy.
Net Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

FGSM Random FGSM Random FGSM Random

B1 21.314 77.863 16.860 77.950 14.220 77.296
B2 26.522 79.604 21.926 79.302 20.218 78.564
B3 30.700 81.430 26.526 81.064 25.164 80.678
B4 39.380 82.842 34.820 82.712 33.274 82.344
B5 42.012 83.744 38.002 83.628 36.764 83.424

Table 23: Comparison of FGSM and Random noise, Top-5 accuracy.
Net Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

FGSM Random FGSM Random FGSM Random

B1 47.767 93.663 39.758 93.681 38.54 93.582
B2 52.634 94.696 45.114 94.532 42.356 94.222
B3 56.612 95.650 50.478 95.484 48.448 95.282
B4 63.678 96.314 58.024 96.226 56.314 96.116
B5 67.620 96.740 62.750 96.708 61.226 96.626

Table 24: Comparison of PGD attacks, top-1 and top-5 accuracy, with confidence intervals.
Net Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

B1 0.430 ±0.082 3.318 ±0.43 0.078 ±0.012 0.386 ±0.05 0.017 ±0.004 0.197 ±0.022
B2 0.618 ±0.102 3.092 ±0.52 0.064 ±0.006 0.340 ±0.07 0.012 ±0.002 0.218 ±0.04
B3 0.698 ±0.108 2.482 ±0.56 0.136 ±0.02 0.484 ±0.07 0.044 ±0.006 0.318 ±0.07
B4 0.590 ±0.08 2.112 ±0.4 0.054 ±0.009 0.470 ±0.08 0.018 ±0.004 0.380 ±0.05
B5 0.812 ±0.12 1.728 ±0.35 0.135 ±0.02 0.260 ±0.04 0.073 ±0.008 0.125 ±0.03

19



Table 25: Comparison of Angular attacks, top-1 and top-5 accuracy, with confidence intervals.
Net Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

B1 11.479 ±1.25 19.501 ±1.86 0.592 ±0.063 1.616 ±0.22 0.156 ±0.024 0.533 ±0.083
B2 13.902 ±1.74 22.421 ±1.54 0.878 ±0.122 2.208 ±0.37 0.153 ±0.024 0.589 ±0.028
B3 9.596 ±0.64 16.476 ±1.12 0.442 ±0.07 1.267 ±0.112 0.130 ±0.002 0.474 ±0.028
B4 12.045 ±1.54 19.192 ±2.05 0.377 ±0.042 1.104 ±0.17 0.091 ±0.008 0.377 ±0.042
B5 16.164 ±2.41 24.350 ±1.54 0.728 ±0.062 1.793 ±0.289 0.104 ±0.014 0.468 ±0.047

With the re-introduction of Batchnorm, the radial attack is again competitive and beats FGSM. We
re-perform the same procedure as for Resnets to determine statistical significance against FGSM. The
wilcoxon signed rank test passed for every case where the point estimate of the angular attack was
better than the FGSM one.

20



F Results on ViT models

These results should be taken in context of our discussions on Layer normalization. Note that all
models are from the PyTorch implementation of ViT [Dosovitskiy et al., 2020].

Table 26: Attack results for ϵ = 0.03. Main values represent top-1 accuracy, and values in brackets
represent top-5 accuracy.

Model FGSM PGD Angular
ViT-B-16 45.5(73.5) 21.8(67.5) 38.2(69.4)
ViT-B-32 42.9(70.2) 24.7(68.6) 36.5(69.3)
ViT-L-16 55.4(84.1) 15.9(63.5) 38.4(70.8)
ViT-L-32 43.6(73.4) 29.7(73.8) 34.8(73.2)

Table 27: Attack results for ϵ = 0.06. Main values represent top-1 accuracy, and values in brackets
represent top-5 accuracy.

Model FGSM PGD Angular
ViT-B-16 40.2(67.2) 13.5(44.3) 26.8(52.3)
ViT-B-32 37.5(64.3) 17.4(40.2) 28.5(50.8)
ViT-L-16 45.3(73.8) 12.5(32.8) 31.7(45.2)
ViT-L-32 38.7(68.4) 15.2(44.2) 22.8(52.8)

Table 28: Attack results for ϵ = 0.1. Main values represent top-1 accuracy, and values in brackets
represent top-5 accuracy.

Model FGSM PGD Angular
ViT-B-16 35.1(60.6) 5.7(18.5) 16.7(28.5)
ViT-B-32 34.8(59.4) 5.4(21.1) 17.8(31.8)
ViT-L-16 36.0(65.6) 8.2(17.7) 14.5(33.8)
ViT-L-32 34.1(61.7) 5.8(22.9) 13.9(38.5)

For context, we show the clean accuracies as follows :

Table 29: Top-1 and Top-5 accuracies on ImageNet-1K for various models.
Model Top-1 Acc. Top-5 Acc.

ViT-B-16 81.072 95.318
ViT-B-32 75.912 92.466
ViT-L-16 79.662 94.638
ViT-L-32 76.972 93.07

21



G Ablations on Resnets-18,34,50

We first check if the independence structure of latents grows more independent with depth by
examining the cross-diagonal average absolute correlation across block groups in Resnet-18. This is
seen to decay with depth.

Table 30: Comparing independence structures on Resnet-18 by comparing absolute value of cross-
diagonal correlations, across block groups.

Block count 1 2 3
Average off-diagonal coefficient (absolute) 0.41 0.32 0.19

Now, we present results that exhibit the variation in accuracies as the layers being attacked grow
further in the network. As a reminder, resnet-18 possesses 8 blocks divided into 4 groups as [2, 2, 2, 2]
while resnets 34 and 50 both possess 16 blocks divided as [3, 4, 6, 3]. We will use 1-based indexing
to denote the layer upto which we have access, and the last 2 layers upto which we have access will
provide the entire signal. Under the Wilcoxon sign rank test, the fall was monotonic, as suggested by
the point estimates.

Table 31: Ablation on Resnet-18. Last 2 layers of the net granted access to are used to craft the attack.
Access till ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

5 47.55 ±2.2 71.09 ±3.2 12.6 ±1.2 27.8 ±2.1 3.38 ±0.4 8.28 ±0.6
6 22.57 ±1.4 39.82 ±1.2 2.12 ±0.3 6.55 ±0.4 0.60 ±0.1 1.81 ±0.3
7 7.84 ±0.83 16.58 ±0.76 0.18 ±0.03 1.44 ±0.16 0.13 ±0.02 0.54 ±0.12

Table 32: Ablation on Resnet-34. Last 2 layers of the net granted access to are used to craft the attack.
Access till ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

8 54.46 ±1.78 77.35 ±0.68 18.44 ±0.45 32.68 ±0.68 4.95 ±0.86 11.68 ±1.26
9 35.84 ±0.78 59.32 ±0.82 6.32 ±0.56 13.84 ±0.56 1.39 ±0.37 13.84 ±1.78

10 26.22 ±1.56 41.5 ±1.45 1.58 ±0.38 3.88 ±1.02 0.60 ±0.12 1.52 ±0.37
11 13.20 ±0.26 22.68 ±0.86 0.94 ±0.31 2.34 ±0.22 0.34 ±0.06 0.92 ±0.17
12 6.40 ±0.72 12.05 ±1.89 0.45 ±0.12 2.27 ±0.56 0.20 ±0.08 0.65 ±0.22

Table 33: Ablation on Resnet-50. Last 2 layers of the net granted access to are used to craft the attack.
Access till ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

9 53.06 ±1.89 72.74 ±2.76 14.48 ±1.74 25.52 ±1.29 2.16 ±0.48 5.84 ±0.62
10 38.10 ±1.44 54.3 ±0.57 6.44 ±0.42 12.24 ±0.82 1.08 ±0.24 2.24 ±0.45
11 24.55 ±1.22 42.78 ±1.04 2.84 ±0.32 8.44 ±0.18 0.14 ±0.06 2.04 ±0.28
12 8.56 ±1.08 14.08 ±1.78 1.76 ±0.035 3.22 ±0.83 0.55 ±0.12 1.55 ±0.37

22



The point we wish to make clear is this : the fall is fairly unidirectional across all models with depth,
as suggested by our previous analysis. Fixing the ϵ = 0.03, which shows the biggest gap between
layers as larger values of ϵ decrease every accuracy to zero, we can examine more layers to see this
for the angular attack :

Table 34: Resnet-18: Top-1 and Top-5 under angular attack
Depth 5 6 7 8
Top-1 47.55 22.57 7.84 2.78
Top-5 71.09 39.82 16.58 7.89

Table 35: Resnet-34: Top-1 and Top-5 under angular attack
Depth 8 9 10 11 12 13 14 15 16
Top-1 54.46 35.84 26.22 13.20 6.40 6.32 5.92 5.7 5.2
Top-5 77.35 59.32 41.50 22.68 12.05 11.86 10.53 10.46 10.29

Table 36: Resnet-50: Top-1 and Top-5 under angular attack
Depth 8 9 10 11 12 13 14 15
Top-1 65.54 53.06 38.10 24.55 8.56 7.2 5.42 2.95 2.42
Top-5 87.55 72.74 54.3 42.78 14.08 12.56 9.87 6.28 5.76

23



H Ablations with respect to number of iterations, number of layers averaged
over and ensembling

Table 37 reports the difference in performance with respect to the default case (tinit = 20) as we vary
the number of initial iterations. All results were performed on the vanilla Resnets. Positive values
indicate stronger attack. There is no clear trend except that 20 is actually not the optimal value (15 is
a bit stronger).

Table 37: Ablation with respect to number of initial iterations tinit with Resnets trained on Imagenet
(ϵ=0.03 and average over 2 layers). Top-1 results (top-5 results in brackets).

Resnet tinit = 5 tinit = 10 tinit = 15 tinit = 20 tinit = 25 tinit = 30
18 -0.5(-0.6) 0.1(1.3) -0.2(0.5) 0.0 0.6(-1.4) 1.7(0.1)
34 1.5(0.4) -1.5(-0.5) 0.8(0.3) 0.0 -1.3(1.1) -1.9(1.7)
50 1.9(-1.6) -1.3(-0.4) 1.5(1.7) 0.0 -0.1(-1.4) 0.5(-0.5)

101 1.3(-0.4) 0.1(1.3) 1.8(-1.0) 0.0 -1.1(1.3) -0.8(1.6)
152 0.6(-0.3) 1.6(1.1) 1.2(0.2) 0.0 -0.1(-1.3) -0.3(-0.5)

Table 38 compares performance of our attack as we vary the number of iterations. Negative values
indicate worse performance relative to baseline (40 iterations). We can see there is some gain in
moving to 50 iterations. However the standard evaluation practice is with 40, so we did not optimize
over this step.

Table 38: Ablation with respect to the total number of iterations (tinit + tradial) with Resnets trained
on Imagenet (ϵ=0.03 and average over 2 layers). Top-1 results (top-5 results in brackets).

Resnet 30 iterations 40 iterations 50 iterations
18 -0.52(-0.43) 0.0(0.0) 0.38(1.97)
34 -1.36(-0.7) 0.0(0.0) 0.3(0.87)
50 -1.16(-0.34) 0.0(0.0) 0.28(0.02)

101 -0.21(-0.02) 0.0(0.0) 0.63(0.74)
152 -1.56(-0.19) 0.0(0.0) 0.11(1.86)

Table 39 compares the performance of our attack as we vary the number of layers that we average
over. Negative values are worse relative to baseline (2 layers to be averaged over). We can clearly see
the 2-layer averaging is actually quite helpful. Bigger gains are possible with 3 or 4 layers averaged
over, but at the cost of more evaluations.

Table 39: Ablation with respect to number of layers averaged over with Resnets trained on Imagenet
for 40 iterations (ϵ=0.03). Top-1 results (top-5 results in brackets).

Resnet 1 layer 2 layers 3 layers 4 layers
18 -1.37(-1.21) 0.0(0.0) 1.09(1.79) 3.49(2.93)
34 -2.64(-3.08) 0.0(0.0) 2.95(2.67) 3.47(0.93)
50 -2.79(-2.95) 0.0(0) 2.8(2.15) 3.8(3.18)
101 -3.27(-3.55) 0.0(0.0) 0.47(0.31) 0.39(0.5)
152 -2.74(-2.98) 0.0(0.0) 0.66(0.45) 0.83(0.33)

Table 40 reports the performance of ensembling targeted and angular losses. Positive values indicate
gains with respect to the angular attack on its own.

24



Table 40: Ensemble (targeted loss with angular loss) for Resnets trained on Imagenet for 40 iterations
(ϵ=0.03 and average over 2 layers). Top-1 results (top-5 results in brackets).

Resnet ensemble
18 3.38(1.62)
34 0.88(2.05)
50 0.64(3.81)
101 0.89(1.79)
152 0.99(2.1)

25



I Baselines of Targeted Attacks and Stronger Random Attacks

Here, we check if providing a latent, generated from an instance of a different label, as the initial
direction of ILAP is useful as opposed to using −||zi||. To be clear, in this case, ||zi − zj || is
minimized, where zj arises from an instance of a different label. Then, the initial deviation is
increased via ILAP.

We also construct an alternative random baseline, termed “naive ILAP”. In this, an initial random
deviation of a random, not necessarily batchnormed layer (we select a random ReLU layer per
instance), is increased via ILAP, in the L2 norm.

We run these baselines for ϵ = 0.03, 0.06 as at 0.1 the values rapidly approach zero for any method.
It is apparent that the targeted method is roughly on par with ours and the naive method performs
worse. Hence, our method is basically as good as having these points to perturb towards, “for free”
just from the manifold structure.

Table 41: Targeted benchmark on all original Resnets
Net Type ϵ = 0.03 ϵ = 0.06

Top 1 Top 5 Top 1 Top 5

Resnet-18 25.16 42.58 1.46 5.85
Resnet-34 12.2 21.8 1.9 2.86
Resnet-50 13.55 30.97 0.65 5.16
Resnet-101 5.85 13.66 2.86 6.67
Resnet-152 9.68 16.77 1.29 3.87

Table 42: Naive ILAP on all original Resnets
Net Type ϵ = 0.03 ϵ = 0.06

Top 1 Top 5 Top 1 Top 5

Resnet-18 31.11 52.11 9.92 20.66
Resnet-34 19.57 37.59 6.34 15.15
Resnet-50 25.37 36.59 5.81 14.84
Resnet-101 25.37 37.56 5.71 14.29
Resnet-152 22.58 36.13 3.23 8.39

26



J Transfer Results on CIFAR-10 and CIFAR-100

We show accuracies under the radial attack when Resnet-18,34,and 50 are subjected to it after transfer
learning on CIFAR-10 and CIFAR-100. We also show the corresponding baseline drops under FGSM,
PGD, random noise and no noise. For Resnets, the final block group (i.e. for example, Resnet-50
has [3, 4, 6, 3] as its block groups, so the last 3) is tuned along with a linear classifier. The wilcoxon
signed rank test passed for every case where the point estimate of the angular attack was better than
the FGSM one.

Note that our attack is markedly more successful on CIFAR-100 and in general seems to reduce
the classifier to randomly guessing and thus has difficulty lowering it below 10 and 50 percent on
CIFAR-10 for top-1 and top-5 respectively.

Table 43: Clean accuracies on CIFAR-10

Network type Resnet-18 Resnet-34 Resnet-50
Clean accuracy (top-1) 89.380 89.500 91.210
Clean accuracy (top-5) 99.640 99.790 99.740

Table 44: Results on CIFAR-10, Resnet-50
Method ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PGD 4.230 16.680 4.250 15.360 4.250 15.320
Random 83.930 99.480 71.730 98.520 59.180 83.220
FGSM 52.950 94.770 48.250 92.00 38.300 83.220

Angular 15.020 58.700 14.160 55.310 14.080 54.200

Table 45: Results on CIFAR-10, Resnet-34
Method ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PGD 2.88 13.74 2.81 8.67 2.84 7.97
Random 81.59 99.19 66.7 96.95 52.25 93.30
FGSM 47.00 92.08 42.77 89.58 30.79 83.18

Angular 10.29 54.79 9.4 52.17 8.940 52.100

Table 46: Results on CIFAR-10, Resnet-18
Method ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PGD 4.3 6.3 4.3 5.6 4.28 5.58
Random 84.10 99.25 73.69 98.05 68.22 97.08
FGSM 36.82 88.74 36.52 87.33 30.65 82.2

Angular 10.83 52.38 10.82 49.22 10.51 49.14

27



Table 47: Clean accuracies on CIFAR-100

Network type Resnet-18 Resnet-34 Resnet-50
Clean accuracy (top-1) 67.410 69.500 71.170
Clean accuracy (top-5) 90.270 91.140 92.510

Table 48: Results on CIFAR-100, Resnet-50
Method ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PGD 0.16 0.20 0.14 0.14 0.14 0.14
Random 64.42 88.18 53.1 79.76 38.63 66.23
FGSM 29.28 59.02 25.86 51.95 15.01 35.14

Angular 2.32 10.79 2.16 9.72 1.88 9.49

Table 49: Results on CIFAR-100, Resnet-34
Method ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PGD 1.16 1.38 1.13 1.2 1.14 1.22
Random 60.37 85.01 46.68 73.09 34.37 60.34
FGSM 25.97 52.32 25.27 48.92 20.08 40.94

Angular 1.63 7.55 1.440 6.22 1.39 6.16

Table 50: Results on CIFAR-100, Resnet-18
Method ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PGD 0.0 0.0 0.0 0.0 0.0 0.0
Random 60.88 86.19 49.94 78.68 42.41 71.08
FGSM 13.28 36.48 15.88 37.77 13.84 32.8

Angular 2.17 8.57 1.57 7.04 1.34 6.48

28



J.1 Results on the Caltech Birds Dataset (CUB)

These experiments were performed on Resnet-50 on the Caltech Birds dataset [Wah et al., 2011].
Everything in the setup is exactly as per the CIFAR-10 and CIFAR-100 case.

Table 51: Results on Caltech-Birds, Resnet-50
Method ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PGD 0.0 0.03 0.0 0.0 0.0 0.0
Baseline 61.02 88.9 61.02 88.9 61.02 88.9
FGSM 1.2 11.7 1.0 10.5 0.7 9.5

Angular 10.31 25.15 0.8 6.2 0.5 3.8

29



K Transfer results between architectures

First, we consider results of adversarial attacks as we transfer between different types of Resnets. We
consider the difference in transferability between our method and that of PGD for all cases (positive
values denote our attack is stronger).

Table 52: Transfer results at ϵ = 0.03. Row denotes the source model, column denotes the model
attacked. All values denote differences relative to the corresponding PGD values (positive values
denote our attack is stronger).

Resnet types 18 34 50 101
18 - 1.4 2.2 -1.2
34 1.5 - 2.1 1.5
50 1.7 2.2 - 2.4

101 1.3 3.7 2.5 -

Table 53: Transfer results at ϵ = 0.06. Row denotes the source model, column denotes the model
attacked. All values denote differences relative to the corresponding PGD values (positive values
denote our attack is stronger).

Resnet types 18 34 50 101
18 - -0.8 0.7 -1.2
34 2.6 - 3.2 4.5
50 4.8 3.4 - 1.5
101 2.1 5.2 3.2 -

Table 54: Transfer results at ϵ = 0.1. Row denotes the source model, column denotes the model
attacked. All values denote differences relative to the corresponding PGD values (positive values
denote our attack is stronger).

Resnet types 18 34 50 101
18 - 3.5 4.6 5.2
34 6.5 - 5.2 6.4
50 5.9 9.1 - 7.2
101 6.4 5.9 7.0 -

We also will show a case where the model being attacked can be a non-batchnormed model, in this
case, VGG16 [Simonyan and Zisserman, 2014]. The results appear below. In all cases, the source
model is a Resnet, the attacked model is VGG16, and the result is the difference between PGD and
our attack (positive values denote our attack is stronger).

Table 55: Difference between PGD and our attack (positive values indicate that our attack is stronger).
The source model is a Resnet, the attacked model is VGG16.

Source Resnet ϵ = 0.03 ϵ = 0.06 ϵ = 0.1
18 +3.8 +5.4 +7.5
34 +4.3 +5.8 +8.6
50 +3.2 +4.7 +10.5

101 +4.8 +6.2 +9.2

30



L Interactions with defenses and robust models

We consider the most key defence - adversarial training [Shrivastava et al., 2017]. For this process,
we carried out adversarial training with an even mixture of FGSM, PGD, and radial attack (1 each for
each training instance) for Resnet-18,34,50 for 20 epochs. Even after the training process, the radial
attack remained effective. We show the results so obtained.

Table 56: Top-1 Values, Angular outside bracket, and FGSM in-bracket
Resnet type 0.03 0.06 0.1

18 38.9(22.6) 10.9(14.8) 8.6(12.2)
34 15.9(26.7) 13.5(24.1) 9.8(22.5)
50 22.6(30.2) 16.7(23.5) 11.6(23.2)

Table 57: Top-5 Values, Angular outside bracket, and FGSM in-bracket
Resnet type 0.03 0.06 0.1

18 44.9(43.5) 18.5(32.7) 14.4(26.8)
34 41.0(48.2) 30.8(43.5) 21.5(38.5)
50 37.0(51.2) 26.9(44.0) 18.4(41.8)

We also considered various robust models and found that our method had, on average (averaging
over all ϵ and all robust checkpoints) a 6.8% advantage over FGSM in top-1 accuracy and 18.9%
in top-5. We also note that our achievement was consistent over all (ϵ , model) pairs : the lowest
top-1 advantage was 2.6% (positive) and lowest top-5 advantage was 3.4%. Therefore, it seems the
canonical adversarially robust models also do fall prey to our attack (at least to a greater extent than
to FGSM).

31

https://github.com/microsoft/robust-models-transfer


M Ablations for affine-shifted batchnorm and for non-batch-normalized
layers

Suppose that a batch normed representation (Z) is followed by a linear layer (AZ + B). We
note that if Z is perfectly isotropic Gaussian, we can estimate that E(Z) = 0, and Cov(Z) = I .
Correspondingly, if we are given the linear layer, we can have that E(AZ +B) = E(B) = B. We
also have that Cov(AZ +B) = Cov(AZ) = ACov(Z)AT = AAT . Therefore, if we can estimate
the empirical covariance matrix from observations of AZ +B, we can find AAT (approximately).
We can also factorize this to get BBT = AAT . It is known in this case that A and B are related by
an orthogonal transformation i.e. A = BQ for some orthogonal matrix Q. So, we can recover Z (up
to an orthogonal rotation) by inverting B as if we have AZ +B, we can subtract B (by estimating B
via E[AZ +B]) and then having AZ, multiply with B−1 to get B−1AZ = QZ. Now an orthogonal
matrix is a rotation, and the Gaussian (Z) upon a rotation (Q) is also a Gaussian (QZ) (the spherical
geometry we have shown is also invariant under rotation). So our results carry over if there are
sufficient samples to estimate the covariance. Note that this assumes A is not singular.

However, in practice, this covariance estimation can be very expensive and there are not enough
samples. The exact inversion must be replaced by a pseudo-inversion which works but has less
justification. Since we require more samples there can also be the question of more powerful methods
becoming available which can utilize more samples more efficiently. We can also try our method
on AZ instead of trying to invert A (this is simpler as it just requires calculating B, and AZ is also
Gaussian). We were able to recreate attack numbers close to our results in the main text for all resnets
with 5,000 samples. It can be seen that the results are close to the actual angular attack.

Table 58: Comparison of angular attacks, top-1 and top-5 accuracy, on different Resnet types for
different values of ϵ, when a batch normalized layer is attacked but a linear layer is present.

Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

18 24.1 40.5 3.5 7.2 0.9 1.9
34 7.9 14.8 1.1 2.8 0.3 0.8
50 14.8 25.9 2.6 4.9 0.5 1.4
101 8.5 14.3 1.8 3.6 0.5 1.8
152 6.3 11.5 1.0 3.3 0.4 1.5

Our hypothesis is that BN makes the feature after BN Gaussian. Let us write the flow of representa-
tions as :

X → NL→ Y → BN → Z → Possible linear layer→ Z ′

where X is the original feature, NL is the last nonlinear layer before BN, and Y is the pre-BN layer.
Our prediction is that Z is Gaussian.

If, instead of the post-BN feature (Z), the pre-BN feature (Y ) is attacked, the result will still succeed,
as the BN mapping is an invertible linear mapping in inference phase, and thus if Z is Gaussian, so is
Y . (Our hypothesis works for any Gaussianized layers). But this is not a refutation of our method,
because Y is Gaussian due to the existence of the BN layer as well and the cause is the same. Even
Z ′ is a valid target.

This does not mean all layers are valid targets and there is nothing special about BN - our method
does not over-predict and is very precise. Only Y and any linear maps on Z enjoy the property that if
Z is Gaussian, so are they. X is not under such a guarantee. We now attach results by moving all
corresponding attacks from Z to X , and the results are uniformly worse across the board, showing
that the attack benefits from attacking Gaussian layers. Thus, the overall hierarchy of success is
attacking a batch normalized layer > attacking a linearly-transformed batch norm layer > attacking a
layer not related to batch norm by any linear fashion.

32



Table 59: Comparison of Angular attacks, top-1 and top-5 accuracy, on different Resnet types for
different values of ϵ, when the layer under attack is not related to a batch normalized layer via linear
transformations.

Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

18 27.3 46.2 5.6 8.5 0.8 1.7
34 11.5 19.2 1.3 3.8 0.5 1.3
50 17.3 28.5 2.2 5.6 0.8 2.7
101 11.32 19.5 1.1 3.2 1.0 2.4
152 8.2 11.9 0.9 1.6 0.6 1.2

33



N Visualizations

We show some visualizations of adversarial images created by the radial attack on Imagenet to
contrast to FGSM and PGD in table 60. As might be expected, the images sometimes look very
similar to the baseline images even at ϵ = 0.1, and sometimes have clear noise over them.

Now, has our method just rediscovered what FGSM and PGD do, or is it independent ? To answer
this, we checked the absolute L1 distance between various images at ϵ = 0.1. The results are as
follows :

• Average L1 distance of 15887.2 between FGSM and angular attacks
• Average L1 distance of 10282.5 between PGD and angular attacks
• Average L1 distance of 12866.4 between FGSM and PGD attacks
• Average L1 distance of 8968.8 between the clean image and the angular attack.

As can be seen, our method is not too similar to either FGSM or PGD and instead is closer to the
base image, indicating that PGD and angular attacks diverge in opposite directions from the original
image and do not merely copy each other. This is good as we are not just re-creating some other
method. Indeed the closeness of our method is more to PGD than to FGSM, which is a good sign,
because PGD is the superior attack.

34



Table 60: Table of figures of adversarial images produced under FGSM, PGD, and our Angular
method on Imagenet with ϵ = 0.1, with Resnet18 being attacked.

Baseline FGSM Angular PGD

35



O Extensions to the With-label Case

Here, we “ensemble” our loss with the label-based loss via ILAP. We set an initial direction by adding
the signs of the radial losses with the classification loss, then maximize the angular deviation. (This
is done and scaled in the same manner as Ψ in the main text’s algorithm). Since even at ϵ = 0.03
the attack brings the top-1 accuracies near zero (less than 0.1%) under PGD, we compare the top-5
accuracies which are noticeably improved. In the other cases, both the methods result in near-zero
accuracy.

Table 61: Accuracies with “ensembled PGD”, ϵ = 0.03, top-5
ResNet type 18 34 50 101 152
PGD alone 3.37 4.39 8.08 9.65 9.86
PGD with angular 2.26 2.71 6.20 7.65 8.32

36



P Single-Stage Benchmarks

Previous latent-representation based attacks often plan for the labeled scenario and add a latent loss
to a label-dependent loss to formulate an overall supervised attack. Since our method focuses on
the unsupervised case, we remove the label-based component from several state of the art methods,
namely from [Zhou et al., 2018, Inkawhich et al., 2019, Ganeshan et al., 2019, Inkawhich et al.,
2020b, Zhang et al., 2022a, Wang et al., 2021, Inkawhich et al., 2020a] for a comparison against
ours. Most of these methods may be characterized as a single-stage latent disturbance method which
initializes a random perturbation and moves in the L2 norm in latent space. That is, they resemble
our method but lack its angular viewpoint and justification. We take the best of each method. The
performance, though noticeably above the random benchmarks, is below ours. For convenience,
Table 3 in the main paper is repeated as Table 62 below.

Table 62: Comparison of single-stage top-1 and top-5 attacks on Resnets.
Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

18 30.45 48.34 6.98 16.87 3.89 10.22
34 16.78 35.89 1.45 8.32 1.68 4.54
50 22.68 39.10 4.62 10.45 4.71 6.58
101 15.65 34.67 5.82 11.28 5.28 8.95
152 8.29 18.53 1.78 5.67 0.95 3.22

Table 63 reports the difference in performance for each single stage attack with respect to the best
attack (denoted by ”-”) whose performance is reported in Table 62

Table 63: Detailed comparison of single stage attacks for ϵ = 0.03. ”-” indicates the best attack
whose performance is reported in Table 62 and the other entries indicate the difference in performance
with respect to the best attack. Top-1 results (top-5 results in brackets)
Type [Zhou et al., 2018] [Inkawhich et al., 2019] [Ganeshan et al., 2019] [Inkawhich et al., 2020b] [Zhang et al., 2022a] [Wang et al., 2021] [Inkawhich et al., 2020a]

18 - 6.8(2.23) 6.97(6.54) 3.96(2.33) 3.6(2.49) 1.08(1.1) 3.78(2.55)
34 3.9(6.31) 3.07(3.36) 3.03(1.73) 2.26(3.2) 1.95(1.96) 2.77(4.63) -
50 0.32(0.04) 5.55(7.57) - 1.97(0.33) 3.58(4.16) 0.63(7.49) 2.37(4.65)

101 3.18(6.04) 3.27(3.6) 5.55(6.22) 7.55(8.65) 1.05(1.68) - 3.14(5.01)
152 3.34(6.15) 2.45(3.64) 3.24(5.28) 1.18(1.95) 6.91(9.91) 1.06(2.62) -

37



Q Results on the Hypersphere

On hyperspherical representation spaces, the concentration of norm is perfect. We can ensure this
by concatenating the batch norm layers with a hyperspherical (L2) projection layer and re-training
the model. The corresponding angular accuracies are presented below on Resnets-18, 34, 50 for
Imagenet. It can be seen that these cases perform roughly as well as the batch normed scenario.

Table 64: Comparison of Angular attacks, top-1 and top-5 accuracy, with on different Resnet types
under hyperspherical ablation.

Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

18 19.45 35.22 1.98 4.32 0.22 1.12
34 5.22 9.45 0.51 2.12 0.18 0.95
50 11.22 20.85 1.32 3.09 0.45 1.56

38



R Discussion of the Concentration of Norm

From here on, we discuss the case of the concentration around expectation of a random variable V of
the following form, with Mi’s being other random variables of mean 0, variance 1 :

V =

N∑
i=1

M2
i

We can see that V is the squared norm of the batch norm latent of interest and each Mi is an individual
hidden neuron, i.e. going dimension-wise along the latent. To avoid writing the square, let us always
write :

Pi = M2
i , V =

N∑
i=1

Pi

We understand concentration to occur with associated functions f(N, δ), g(N) - where g(N) is
usually a monotonically increasing function in N obeying g(N)→∞ when N →∞ - to mean any
result that shows :

P (|V − E(V )| ≥ δg(N)) ≤ f(N, δ)

Note that by linearity of expectation, E(V ) = N . (This holds even if the Mi’s are not independent.)

Ideally, this function g(N) will obey:

• δ →∞ implies f(N, δ)→ 0 - large deviations are unlikely

• g(N)
N → 0 as N →∞ - g(N) grows slower than N .

If we combine the above points, we get that ∀δ > 0,∀ϵ > 0, ∃N such that

P (|V − E(V )| ≥ δq(N)) ≤ f(N,
q(N)

g(N)
) < ϵ

When q(N) is any function which obeys q(N)
g(N) →∞ as N →∞. That is, we can always increase the

sample size so that deviations from the expectation are small relative to a monotonically increasing
function of N which increases faster than g(N) that is, q(N). In particular, consider q(N) = N and
g(N) =

√
N . This implies that if our conditions are met, f(N, δ)→ 0 as N →∞, and V

E(V ) → 1.
In particular, generally we aim for Gaussian concentration. Let the variance of V be S(N), a
function of N . Then we hope to have f(N, δ) = O(exp(−δ2)), with g(N) =

√
S(N). This is

alright so long as S(N) is o(N2) making g(N) as o(N). Thus g(N) gives the size of the tails, and f
bounds the tail concentration.

Clearly, the above f, g depend on two things: how the Mi’s are distributed, and how they depend on
each other.

We next note some realistic conditions and situations under which concentration and similar bound-
ing will occur in V and its feasibility in our context (a neural network hidden layer, post batch
normalization). We proceed from the most general to the most assumption-heavy cases.

• Mi’s are all distributed in an unknown fashion, possibly not independent of each other, but
we can check the covariance between any two Pi’s, and the variance of each Pi is finite.
Then, we have that, with S(N) the variance of V , S(Pi) variance of a Pi, CS(Pi, Pj) the
covariance of any two Pi, Pj :

S(N) =

N∑
i=1

S(Pi) +
∑
i<j

2CS(Pi, Pj)

39



We have shown that in practice the correlation terms (off-diagonal, i.e. covariances) do fall
with depth on Resnet-18. This makes this approach the most general. Once we have the
variance, we can plug in Chebyshev’s inequality [Markov, 1884] which yields that deviations
of k

√
S(N) occur with a probability ≤ 1

k2 . That is,

P
(
|V − E(V )| ≥ δ

√
S(N)

)
≤ 1

δ2

This bound is extremely loose in practice, yet it is the most applicable. This is because we
can usually estimate the covariance terms directly with reasonable precision and need not
make further assumptions.

• We know the Mi’s are dependent, and we know that they are Gaussian, and that they are
jointly Gaussian. Let the covariance matrix describing the Mi’s be Σ. Let LLT = Σ.
Then L−1M where M is the vector of all Mi’s is an isotropic Gaussian random variable
i.e ∼ N (0, IN ) = ZN . And, we can see that V = MTM is then (ZN )TΣ(ZN ). This is a
quadratic form of a Gaussian random variable. The result is known - it is a non central
chi squared distribution. Specifically, let µ1, µ2, . . . , µN be the eigenvalues of the matrix Σ
(which is real symmetric and must have all eigenvalues as real), then the distribution is :

(ZN )TΣ(ZN ) ∼
N∑
i=1

µiχ
2
1

Where, χ2
1 denotes the chi-square distribution of degree of freedom 1. In this case, con-

centration bounds should be derived upon careful examination of the actual covariance Σ.
However, in most cases, bounds obey [Bodenham and Adams, 2016, Laurent and Massart,
2000, Zhang and Zhou, 2020, Castaño-Martı́nez and López-Blázquez, 2005] at worst an
exponential concentration, i.e. :

P
(
|V − E(V )| ≥ δ

√
N
)
≤ O(exp(−δ))

In certain cases, numerical methods are feasible, and one can also use Chernoff’s inequality
on the moment generating function. In this case, the assumptions are purely on how Mi’s
are distributed, we do not ask for independence.

Now, we move on to noting how independence may offer alternate ways of bounding V . For the
following cases, we assume the Mi’s and hence the Pi’s are independent.

• Mi’s are independent, and all Pi’s occur in a bounded range. Note that this is nearly
impossible to guarantee and indeed this is not true if Mi is a Gaussian. However, we can
modify this to the condition that, with probability ≥ 1 − pbound, Pi occurs in a bounded
range. Then, we can apply the union bound to get that, with probability ≥ 1 −Npbound,
all Pi’s occur in a bounded range. This is reasonable if we expect at most some pbound
fraction of outliers. In this scenario, we may employ either Azuma’s inequality [Azuma,
1967], Hoeffding’s inequality [Hoeffding, 1994], or McDiarmid’s inequality [McDiarmid
et al., 1989] to get the sought result : V concentrates with Gaussian-like concentration,i.e.
with probability ≥ 1−Npbound :

P (|V − E(V )| ≥ δg(N)) ≤ O(exp(−δ2))

where g(N) (replacing the
√
S(N)) is an upper bound derived from the range of occur-

rence, e.g. g(N) =
√
(b− a)2 ×N (this is correct upto constant factors for all of the

three inequalities i.e. Azuma/Hoeffding/McDiarmid). Note that any random variable which
must occur in the range [a, b] has variance upper bounded by (b − a)2. S(N) thus scales
as (b − a)2N - we replace it with g(N) here and this is the link between the two meth-
ods. This gives us that, with high probability, the deviation around E(V ) is of O(

√
N).

When we have a notion of the variance of Pi as well, we can utilize Bernstein’s family of
inequalities [Bernstein, 1924] for a more accurate bound.

40



• In the case where the Mi’s are sub-Gaussians - i.e. random variables which for some
constants α, β obey, taking Mi as the example :

P (|Mi|≥ t) ≤ α(exp(−βt2))
Trivially, a Gaussian random variable is sub gaussian. Then, the Pi’s are sub-exponential
random variables. They are known to exhibit [Vershynin, 2018] mixtures of Gaussian
(exp(−δ2)) and exponential (exp(−δ)) tail concentrations (RHS), with g(N) ≈ O(

√
N).

The exponential tail does not occur for small deviations. Note that this relies on the moment
generating function of Mi. In this case, no bound on the support is required.

In general, all the inequalities above rely on some variants of Chernoff’s inequality [Hagerup and
Rüb, 1990], which is merely Markov’s inequality on the moment generating function.

R.1 Empirical Findings

To corroborate our findings, we define the dispersion ratio. Given an univariate random variable Z,
which always has Z > 0 of mean µ, the dispersion ratio D[a,b] with b ≥ a, 0 ≤ a, b ≤ 1 is defined as
:

F−1(b)− F−1(a)

G−1(b)−G−1(a)

where F,G are respectively inverse CDF (quantile) functions of Z and a chi squared distribution with
degree of freedom equal to the empirical mean of Z (rounded). We do not use the true mean µ, as it
is unknown. In simple terms, this ratio measures how close the tails of the random variable match
Chi-square tails. It can be 0 - indicating a delta distribution and perfect concentration - as well. When
Z has chi square tails, D[a,b] ≈ 1 for most values of a, b.

We performed the following test. For Resnets-18,34,50, we picked out layers at depth 1/4 and 3/4
(upto the closest integer, discounting initial non-repeating blocks) into the network and randomly
sampled a, b 1000 times uniformly from [0, 1] to calculate the empirical dispersion (on average), with
the random variable being the square of the latent norm at depth i i.e. ∥N1,i(x)∥2. By hypothesis,
when the individual neurons are gaussian, this r.v. will be a sum of squares of Gaussians, each of
which is a chi-square, and will be another Chi-square. We also did the same for FixUp Resnets.
The results indicate that deeper layers are much closer in dispersion, and that FixUp Resnets are far
more dispersed (values are far from 1). This strongly supports our conclusions which line up with
conjectures in [Daneshmand et al., 2020, 2021] and the general “Gaussianization hypothesis” [Neal,
2012, Yang and Schoenholz, 2018, Yang et al., 2019].

Table 65: Concentration for Normal Resnets

ResNet type 18 34 50
Dispersion - 1/4 2.32 2.22 2.42
Dispersion - 3/4 1.68 1.86 1.74

Table 66: Concentration for FixUp Resnets

ResNet type 18 34 50
Dispersion - 1/4 4.28 4.67 5.22
Dispersion - 3/4 2.84 4.05 3.68

41



S Limitations, Ethical and Societal Impact

S.1 Limitations

Our work is necessarily limited in that it tackles deep networks utilizing batch normalization. As
such, it cannot be easily extended to networks utilizing alternative forms of normalization such
as LayerNorm [Ba et al., 2016] or networks that employ no normalization whatsoever. We fully
acknowledge these limitations and do not claim to have crafted an adversarial attack that, in this
present form, succeeds against batch norm free networks. Instead, we are incentivizing movement
away from batch normalization altogether, and view our work as located closer to research which
analyzes batch normalization [Santurkar et al., 2018, Galloway et al., 2019, Benz et al., 2020] than
to proposing new methods of adversarial attacks, although it exists at the intersection of both these
aspects.

S.2 Broader impacts and safeguards

Research which proposes avenues of adversarial attacks may be misused by malicious parties to
attack objects in the real world [Hendrycks and Gimpel, 2016, Athalye et al., 2018]. Nevertheless,
such research is important to analyze the actual robustness of the model itself and ultimately helps
create better systems in the long run. Thus, we view our work as a net societal positive in the long
run, even if its short term benefits may not necessarily be so.

We do not presently believe our attack requires specific safeguarding against real world malicious
actors. If this situation changes, we would recommend that the real world systems in question have
their normalization processes changed, e.g. via fixup.

42


	Introduction
	Relation to Related Work
	Setup - FGSM and PGD Attacks
	Intermediate Level Attack Projection (ILAP)

	Geometry of Batch Normalization
	Angular Attack Based on Converged Batchnorm
	When Does the Norm Concentrate ?

	Results
	Conclusion
	Layer normalization
	Training Details
	Original ResNets
	Fixup ResNets
	EfficientNets
	Results on ViT models
	Ablations on Resnets-18,34,50
	Ablations with respect to number of iterations, number of layers averaged over and ensembling
	Baselines of Targeted Attacks and Stronger Random Attacks
	Transfer Results on CIFAR-10 and CIFAR-100
	Results on the Caltech Birds Dataset (CUB)

	Transfer results between architectures
	Interactions with defenses and robust models
	Ablations for affine-shifted batchnorm and for non-batch-normalized layers
	Visualizations
	Extensions to the With-label Case
	Single-Stage Benchmarks
	Results on the Hypersphere
	Discussion of the Concentration of Norm
	Empirical Findings

	Limitations, Ethical and Societal Impact
	Limitations
	Broader impacts and safeguards


