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In this work, we present a new approach for jointly performing eQTL
mapping and gene network inference while encouraging a transfer of infor-
mation between the two tasks. We address this problem by formulating it as
a multiple-output regression task in which we aim to learn the regression co-
efficients while simultaneously estimating the conditional independence rela-
tionships among the set of response variables. The approach we develop uses
structured sparsity penalties to encourage the sharing of information between
the regression coefficients and the output network in a mutually beneficial
way. Our model, inverse-covariance-fused lasso, is formulated as a biconvex
optimization problem that we solve via alternating minimization. We derive
new, efficient optimization routines to solve each convex sub-problem that are
based on extensions of state-of-the-art methods. Experiments on both simu-
lated data and a yeast eQTL dataset demonstrate that our approach outper-
forms a large number of existing methods on the recovery of the true sparse
structure of both the eQTL associations and the gene network. We also ap-
ply our method to a human Alzheimer’s disease dataset and highlight some
results that support previous discoveries about the disease.

1. Introduction. A critical task in the study of biological systems is under-
standing how gene expression is regulated within the cell. Although this problem
has been studied extensively over the past few decades, it has recently gained mo-
mentum due to rapid advancements in techniques for high-throughput data acqui-
sition. Within this broad task, two problems that have received significant attention
in recent years are (a) identifying the genetic loci that regulate gene expression, a
problem known as eQTL mapping [Rockman and Kruglyak (2006)], and (b) de-
termining which genes have a direct influence on the expression of other genes,
a problem known as gene network estimation [Gardner and Faith (2005)]. Prior
work on learning regulatory associations has largely treated eQTL mapping and
gene network estimation as completely separate problems.
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In this work we pursue a holistic approach to discovering the patterns of gene
regulation in the cell by integrating eQTL mapping and gene network estimation
into a single model. Specifically, given a dataset that contains genotype infor-
mation for a set of single nucleotide polymorphisms (SNPs) along with mRNA
expression measurements for a set of genes, we aim to simultaneously learn the
SNP–gene and gene–gene relationships. The key element of our approach is that
we transfer knowledge between these two tasks in order to yield more accurate
solutions to both problems.

In order to share information between tasks, we assume that two genes that
are tightly linked in a regulatory network are likely to be associated with similar
sets of SNPs in an eQTL map, and vice versa. Our assumption is motivated by
the observation that genes participating in the same biological pathway or module
are usually co-expressed or co-regulated, and therefore linked in a gene network
[Barabasi and Oltvai (2004)]. Because of this, when the expression of one gene is
perturbed, it is likely that the expression of the entire pathway will be affected. In
the case of eQTL mapping, this means that any genetic locus that is associated with
the expression of one gene will influence the expression of the entire subnetwork to
which the gene belongs. By explicitly encoding these patterns into our model, we
can take advantage of this biological knowledge to boost our statistical power for
detecting eQTLs. Ultimately, this allows us to leverage information about gene–
gene relationships to learn a more accurate set of eQTL associations, and similarly
to leverage information about SNP–gene relationships to learn a more accurate
gene network.

Based on these key assumptions, we construct a unified statistical model by
formulating the problem as a multiple-output regression task in which we jointly
estimate the regression coefficients and the inverse covariance structure among
the response variables. Specifically, given SNPs x = (x1, . . . , xp) and genes y =
(y1, . . . , yq), our goal is to regress y on x and simultaneously estimate the inverse
covariance of y. In this model, the matrix of regression coefficients encodes the
SNP–gene relationships in the eQTL map, whereas the inverse covariance matrix
captures the gene–gene relationships in the gene network. In order to ensure that
information is transferred between the two components, we incorporate a regular-
ization penalty that explicitly encourages pairs of genes that have a high weight
in the inverse covariance matrix to have similar regression coefficient values. This
structured penalty enables the two estimates to learn from one another as well as
from the data.

2. Related work. A large number of techniques have been developed to ad-
dress eQTL mapping and gene network estimation in isolation. The traditional
approach to eQTL mapping is to examine each SNP–gene pair independently and
perform a univariate statistical test to determine whether an association exists be-
tween the two. Recently, a series of more complex multivariate models have been
applied to this task in order to jointly capture the effects of several SNPs on one
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gene [Michaelson et al. (2010)]. Similarly, the simplest method for gene network
inference is to construct a graph in which each edge is weighted by the marginal
correlation between the corresponding genes. Another related method that has re-
cently gained popularity, known as Gaussian graphical model estimation or equiv-
alently as inverse covariance estimation, produces a network in which the edges
are instead weighted by the conditional correlations [Dempster (1972)].

In this work we will use a multiple-output regression model to perform eQTL
mapping and incorporate a Gaussian graphical model over the genes in order to
simultaneously infer the gene network. However, it is well known that model es-
timation is challenging in the high-dimensional setting in which we have more
variables in the model than samples from which to learn. This is the precisely the
setting frequently encountered in genomics, where we see datasets with at most
a few hundred samples but as many as 1 million SNPs and tens of thousands of
genes. To combat this problem, we will incorporate regularization in order to re-
duce variance in the model estimate.

The challenge of high-dimensional data has already inspired a remarkable
number of useful methods for performing regularized regression [Kim and Xing
(2009, 2012), Tibshirani (1996), Yuan and Lin (2006)] and regularized inverse
covariance estimation [Banerjee, El Ghaoui and d’Aspremont (2008), Friedman,
Hastie and Tibshirani (2008), Ravikumar et al. (2011), Tan et al. (2014)]. Our work
will build on existing penalty terms that have been carefully designed to induce
sparsity and structure.

The main stumbling block to using structured regularization in multi-task re-
gression is that it typically requires prior knowledge of the relationships among
the outputs, which is not always readily available. To circumvent this, another class
of models have been developed that jointly learn the regression coefficients along
with the output dependency structure [Lee and Liu (2012), Rai, Kumar and Daume
(2012), Rothman, Levina and Zhu (2010), Sohn and Kim (2012), Zhang and Yeung
(2010)]. However, none of these approaches use a regularization penalty to explic-
itly encourage shared structure between the estimate of the regression parameters
and the output network. Furthermore, the majority of these methods do not learn
the covariance structure of the outputs y but rather the conditional covariance of
the outputs given the inputs y | x. This can be interpreted as the covariance of the
noise matrix, and does not capture the true relationships between outputs.

Finally, several other approaches have been developed to boost the power
of eQTL mapping by incorporating prior knowledge in other ways, often us-
ing Bayesian methods. However, the vast majority of these techniques consider
each candidate SNP–gene association independently [Nica et al. (2010), Stephens
(2013)] or can only be applied with a very limited number of SNPs or genes due to
computational limitations [Banerjee, Yandell and Yi (2008), Flutre et al. (2013)].

Here we present a new approach that jointly performs eQTL mapping and gene
network inference by leveraging prior biological knowledge about the structure of
the problem. In particular, we construct a novel multiple-output regression model
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that jointly estimates the regression coefficients and the output network via trans-
fer learning. To our knowledge, we are the first to address this problem by incor-
porating regularization penalties to encourage the explicit sharing of information
between the two estimates.

3. Background. Before presenting our approach, we provide some back-
ground on the problems of penalized multiple-output regression and sparse inverse
covariance estimation, which will form the building blocks of our unified model.

In what follows, we assume X is an n-by-p dimensional matrix of SNP geno-
types, which we also call inputs, and Y is an n-by-q dimensional matrix of gene
expression values, which we also call outputs. Here n is the number of samples, p

is the number of SNPs, and q is the number of genes. The element xij ∈ {0,1,2}
represents the genotype value of sample i at SNP j , encoded as 0 for two copies
of the major allele, 1 for one copy of the minor allele, and 2 for two copies of
the minor allele. Similarly yik ∈ R represents the expression value of sample i in
gene k. We assume that the expression values for each gene are mean-centered.

3.1. Multiple-output lasso. Given input matrix X and output matrix Y , the
standard �1-penalized multiple-output regression problem, also known as the
multi-task lasso [Tibshirani (1996)], is given by

min
B

1

n
‖Y − XB‖2

F + λ‖B‖1,(1)

where B is a p-by-q dimensional matrix and βjk is the regression coefficient that
maps SNP xj to gene yk . Here ‖ · ‖1 is an �1 norm penalty that induces sparsity
among the estimated coefficients, and λ is a regularization parameter that controls
the degree of sparsity. The objective function given above is derived from the pe-
nalized negative log likelihood of a multivariate Gaussian distribution, assuming
y | x ∼ N (xT B, ε2I ) where we let ε2 = 1 for simplicity. Although this problem
is formulated in a multiple-output framework, the �1 norm penalty merely encour-
ages sparsity, and does not enforce any shared structure between the regression
coefficients of different outputs. As a result, the objective function given in (1)
decomposes into q independent regression problems.

3.2. Graph-guided fused lasso. Given a weighted graph G ∈ R
q×q that en-

codes a set of pairwise relationships among the outputs, we can modify the re-
gression problem by imposing an additional fusion penalty that encourages genes
yk and ym to have similar parameter vectors β·k and β·m when the weight of the
edge connecting them is large. This problem is known as the graph-guided fused
lasso [Chen et al. (2010), Kim, Sohn and Xing (2009), Kim and Xing (2009)] and
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is given by

min
B

1

n
‖Y − XB‖2

F + λ‖B‖1

+ γ
∑
k,m

|gkm| · ∥∥β·k − sgn(gkm)β·m
∥∥

1.
(2)

Here the �1 norm penalty again encourages sparsity in the estimated coefficient
matrix. In contrast, the second penalty term, known as a graph-guided fusion
penalty, encourages similarity among the regression parameters for all pairs of
outputs. The weight of each term in the fusion penalty is dictated by |gkm|, which
encodes the strength of the relationship between yk and ym. Furthermore, the sign
of gkm determines whether to encourage a positive or negative relationship be-
tween parameters; if gkm > 0 (i.e., genes yk and ym are positively correlated), then
we encourage β·k to be equal to β·m, but if gkm < 0 (i.e., genes yk and ym are nega-
tively correlated), we encourage β·k to be equal to −β·m. If gkm = 0, then genes yk

and ym are unrelated, and so we don’t fuse their respective regression coefficients.

3.3. Sparse inverse covariance estimation. In the graph-guided fused lasso
model defined in (2), the graph G must be known ahead of time. However, it
is also possible to learn a network over the set of genes. One way to do this is
to estimate their pairwise conditional independence relationships. If we assume
y ∼ N (μ,�), where we let μ = 0 for simplicity, then these conditional indepen-
dencies are encoded in the inverse covariance matrix, or precision matrix, defined
as � = �−1. We can obtain a sparse estimate of the precision matrix using the
graphical lasso [Friedman, Hastie and Tibshirani (2008)] given by

min
�

1

n
tr

(
YT Y �

) − log det(�) + λ‖�‖1.(3)

This objective is again derived from the penalized negative log likelihood of a
Gaussian distribution, where this time the �1 penalty term encourages sparsity
among the entries of the precision matrix.

4. Method. We now introduce our approach for jointly estimating the coef-
ficients in a multiple-output regression problem and the edges of a network over
the regression outputs. We apply this technique to the problem of simultaneously
learning an eQTL map and a gene regulatory network from genome (SNP) data
and transcriptome (gene expression) data. Although we focus exclusively on this
application, the same problem formulation appears in other domains as well.

4.1. A joint regression and network estimation model. Given SNPs x ∈ R
p

and genes y ∈ R
q , in order to jointly model the n-by-p regression parameter matrix
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B and the q-by-q inverse covariance matrix �, we begin with two core modeling
assumptions:

x ∼ N (0, T ),(4)

y | x ∼ N
(
xT B,E

)
,(5)

where T is the covariance of x and E is the conditional covariance of y | x. Given
the above model, we can also derive the marginal distribution of y. To do this,
we first use the fact that the marginal distribution p(y) is Gaussian.3 We can then
derive the mean and covariance of y, as follows:

Ey(y) = Ex

(
Ey|x(y|x)

) = 0;
Covy(y) = Ex

(
Covy|x(y|x)

) +Covx

(
Ey|x(y|x)

) = E + BT T B.

Using these facts, we conclude that the distribution of y is given by

y ∼ N
(
0,�−1)

,(6)

where �−1 = E + BT T B denotes the marginal covariance of y. This allows us
to explicitly relate �, the inverse covariance of y, to B , the matrix of regression
parameters. Lastly, we simplify our model by assuming T = τ 2Ip×p and E =
ε2Iq×q . With this change, the relationship between B and �−1 can be summarized
as �−1 ∝ BT B because B is now the only term that contributes to the off-diagonal
entries of � and hence to the inverse covariance structure among the genes.4

4.2. Estimating model parameters with a fusion penalty. Now that we have a
model that captures B and �, we want to jointly estimate these parameters from
the data while encouraging the relationship �−1 ∝ BT B . To do this, we formulate
our model as a convex optimization problem with an objective function of the form

lossy|x(B) + lossy(�) + penalty(B,�),(7)

where lossy|x(B) is a loss function derived from the negative log likelihood of
y | x, lossy(�) is a loss function derived from the negative log likelihood of y,
and penalty(B,�) is a penalty term that encourages shared structure between the
estimates of B and �.

Given n i.i.d. observations of x and y, let X be a matrix that contains one ob-
servation of x per row and let Y be a matrix that contains one observation of y per

3See equation B.44 of Appendix B in Bishop (2006).
4Although we make this simplifying assumption in our model, we later demonstrate via simulation

experiments that ICLasso still performs well in practice when these constraints are violated, namely
when the dimensions of x are not independent and the dimensions of y have residual covariance
structure after the effect of xT B is removed.
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row. Then we define the inverse-covariance-fused lasso (ICLasso) optimization
problem as

min
B,�

1

n
‖Y − XB‖2

F + 1

n
tr

(
YT Y �

) − log det(�)

+ λ1‖B‖1 + λ2‖�‖1

+ γ
∑
k,m

|θkm| · ∥∥β·k + sgn(θkm)β·m
∥∥

1.

(8)

From a statistical perspective, the above formulation is unusual because we aim
to simultaneously optimize the marginal and conditional likelihood functions of y.
However, when we consider it simply as an optimization problem and divorce
it from the underlying model, we see that it boils down to a combination of the
objectives from the multiple-output lasso and the graphical lasso problems, with
the addition of a graph-guided fused lasso penalty to encourage transfer learning
between the estimates of B and �.

When � is fixed, our objective reduces to the graph-guided fused lasso with
the graph given by G = −�. When B is fixed, our objective reduces to a variant
of the graphical lasso in which the �1 norm penalty has a different weight for
each element of the inverse covariance matrix, that is, the standard penalty term
p(�) = λ

∑
k,m |θkm| is replaced by p(�) = ∑

k,m wkm|θkm| where the weights are
given by wkm = λ2 + γ ‖β·k + sgn(θkm)β·m‖.

We further deconstruct the ICLasso objective by describing the role of each term
in the model:

• The first term 1
n
‖Y − XB‖2

F is the regression loss, and is derived from the con-
ditional log likelihood of y | x. Its role is to encourage the coefficients B to map
X to Y , that is, to obtain a good estimate of the eQTL map from the data.

• The second term 1
n

tr(Y T Y �) − log det(�) is the inverse covariance loss, and
is derived from the marginal log likelihood of y. Its role is to encourage the
network � to reflect the partial correlations among the outputs, that is, to obtain
a good estimate of the gene network from the data.

• The third term λ1‖B‖1 is an �1 norm penalty over the matrix of regression co-
efficients that induces sparsity among the SNP–gene interactions encoded in B .

• The fourth term λ2‖�‖1 is an �1 norm penalty over the precision matrix that
induces sparsity among the gene–gene interactions encoded in �.

• The final term γ
∑

k,m |θkm| · ‖β·k + sgn(θkm)β·m‖1 is a graph-guided fusion
penalty that encourages similarity between the coefficients of closely related
outputs; specifically, when genes yk and ym have a positive partial correlation,
it fuses βjk towards βjm for all SNPs xj , and when genes yk and ym have a
negative partial correlation, it fuses βjk towards −βjm for all SNPs xj .5

5Note that θkm is negatively proportional to the partial correlation between yk and ym, meaning
that a negative value of θkm indicates a positive partial correlation and vice versa [see, e.g., Peng,
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In the above objective, the loss functions come directly out of the modeling as-
sumptions given in (5) and (6). The sparsity-inducing �1 norm penalties make
estimation feasible in the high-dimensional setting where p,q > n, and contribute
to the interpretability of the eQTL map and gene network.

4.3. Sparse structure in B and �. In this section, we describe how the
ICLasso model captures sparse structure that is shared between the eQTL map
B and the gene network �, and in doing so enables transfer learning.

We first show that the graph-guided fused lasso penalty encourages the structure
�−1 ∝ BT B , thereby linking the two estimates. Consider the optimization prob-
lem �̂ = arg min� f (�) ≡ tr(BT B�) − log det(�). We can solve this problem in
closed form by taking the gradient ∇�f (�) = BT B − �−1 and setting it to 0,
which yields the solution �̂−1 = BT B . This suggests that the penalty tr(BT B�)

encourages the desired structure, while the log determinant term enforces the con-
straint that � be positive semidefinite, which is necessary for � to be a valid
inverse covariance matrix.

However, instead of directly using this penalty in our model, we demonstrate
that it encourages similar structure as the graph-guided fused lasso penalty. We
compare the trace penalty, denoted TRP, and the graph-guided fused lasso penalty,
denoted GFL, below.

TRP(B,�) = tr
(
BT B�

) =
q∑

k=1

q∑
m=1

θkm · βT·kβ·m,(9)

GFL(B,−�) =
q∑

k=1

q∑
m=1

|θkm| · ∥∥β·k + sgn(θkm)β·m
∥∥

1.(10)

We show that these penalties are closely related by considering three cases.

• When θkm = 0, the relevant terms in both TRP and GFL go to zero. In this case,
nothing links β·k and β·m in either penalty.

• When θkm < 0, the relevant term in TRP is minimized when βT·kβ·m is large and
positive, which occurs when β·k and β·m point in the same direction. Similarly,
the corresponding term in GFL is minimized when β·k = β·m. In this case, both
penalties encourage similarity between β·k and β·m with strength proportional
to the magnitude of θkm.

• When θkm > 0, the relevant term in TRP is minimized when βT·kβ·m is large and
negative, which occurs when β·k and β·m point in opposite directions. Similarly,
the corresponding term in GFL is minimized when β·k = −β·m. In this case, both
penalties encourage similarity between β·k and −β·m with strength proportional
to the magnitude of θkm.

Zhou and Zhu (2009)]. This explains why the sign is flipped in the fusion penalty in (8) relative to
the one in (2).
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We choose to use the graph-guided fused lasso penalty instead of the trace penalty
because it more strictly enforces the relationship between B and �−1 by fusing
the regression parameter values of highly correlated genes.

Next, we describe a set of conditions under which our assumptions on B and �

are compatible with one another. Although we do not provide theoretical guaran-
tees on what type of structure will be learned by our method, we illustrate via a toy
example that certain biologically realistic scenarios will naturally lead to sparsity
in both B and � = (I + BT B)−1.

Consider a gene network that is organized into a set of densely connected sub-
networks corresponding to functional gene modules (e.g., pathways). In this case,
we might expect the true � to be block diagonal, meaning that there exist blocks
C1, . . . ,Cd such that any pair of genes belonging to two different blocks are not
connected in the gene network, that is, θkm = 0 for any yk ∈ Ca and ym /∈ Ca .
Furthermore, suppose our central assumption on the relationship between B and
� is satisfied, namely genes that are linked in the gene network are also associated
with similar sets of SNPs in the eQTL map. Then we might expect that any pair
of genes belonging to the same block will have the same SNP–gene associations,
that is, βjk = βjm ∀j for any yk, ym ∈ Ca . Since we also assume that the true B is
sparse, this would lead to a block sparse pattern in B in which each gene module
is associated with only a subset of the SNPs.

A simple example of this type of sparse structure is shown in Figure 1. Note
that such a pattern in B would lead to block diagonal structure in � = I + BT B

that preserves the blocks defined by C1, . . . ,Cd . Furthermore, since the inverse of
a block diagonal matrix is also block diagonal with the same blocks, this implies
that � = �−1 will be block diagonal as well.

This provides an example of a scenario that occurs naturally in biological net-
works and satisfies our modeling assumptions. However, we note that our model
is flexible enough to handle other types of sparse structure as well. In fact, one of
the main advantages of our approach is that the sparsity pattern is learned from the
data rather than specified in advance.

FIG. 1. A toy example with 10 SNPs and 12 genes grouped into 3 modules. When B exhibits a
certain type of sparse structure, � = I + BT B and � = �−1 will also be sparse.
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4.4. Relationship to other methods. There are currently two existing ap-
proaches that jointly estimate regression coefficients and network structure: mul-
tivariate regression with covariance estimation (MRCE), from Rothman, Levina
and Zhu (2010), and conditional Gaussian graphical models (CGGM), originally
from Sohn and Kim (2012) and further developed by Wytock and Kolter (2013)
and Yuan and Zhang (2014). In this section, we describe how our approach differs
from these others.

All three methods, including ours, assume that the inputs X and outputs Y are
related according to the basic linear model Y = XB + E, where E is a matrix
of Gaussian noise. However, each approach imposes a different set of additional
assumptions on top of this, which we discuss below.

MRCE: This method assumes that E ∼ N (0,�−1), which leads to Y | X ∼
N (XB,�−1). MRCE estimates B and � by solving the following objective:

min
B,�

1

n
tr

(
(Y − XB)T (Y − XB)�

)
(11)

− log det(�) + λ1‖B‖1 + λ2‖�‖1.

It is important to note that � is the conditional inverse covariance of Y | X, which
actually corresponds to the inverse covariance of the noise matrix E rather than
the inverse covariance of the output matrix Y . We therefore argue that � doesn’t
capture any patterns that are shared with the regression coefficients B , since by
definition � encodes the structure in Y that cannot be explained by XB .

CGGM: This approach makes an initial assumption that X and Y are jointly
Gaussian with the following distribution:(

X

Y

)
∼ N

([
0
0

]
,

[
� 

T �

])
.

In this formulation, the distribution of Y | X is given by N (−X�−1,�−1). This
corresponds to the reparameterization of B as −�−1, where � is the condi-
tional inverse covariance matrix and  represents the “direct” influence of X on Y .
CGGM estimates  and � by solving the following optimization problem, where
sparsity penalties are applied to  and � instead of B and � as was the case in the
previous model:

min
,�

1

n
tr

((
Y + X�−1)T (

Y + X�−1)
�

)
− log det(�) + λ1‖‖1 + λ2‖�‖1.

(12)

Here the meaning of � has not changed, and it once again represents the inverse
covariance of the noise matrix.

ICLasso: Our method implicitly assumes two underlying models: Y | X ∼
N (XB, I) and Y ∼ N (0,�−1). In this case, � represents the marginal inverse
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covariance of Y rather than the conditional inverse covariance of Y | X, which
was captured by � in (11) and (12). The optimization problem in (8) is obtained
by combining the loss functions derived from the log likelihood of each model
and then incorporating sparsity penalties over B and � and an additional fusion
penalty to encourage shared structure.

Both MRCE and CGGM have two important drawbacks that are not shared
by our approach. First, both of these methods estimate �, the precision matrix
of the noise term, rather than �, the precision matrix of the outputs Y . Second,
neither method incorporates a structured sparsity penalty that explicitly encourages
shared structure between the network and the regression coefficients. In fact, it
would not make sense for these methods to apply a joint penalty over B and �

because, as discussed above, we wouldn’t expect these parameters to have any
shared structure. By comparison, our method learns the true output network � and
uses a graph-guided fused lasso penalty to explicitly encourage outputs that are
closely related in � to have similar parameter values in B .

4.5. Optimization via alternating minimization. Finally, we present an effi-
cient algorithm to solve the inverse-covariance-induced fused lasso problem de-
fined in (8). We start by rewriting the fusion penalty as follows:

GFL(B,−�) = γ
∑
k,m

|θkm| · ∥∥β·k + sgn(θkm)β·m
∥∥

1

= γ
∑
k,m

max{θkm,0} · ‖β·k + β·m‖1

+ γ
∑
k,m

max{−θkm,0} · ‖β·k − β·m‖1,

from which it is clear that GFL is biconvex in B and �. Thus, upon defining

g(B) = 1

n
‖Y − XB‖2

F + λ1‖B‖1,

h(�) = 1

n
tr

(
YT Y �

) − log det(�) + λ2‖�‖1,

we can rewrite the original optimization problem as

min
B,�

g(B) + h(�) + GFL(B,−�).(13)

Here g(B) is the usual lasso formulation in (1), h(�) is the usual graphical lasso
formulation in (3), and the graph-guided fusion penalty couples the two problems.
Since GFL is biconvex, we can solve the joint problem (13) using an alternating
minimization strategy. We describe how to solve each convex sub-problem in the
Supplementary Material [Marchetti-Bowick et al. (2019)].
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5. Experiments. In this section, we present the results from a series of experi-
ments on both synthetic and real data. We compare our method to several baselines
and demonstrate that it achieves better recovery of the underlying structure of B

and � than existing methods.

5.1. Simulation study. We begin by evaluating our model on synthetic data so
that we can directly measure how accurately the sparse structure of the eQTL map
and the gene network are recovered. We compare our eQTL map estimates B̂ to
several baselines, including traditional pairwise linear regression (LinReg), stan-
dard multi-task lasso (Lasso), graph-guided fused lasso using a sparse covariance
matrix as its graph (GFLasso1), graph-guided fused lasso using a sparse preci-
sion matrix as its graph (GFlasso2), sparse multivariate regression with covariance
estimation (MRCE), and the conditional Gaussian graphical model (CGGM). We
compare our network estimates �̂ to a traditional pairwise correlation network
(Corr) and the graphical lasso (GLasso). A detailed explanation of how we select
hyperparameter values for all methods is provided in the Supplementary Material
[Marchetti-Bowick et al. (2019)].

In our synthetic data experiments, we focus on recovering block-structured net-
works in which the genes are divided into a set of modules, or groups. In order
to generate data according to our model, we assume that the genes within each
module only regulate one another and are associated with the same set of eQTLs.
Specifically, this means that if genes k and m belong to the same module, we will
have θkm 
= 0 and β·k ≈ β·m. Although we focus on this data setting because it
makes intuitive biological sense and satisfies our modeling assumptions, we note
that our approach is flexible enough to handle other types of structure among the
SNPs and genes.

An example of one of our synthetic datasets is shown in Figure 2. The ground
truth for both B and � is given in the far left panel. The next three columns show
the estimated values of B for three competing methods, and the results of our
method are shown on the far right. In this example, the drawbacks of each of the
baseline methods are evident. The covariance matrix used for the network structure
in GFLasso1 captures many spurious patterns in Y that don’t correspond to true
patterns in the regression map, which confuses the estimate of B . The precision
matrix used for the network structure in GFLasso2 does not accurately capture
the true inverse covariance structure because of the low signal-to-noise ratio in Y .
This prevents the fusion penalty from effectively influencing the estimate of B .
Finally, although CGGM gets a reasonable estimate of the network, despite the fact
that it learns the conditional inverse covariance � instead of the marginal inverse
covariance �, this structure is not explicitly enforced in B , which still leads to a
poor estimate of the regression parameters. In contrast, the cleanest estimate of
both B̂ and �̂ comes from ICLasso.

The complete procedure we use for generating synthetic data is described in the
Supplementary Material [Marchetti-Bowick et al. (2019)]. To investigate the be-
havior of our method under a wide range of conditions, we compare four different
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FIG. 2. A qualitative comparison of results on a single synthetic dataset with p = 60 and q = 60.
The far left panel contains the ground truth for B and �. The remaining panels show the estimates
of the regression coefficients for each method (top) along with the graph structure that was used or
estimated by the method (bottom).

covariance settings. In the first setting, we maintain our modeling assumption that
both T and E are are proportional to the identity matrix. In the second setting, we
keep E ∝ Iq×q but assume that T has some off-diagonal covariance structure. This
captures a situation in which the SNP genotypes are correlated, which could easily
arise from linkage disequilibrium. In the third setting, we keep T ∝ Ip×p but as-
sume that E has some off-diagonal covariance structure. This captures a situation
in which the residual gene expression values are correlated even after removing
SNP effects, which might come from environmental or epigenetic factors. Finally,
in the fourth setting, we assume that both T and E are nonidentity.

The main results of our synthetic experiments are shown in Figure 3. Within
each covariance setting, we jointly vary the number of SNPs and genes, keeping
the ratio fixed. We evaluate our approach according to three metrics. In the top
two rows, we show the F1 score on the recovery of the true nonzero elements
of B and �, respectively. This reflects the ability of each method to learn the
correct structure of the eQTL map and the gene network. In the bottom row, we
show the prediction error of Y on an out-of-sample test set. We note that this
test set is completely separate from both the training set (used to estimate the
model parameters) and the validation set (used to select the best values of the
hyperparameters). Our results show that ICLasso achieves the best performance
even when we violate our modeling assumptions by introducing covariance among
the SNPs, conditional covariance among the genes, or both.

We also perform a second experiment in which we vary the density of B ,
the density of �, and the number of SNPs while keeping the number of genes
fixed. These results are shown in Supplementary Figure S1 [Marchetti-Bowick
et al. (2019)]. Overall, our results clearly demonstrate that ICLasso outperforms
all baselines in nearly all of the settings we consider.
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FIG. 3. A comparison of results on synthetic data generated with each of the four different types
of covariance structure and with several different values of p and q . We fix the group size to g = 10
and the number of SNP associations per gene to s = 5. All results are averaged over 20 simulations,
and the shaded regions show the standard error.

Finally, we perform a timing experiment to analyze the computational com-
plexity of our approach. These results are shown in Supplementary Figure S2
[Marchetti-Bowick et al. (2019)]. We show how the run time grows as a function of
both p and q . Although our method is the slowest amongst all baselines for large
values of q , it scales nicely in p. We argue that the cost of the extra computation
time is a worthwhile tradeoff for the boost in accuracy that ICLasso provides.

5.2. Yeast eQTL study. In order to evaluate our approach in a real-world set-
ting and provide a proof of concept for our model, we applied ICLasso to a yeast
eQTL dataset from Brem and Kruglyak (2005) that consists of 2,956 SNP geno-
types and 5,637 gene expression measurements across 114 yeast samples. To pre-
process the data, we removed SNPs with duplicate genotypes and retained only
the 25% of genes with the highest variance in expression, leaving p = 1,157 SNPs
and q = 1,409 genes in our analysis.

We used our approach to jointly perform eQTL mapping and gene network
inference on the yeast dataset, treating the SNPs as inputs X and the genes as out-
puts Y . We trained our model on 91 samples and used the remaining 23 samples as
a validation set for tuning the hyperparameters. Given the trained model, we read
the eQTL associations from the regression coefficient matrix B̂ , which encodes
SNP–gene relationships, and obtained the gene network from the inverse covari-
ance matrix �̂, which encodes gene–gene relationships. In addition to ICLasso, we
ran Lasso and GFlasso on the yeast data to obtain two additional estimates of B ,
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TABLE 1
Regression error on yeast data

Density Training error Validation error

Lasso 1.65% 0.502 0.718
GFLasso 2.87% 0.392 0.715
ICLasso 6.88% 0.395 0.703

and ran GLasso1 to obtain another estimate of �. Note that we chose not to com-
pare to MRCE and CGGM because these methods performed worse than the other
baselines in the most realistic data settings that we tested in our simulation exper-
iments. Furthermore, we did not compare to GFLasso2 because the performance
of the two variants of GFLasso that we evaluated were comparable.

Table 1 shows the density of B̂ obtained with each method, along with the pre-
diction error of Y on the training set and on the held-out validation set, which
were calculated using ‖Ytrain − XtrainB̂‖2

F and ‖Yvalid − XvalidB̂‖2
F , respectively.

We chose not to sacrifice any data for a test set, but these results indicate that
ICLasso achieves an equivalent or better fit to the training and validation sets than
Lasso and GFLasso.

5.2.1. Quantitative analysis. Because the true yeast eQTLs and gene network
structure are not known, there is no ground truth for this problem. We instead ana-
lyzed the output of each method by performing a series of enrichment analyses that
together provide a comprehensive picture of the biological coherence of the results.
An enrichment analysis uses gene annotations to identify specific biological pro-
cesses, functions, or structures that are over-represented among a group of genes
relative to the full set of genes that is examined [Subramanian et al. (2005)]. To
evaluate our yeast data results, we performed three types of enrichment analyses:
biological process and molecular function enrichment using annotations from the
Gene Ontology (GO) database [Ashburner et al. (2000)] and pathway enrichment
using annotations from the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database [Kanehisa and Goto (2000)]. We used a hypergeometric test to compute
a p-value for each term, and then adjusted these values to account for multiple
hypothesis testing. Significance was determined using an adjusted p-value cutoff
of 0.01.

We first analyzed B̂ by performing a per-SNP enrichment analysis. For each
SNP j , we used the nonzero elements in βj · to identify the set of genes associated
with the SNP. Next we performed GO and KEGG enrichment analyses on this
group of genes by comparing their annotations to the full set of 1409 genes that
we included in our study. We repeated this procedure for each SNP, and calculated
the total number of terms that were enriched over all SNPs to obtain a global mea-
sure of enrichment for B̂ . In addition, we calculated the total number of SNPs that
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TABLE 2
GO and KEGG enrichment analysis on yeast eQTL map

Number of enriched terms Avg. Number of enriched SNPs Avg.

GO-BP GO-MF KEGG change GO-BP GO-MF KEGG change

Lasso 1862 804 205 — 198 132 127 —
GFLasso 3499 1528 312 +77% 286 211 172 +47%
ICLasso 8046 3147 1025 +155% 590 453 441 +126%

were enriched for at least one term in each category. These results are summarized
in Table 2. It is evident that ICLasso outperforms both GFLasso and Lasso on es-
timating the regression coefficients, since it has more than twice as many enriched
terms in GO biological process, GO molecular function, and KEGG than either
baseline.

Next we used a similar approach to evaluate the structure present in �̂. We
first obtained groups of genes by using spectral clustering to perform community
detection among the genes using the inferred network structure. After clustering
the genes into 100 groups,6 we performed GO and KEGG enrichment analyses
on each cluster and calculated the total number of enriched terms along with the
total number of clusters that were enriched for at least one term. These results
are summarized in Table 3. Once again, our approach has more enrichment than
the baseline in every category, which implies that the gene network estimated by
ICLasso has a much more biologically correct structure than the network estimated
by GLasso.

5.2.2. Qualitative analysis. The quantitative results in Tables 2 and 3 indi-
cate that, compared to other methods, our approach identifies more eQTLs that are
associated with genes significantly enriched in certain biological processes and
pathways. A more detailed examination of our results revealed that many of the

TABLE 3
GO and KEGG enrichment analysis on yeast gene network

Number of enriched terms Avg. Number of enriched ckusters Avg.

GO-BP GO-MF KEGG change GO-BP GO-MF KEGG change

GLasso 173 77 31 — 14 12 11 —
ICLasso 321 127 41 +61% 29 26 22 +108%

6We also clustered with 25, 50, and 200 groups and obtained similar results.
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enriched terms correspond to metabolic pathways, and that the eQTLs we iden-
tified agree with those discovered in a previous study that analyzed the effect of
genetic variations on the yeast metabolome.

Breunig et al. (2014) identified the metabolite quantitative trait loci (mQTLs)
for 34 metabolites and then examined each mQTL for the presence of metabolic
genes in the same pathway as the linked metabolite. We found that 10 of these
34 metabolites were linked to metabolic genes where our identified eQTLs reside.
For example, Breunig et al. determined that the metabolite valine is linked to an
mQTL in a region spanned by the ILV6 gene, which encodes a protein involved
in valine biosynthesis. In our study, we also identified an eQTL located in ILV6.
Moreover, we found that the eQTL in ILV6 is associated with 365 genes that are
significantly enriched for pathways involved in the metabolism and biosynthesis
of various amino acids. This is consistent with the fact that the metabolism and
biosynthesis of amino acids in the cell needs to be coordinated.

Furthermore, our enrichment analysis shows that the eQTL-associated genes
we identified are enriched for various metabolic pathways (e.g. sulfur, riboflavin,
protein, starch, and sucrose metabolism; oxidative phosphorylation; glycolysis), as
well as more general pathways, such as cell cycle pathways and MAPK pathways.
This is consistent with the roles of the mQTLs identified by Breunig et al. Interest-
ingly, among these genes, SAM1, encoding an S-adenosylmethionine synthetase,
is also among the eQTLs in our list. Our results show that the eQTL we found in
SAM1 is associated with 252 genes that are enriched for cytoplasmic translation
and ribosome functions, consistent with the fact that SAM is the methyl donor
in most methylation reactions and is essential for DNA methylation of proteins,
nucleic acids, and lipids [Roberts and Selker (1995)].

Finally, to illustrate our results, we visualized the SNP–gene associations dis-
covered by GFLasso and ICLasso by plotting a binary heatmap of the two esti-
mates of B in Figure 4. Within each heatmap, both the SNPs and genes are sorted

FIG. 4. Binary heatmap of associations between SNPs (one per row) and genes (one per column),
estimated with GFLasso and ICLasso. In each image, the SNPs and genes are ordered to maximize
the visual clustering of associations.
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TABLE 4
Known Alzheimer’s disease genes

Gene symbol

APP, APOE, PLD3, TREM2, SORL1, GAB2, BIN1, CLU, CD33, CR1, PICALM, ABCA7,
CD2AP, MS4A6A, MS4A4E

to maximize the clustering of associations. From these plots, it is clear that the
associations discovered by ICLasso contain more interesting block structure than
those discovered by GFLasso.

5.3. Human eQTL study. Lastly, we applied our method to a human eQTL
dataset in order to identify a set of interesting genomic loci that may play a role in
Alzheimer’s disease. For this study, we used a dataset from Zhang et al. (2013) that
contains n = 540 case and control samples of patients with Alzheimer’s disease,
genotypes of p = 555,091 SNPs across all chromosomes, and mRNA expression
values of q = 40,638 gene probes measured in the cerebellum, a region of the
brain that governs motor control and some cognitive functions.

We preprocessed this data by selecting a subset of interesting SNPs and genes
to include in our analysis. To filter genes, we calculated the marginal variance of
the expression of each gene, the fold change in each gene’s expression between
the case and control samples, and the p-value of a t-test with the case-control
status. We then selected all genes with variance in the top 10%, fold change in
the top 10%, or p-value in the bottom 10%, along with a set of 15 genes known
to be associated with Alzheimer’s disease. These genes are listed in Table 4. To
filter SNPs, we calculated the p-value of a chi-square test with the case-control
status. We then selected all SNPs with uncorrected p-value < 0.05, along with all
SNPs located within 500 kb of any of the Alzheimer’s genes. This filtering yielded
p = 24,643 SNPs and q = 9,692 genes.

Applying ICLasso to this dataset yielded an estimate of B̂ with 4.07% density
and an estimate of �̂ with 1.70% density. To analyze the results, we first con-
structed a set of candidate SNPs comprised of the top 10 SNPs associated with
each of the Alzheimer’s genes based on association strength. Since some genes
are represented by multiple probes in the dataset, there are 25 gene expression
values corresponding to the 15 Alzheimer’s genes. From these, we identified 185
candidate eQTLs for further analysis.

5.3.1. Enrichment analysis. We performed an enrichment analysis for each of
these SNPs by looking at the set of genes linked to each SNP in the eQTL map
and determining whether these are enriched for any GO biological process terms
relative to the full universe of 9,692 genes. Among these, 58 (31%) are enriched
for at least one term using a corrected p-value cutoff of 0.01. When analyzing the
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results, we noticed three categories of candidate eQTLs that might play a role in
Alzheimer’s disease: SNPs associated with genes enriched for immune functions,
SNPs associated with genes enriched for metabolic functions, and SNPs associ-
ated with genes enriched for neural functions. A selected set of interesting results
from each of these categories are highlighted in Supplementary Tables S1, S2 and
S3 [Marchetti-Bowick et al. (2019)]. One particularly interesting observation is
that many of the SNPs in the first category are associated with genes implicated
in myeloid cell activated immune response. This is notable because Alzheimer’s
disease has previously been linked to acute myeloid leukemia [Malik et al. (2015)].

5.3.2. Comparison to baselines. Next, we compared our results to the two
simple pairwise baselines (LinReg and Corr). These methods are commonly used
for QTL mapping and gene network estimation, and are often favored for large
datasets due to their efficient run time. For the purposes of this experiment, we
selected significance thresholds for the baselines that yielded estimates of B and
� that had the same density as the estimates produced by ICLasso.

The results of our comparative analysis are summarized in Figure 5. This plot
shows the number of SNP associations per gene sorted by the degree of the gene

FIG. 5. A comparison of the results obtained by ICLasso and the pairwise methods on Alzheimer’s
data. The blue and green lines show the number of SNP associations per gene, and the red and gray
lines show the number of gene associations per gene. The genes on the horizontal axis are sorted
according to their degree in the network estimated by ICLasso. The three dashed and dotted lines are
smoothed versions of the corresponding scatter plots.
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in the network estimated by ICLasso. The trend lines emphasize that ICLasso has
more power to detect eQTL associations for genes that are highly connected in the
estimated gene network. This result matches our intuition about the structural prior
encoded in the ICLasso penalty term, which enables the model to detect SNP–gene
associations that exhibit a weak signal in the data by leveraging information about
other related genes. We also note that the gene connectivity estimated by ICLasso
correlates well with the connectivity estimated by the correlation network.

To provide an additional view of the results, we plotted the distributions of the
SNP and gene association counts in Supplementary Figure S3 [Marchetti-Bowick
et al. (2019)]. One significant difference between ICLasso and the baseline in the
distribution of the number of gene associations (shown in the right panel) is that
the ICLasso distribution clearly has 3 modes (one peaked at 0, one peaked at 750,
and a third peaked at 1500). This suggests that the ICLasso estimate of the gene
network identified at least two large interconnected sub-networks.

5.3.3. Stability analysis. Finally, we performed experiments to assess the sta-
bility of our results. First, because our eQTL dataset is somewhat unusual in that
it contains both case and control samples, we wanted to check whether any of the
associations could be due to batch effects in the data. To investigate, we experi-
mented with including a few of the top principal components from the SNP geno-
types X and the gene expression values Y as additional covariates in our model.
The results of this experiment are given in Supplementary Figure S4 [Marchetti-
Bowick et al. (2019)]. They show that including these principal components barely
alters the results. In particular, including only one PC from Y yields nearly identi-
cal results, and including one PC from X only slightly changes the set of associa-
tions. We also experimented with including more than one PC from each dataset,
but the results were the same.

Second, because this dataset is very high-dimensional, with p and q both much
larger than the sample size n, we wanted to evaluate how sensitive the results are
to the set of samples used to fit our model. To do that, we refit the model to sev-
eral random subsamples of the data and also refit the model using only control
samples and only case samples. All of these subsamples have a fixed sample size
of n = 270. The results of these experiments are summarized in Supplementary
Figure S4 [Marchetti-Bowick et al. (2019)]. They show that the set of associations
we identify is very sensitive to the set of samples used for training, with only 15%
overlap on average between each pair of random samples. This is almost certainly
because of the noisiness inherent to high-dimensional datasets. The overlap be-
tween the separate case and control estimates is even lower at 3%. We believe this
is largely due to the fact that we based our initial filtering on correlation with the
case/control status.

Note that in all of the stability results, the overlap in the set of associations
given by two estimates of B is measured as the number of associations in the
union divided by the number of associations in the intersection.
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6. Conclusion. In this work, we propose a new model called the inverse-
covariance-induced fused lasso which jointly estimates regression coefficients B

and an output network � while using a graph-guided fused lasso penalty to explic-
itly encourage shared structure. Our model is formulated as a biconvex optimiza-
tion problem, and we derive new, efficient optimization routines for each convex
sub-problem based on existing methods.

Our results on both synthetic and real data unequivocally demonstrate that our
model achieves significantly better performance on recovery of the structure of
B , recovery of the structure of �, and prediction error than all baselines we evalu-
ated. In this paper, we demonstrated that our approach can be used to perform joint
eQTL mapping and gene network estimation on a yeast dataset, yielding more bio-
logically coherent results than previous work. However, the same problem setting
appears in many different applications, and the inverse-covariance-induced fused
lasso model can therefore be used in a wide range of domains.

The primary disadvantage of our proposed method is that it is not scalable in
the number of genes. One promising direction for future work would be to explore
an approximation in the style of Meinshausen and Bühlmann (2006) that performs
neighborhood selection for estimating the gene network instead of solving for the
exact value of �. Furthermore, the screening rules for the graphical lasso proposed
in Danaher, Wang and Witten (2014) can be directly extended to our model, and
would likely provide a significant speedup when working with block sparse gene
networks.

SUPPLEMENTARY MATERIAL

Supplement to “A penalized regression model for the joint estimation of
eQTL associations and gene network structure.” (DOI: 10.1214/18-AOAS1186
SUPP; .pdf). We provide a supplementary document [Marchetti-Bowick et al.
(2019)] that contains additional details about the optimization algorithm and addi-
tional results for both the synthetic and real data experiments.
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