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Abstract

Some relatively easy but occasionally useful results about norm duality are recorded.

1 Norms

Recall that norms, defined on some vector space X (with scalar field K), are functions ‖ · ‖ : X 7→ R+ that
satisfy the following three properties:

1. (positive definiteness) ‖x‖ = 0 ⇐⇒ x = 0;

2. (homogeneity) ‖αx‖ = |α|‖x‖,∀α ∈ K;

3. (triangle inequality) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

It follows immediately from the last two properties that (pseudo-)norms are actually convex functions, and
Lipschitz continuous on the whole space X . Note that norms are not differentiable at the origin (including
those induced by inner products, if you did not forget to take the square root ,).

It follows easily from the definition that the (open) norm ball B := {x ∈ X : ‖x‖ < 1} is convex, balanced,
absorbing and bounded. In fact, the other direction is also true. Let us put aside the positive definiteness
condition temporarily (i.e. consider pseudo-norms). Any convex, balanced and absorbing set, say B, induces
a pseudo-norm on the underlying vector space through the Minkowski functional (known also as the gauge
function):

p(x) := inf{t ∈ R : x ∈ tB}.
It is an easy exercise to show that the (open) pseudo-norm ball {x ∈ X : p(x) < 1} in this case is B (provided
that B is open, whatever that means ,). Finally, we mention that p(·) is a norm iff its ball B does not
contain a line.

2 Norm Duality

Given some norm ‖ · ‖ on the vector space X, we define its dual norm on the (topological) dual space X ∗ as:

‖x∗‖∗ := sup
x∈B
〈x;x∗〉,

where B is the norm ball of ‖ · ‖, and the notation 〈·; ·〉 signifies the dual paring. From the definition we
have immediately the “Cauchy-Schwarz inequality”

〈x;x∗〉 ≤ ‖x‖‖x∗‖∗.

It is clear from the definition that the dual norm is nothing but the support function of B 1, whence the
two balls B and B∗ := {x∗ ∈ X ∗ : ‖x∗‖∗ < 1} are polar to each other. It is an amazing fact that “duality”,

1hence is the Fenchel conjugate of the indicator function δB(x) whose value is 0 on B and infinity otherwise.
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in many disguises, reflects (and can be characterized (!) by) “order” relations. For sets, in particular norm
balls, we can roughly say that big ones are dual to small ones, and vice versa (i.e. if we order sets by their
“sizes”, then duality reverses this order).

It can be shown that the bidual norm ‖ · ‖∗∗, defined on X ∗∗|X (whatever this notation means ,), is
nothing but the original norm ‖ · ‖.

3 Norm Arithmetics

We now consider some elementary “arithmetic” operations on norms. Take two norms ‖ · ‖(1) and ‖ · ‖(2),
where the underlying vector space is always fixed to be X . Let B1 and B2 be the respective norm balls.

The first operation we consider is the summation. Define

h(x) := ‖x‖(1) + ‖x‖(2).

It should be straightforward to verify that h(·) is indeed a norm (on X ). The norm ball of h turns out to be
the inverse summation2 of B1 and B2:

Bh := {x ∈ X : h(x) < 1} =
⋃

λ∈[0,1]

{λB1 ∩ (1− λ)B2} =: B1]B2.

Naturally, the next operation to consider, is the inverse summation. Define

k(x) := sup
λ∈[0,1]

inf
x=x1+x2

λ‖x1‖(1) + (1− λ)‖x2‖(2) = inf
x=x1+x2

‖x1‖(1) ∨ ‖x2‖(2) =: ‖x‖(1)]‖x‖(2).

It might take some effort to convince oneself that k(·) is indeed a norm (but should not be too hard ,).
Note that we have deliberately defined k(·) in a way that resembles the ] operation for sets, while the last
(cleaner) equality implies immediately that the norm ball

Bk := {x ∈ X : k(x) < 1} = B1 +B2.

Next we consider the maximum. Define

f(x) := ‖x‖(1) ∨ ‖x‖(2).

Easily verified that f(·) is indeed a norm. Its norm ball is the intersection:

Bf := {x ∈ X : f(x) < 1} = B1 ∩B2.

It is again natural to consider the “dual” notion, this time, the “minimum”. Well, not quite, since the
minimum of two norms need not be a norm (although positive definiteness and homogeneity still hold). Note
that we are not saying that the minimum of two norms can never be a norm. A trivial example is when one
norm “dominates” the other. Perhaps a little bit surprisingly (is it? one cannot “bend” convex functions!),
this is the only possibility3. So we need to bring in convexity explicitly. Define:

g(x) := conv{‖ · ‖(1) ∧ ‖ · ‖(2)} = inf
x=x1+x2

‖x1‖(1) + ‖x2‖(2) =: ‖ · ‖(1)�‖ · ‖(2),

where � signifies the infimal convolution and conv denotes the (closed) convex hull (i.e. the largest closed
convex minorant)4. One is encouraged to verify that the norm ball satisfies:

Bg := {x ∈ X : g(x) < 1} = conv{B1 ∪B2}.

Duality is apparent in the last two operations, if one interprets (as usual) ∨ as ∪, ∧ as ∩ and vice versa
(they look similar, don’t they? ,). We have also a nice example that illustrates that small balls (intersection)

2For a justification of the name “inverse sum”, refer to T. Rockafellar’s classic book: Convex Analysis.
3Suppose ∃x, y ∈ X such that ‖x‖(1) > ‖x‖(2), ‖y‖(1) < ‖y‖(2) and yet ‖ · ‖(1) ∧ ‖ · ‖(2) is a norm. Restricting all relevant

norms into the two dimensional subspace spanned by x and y. Since all norms are equivalent in finite dimensional spaces, we
easily conclude that ‖ · ‖(1) = ‖ · ‖(2) on that two dimensional subspace, an immediate contradiction.

4In general, the infimal convolution differs from the convex hull; they coincide on positively homogeneous and subadditive
functions (i.e. pseudo-norms if K = R).
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are dual to big balls (union). It is probably not hard to guess that the first two operations are dual to each
other too.

It is tempting to generalize the above results to arbitrary (but finite, since we do not want to mess with
limits ,) number of norms. For this, we need to convince ourselves that the inverse sum and the infimal
convolution are both commutative and associative. Well, yes, we also need to show sum and maximum are
commutative and associative......

Instead of repeating the arguments, we summarize directly the results in Table 1.

operation formula ball dual dual formula
+ +i‖ · ‖(i) ]iBi ] ]i‖ · ‖∗(i)
] ]i‖ · ‖(i) +iBi + +i‖ · ‖∗(i)
∨ ∨i‖ · ‖(i) ∩iBi � �i‖ · ‖∗(i)
� �i‖ · ‖(i) conv ∪i Bi ∨ ∨i‖ · ‖∗(i)

Table 1: Duality relations among elementary arithmetic operations on norms.

We end this section with a theorem that summarizes and generalizes the above four arithmetics. (In
retrospect, this theorem is what needs to be kept in mind.)

Theorem 1 The two norms,
(∑n

i=1 ‖x‖
p
(i)

)1/p
and inf

x=
∑n

i=1 xi

(∑n
i=1 ‖xi‖

∗q
(i)

)1/q
, are dual to each other,

where 1/p+ 1/q = 1, p ≥ 1.

Proof: It follows from the definition. (Prove me wrong if you are skeptical. Oh yeah!)

4 Discussion

Unlike previous section, let us take two norms defined on two different vector spaces: (X , ‖·‖X ) and (Y, ‖·‖Y).
Connection to interpolation spaces.

5 Examples

5.1 Vector example: α‖ · ‖1 + ‖ · ‖2

Let X = Rd, and define ‖x‖ := α‖x‖1 + ‖x‖2 = α
∑d
i=1 |xi| +

√∑d
i=1 x

2
i , where α > 0 is a constant. The

dual norm of ‖ · ‖ is

‖y‖∗ = min
z
{‖y − z‖2 ∨ ‖z/α‖∞} = {min

z,t
t, s.t. ‖y − z‖2 ≤ t, ‖z‖∞ ≤ αt}. (1)

It is clear that we can assume y ≥ 0 and y is arranged in decreasing order, hence w.l.o.g., we can assume
z ≥ 0 and z is arranged in decreasing order too. The key observation is that the right-hand side of (1)
depends only on s := ‖z‖∞, i.e.

(1) = min
s≤αt

t, s.t. (y1 − s)2 +

d∑
i=2

(yi − yi ∧ s)2 ≤ t2.

It is clear that t ≤ ‖y/α‖∞, hence at optimum, we may have s = αt since the left-hand side of the above
constraint is a decreasing function of s. Therefore

(1) = min
t
t, s.t.

d∑
i=1

(yi − yi ∧ (αt))2 ≤ t2.
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We realize that the left-hand side of the constraint is decreasing in t, hence this one dimensional problem can
be very quickly solved. In fact, an analytic solution exists: By checking d+1 points {y1/α, . . . , yd/α, yd+1 :=
0} we know the optimal t lies in [yj+1/α, yj/α] (where j ∈ [d]). Solving the quadratic inequality we obtain

t̃ =

{(
α‖y1:j‖1 −

√
α2‖y1:j‖21 − (jα2 − 1)‖y1:j‖22

)
/(jα2 − 1), d > 1

y1/(1 + α), d = 1
,

t = (t̃ ∧ yj) ∨ yj+1 and z = t ∧ y. Moreover,

∂‖y‖∗ =
y − z

‖y − z‖2 + α‖y − z‖1
.

Similarly, we can derive the dual norm of ‖ · ‖ := (α‖ · ‖1)∨‖ · ‖2. Although this case is of less interest to
us, we nevertheless record the result (as before assume w.l.o.g. y ≥ 0 and y is arranged in decreasing order):

‖y‖∗ = min
z
‖y − z‖2 + ‖z/α‖∞ = min

s
s/α+

√√√√ d∑
i=1

(yi − yi ∧ s)2.

The right-hand side is apparently a (univariate) convex function of s, hence can be quickly solved. Again,
an analytic solution can be found by checking the d + 1 points {y1, . . . , yd, yd+1 := 0}. The subdifferential
∂‖y‖∗ = y−z

‖y−z‖2 .

5.2 Matrix example: α‖ · ‖1,1 + ‖ · ‖tr

Let X = Rm×n, and define ‖X‖ := α‖X‖1,1 + ‖X‖tr = α
∑
ij |Xij | +

∑m∧n
i=1 σi, where α > 0 is a constant,

{σi} are the singular values of X. The dual norm of ‖ · ‖ is

‖Y ‖∗ = min
Z
{‖Y − Z‖sp ∨ ‖Z/α‖∞,∞} = {min

Z,t
t, s.t. ‖Y − Z‖sp ≤ t, |Zij | ≤ αt}. (2)
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