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Example 1.80: Continuous flow for density estimation (Tabak and Vanden-Eijnden 2010)

Let p be a known density, e.g., standard normal, and q be a density we wish to learn. We know there exist
mappings T so that

q = T−1
# p, i.e., T−1(X) ∼ q if X ∼ p.

Let us build T−1 through a continuous family T−1
t , leading to

pt := (T−1
t )#p, pt(x) = |detT′

tx| · p(Ttx).

Conversely, we also have

p = T#q, qt := (Tt)#q, qt(Ttx) · | detT′
tx| = q(x).

We use the KL divergence as our objective of learning:

KL(q∥pt) =
∫

q(x) log
q(x)

pt(x)
dx = KL(qt∥p) =

∫
q(x) log

qt(Ttx)

p(Ttx)
dx.

We take the (functional) derivative w.r.t. Tt:

δKL

δTt
(x) = [sqt(Ttx)− sp(Ttx)]q(x) = [sqt(Ttx)− sp(Ttx)] · qt(Ttx)·|detT′

tx| (1.24)

and evolve Tt according to the ODE (that guarantees decrease of our KL objective):

dTt = −b(Tt), where b(z) = [sqt(z)− sp(z)] · qt(z). (1.25)

We have dropped the Jacobian |detT′
tx| in (1.24) for better interpretation. Essentially, we seek an infinites-

imal improvement T over our current estimate Tt, so we compute δKL(T ◦Tt)/δT ↾T=Id, which leads exactly
to (1.25). This Lagrangian view allows us to “forget” the past and focus “myopically” on deforming the
current qt to the target p. In fact, we have the following continuity equation corresponding to (1.25):

∂tqt = ∇ · (qtb) = ∇ · [q2t (sqt − sp)].

Alternatively, we may use the reverse KL divergence as our objective:

LK(q∥pt) = LK(qt∥p) =
∫

p(x) log
p(x)

qt(x)
dx.

Interestingly, the dynamics (1.25) also decreases the reverse KL divergence:

dLK

dt
= −

∫
p(x)

qt(x)
∂tqt(x) dx = −

∫
p(x)

qt(x)
∇ · [q2t (sqt − sp)] dx =

∫
[q2t (sqt − sp)] · ∇

p(x)

qt(x)
dx

= −
∫

pqt∥sqt − sp∥22 dx.
Tabak, E. G. and E. Vanden-Eijnden (2010). “Density estimation by dual ascent of the log-likelihood”. Communica-

tions in Mathematical Sciences, vol. 8, no. 1, pp. 217–233.

Example 1.81: Score matching as gradient flow of KL (e.g., Lyu 2009)

The Fisher divergence between two densities is the square L2 distance between their score functions:

F(p∥q) := EX∼p∥sp(X)− sq(X)∥22.

Recall from Example 1.79 that the Gaussian density satisfies the heat equation (1.23). Thus, upon convolu-
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tion

pt = p ∗ N (0, 2t) and qt = q ∗ N (0, 2t)

also satisfy the heat equation. We are now ready to prove the following result due to Lyu (2009):

d

dt
KL(pt∥qt) = −F(pt∥qt). (1.26)

Indeed, expanding the first term:

d

dt
KL(pt∥qt) =

∫ [
∂tpt · (log pt

qt
) + pt

∂tpt
pt
− pt

∂tqt
qt

]
dx =

〈
∆pt; log

pt

qt

〉
+ ∂t

∫
pt dx−

〈
∆qt;

pt

qt

〉
= −

〈
∇pt;∇ log pt

qt

〉
+ 0 +

〈
∇qt;∇pt

qt

〉
= −

〈
pt

∇pt

pt
;∇ log pt

qt

〉
+

〈
pt

∇qt
qt

;
∇pt

qt
pt

qt

〉
= −⟨pt(spt

− sqt); spt
− sqt⟩ = −F(pt∥qt),

where we recall the score sp := ∇ log p = ∇p
p .

The relation (1.26), after changing the base measure to qt dx, is known as the de Brujin identity (Stam
1959). Extension to the f -divergence is immediate (Valero-Toranzo et al. 2018).
Lyu, S. (2009). “Interpretation and generalization of score matching”. In: Proceedings of the Twenty-Fifth Conference

on Uncertainty in Artificial Intelligence (UAI), pp. 359–366.
Stam, A. J. (1959). “Some inequalities satisfied by the quantities of information of Fisher and Shannon”. Information

and Control, vol. 2, no. 2, pp. 101–112.
Valero-Toranzo, I., S. Zozor, and J.-M. Brossier (2018). “Generalization of the de Bruijn Identity to General ϕ-

Entropies and ϕ-Fisher Informations”. IEEE Transactions on Information Theory, vol. 64, no. 10, pp. 6743–6758.

Definition 1.82: Denoising auto-encoder (Vincent 2011; Vincent et al. 2010)

Consider the joint densities p(x, z) and q(x, z), with marginals p(x) and q(x), respectively. Their Fisher
divergence can be decomposed as:

F
(
p(x, z)∥q(x, z)

)
= 1

2E(X,Z)∼p[∥∇x log q(X,Z)−∇x log p(X,Z)∥22 + ∥∇z log q(X,Z)−∇z log p(X,Z)∥22]
= 1

2E(X,Z)∼p[∥∇x log q(X|Z)−∇x log p(X|Z)∥22 + ∥∇z log q(Z|X)−∇z log p(Z|X)∥22]
= EF

(
p(x|z)∥q(x|z)

)
+ EF

(
p(z|x)∥q(z|x)

)
.

In particular, we have

F
(
p(x)∥q(x)

)
= 1

2EX∼p∥∇x log q(X)−∇x log p(X)∥22
= F

(
p(x, z)∥q(x)p(z|x)

)
= 1

2E(X,Z)∼p∥∇x log q(X|Z)−∇x log p(X|Z)∥22
= 1

2E(X,Z)∼p∥∇x log q(X)−∇x log p(X|Z)∥22+
+ 1

2E(X,Z)∼p∥∇x log p(X)∥22 − ∥∇x log p(X|Z)∥22,

where the last equality follows from the fact that

E(X,Z)∼p ⟨∇x log q(X),∇x log p(X|Z)⟩ = E(X,Z)∼p ⟨∇x log q(X),∇x log p(X,Z)⟩

=

∫
⟨∇x log q(x),∇xp(x, z)⟩dx dz

=

∫ 〈
∇x log q(x),∇x

∫
p(x, z) dz

〉
dx
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=

∫
⟨∇x log q(x),∇xp(x)⟩dx.

Vincent, P. (2011). “A Connection Between Score Matching and Denoising Autoencoders”. Neural Computation,
vol. 23, no. 7, pp. 1661–1674.

Vincent, P., H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol (2010). “Stacked Denoising Autoencoders:
Learning Useful Representations in a Deep Network with a Local Denoising Criterion”. Journal of Machine
Learning Research, vol. 11, no. 110, pp. 3371–3408.

Example 1.83: Neural ODE (Chen et al. 2018)

The popular residual network (He et al. 2016)

Xt+1 = Xt + f(t,Xt,ut)

can be treated as an Euler discretization of the ODE:

dXt = f(t,Xt,ut), (1.27)

where ut, the weights of the network, will play the role of a control variable. Consider the control minimiza-
tion problem (Liberzon 2012)

min
u

g(x1)+

∫ 1

0

ℓ(t,xt,ut) dt, s.t. (1.27),

where X0 is our training data. To train the network, we need to compute the derivative w.r.t. u, for which
we introduce the Lagrangian multiplier pt and consider

L(t,x,u,p) := g(x1) +

∫ 1

0

(⟨pt, ẋt⟩ −H(t,xt,ut,pt)) dt, where the Hamilton H(t,xt,ut,pt) := ⟨p, f(t,x,u)⟩ .

Let us perturb ũ = u+ ϵv and obtain x̃ = x+ ϵy + o(ϵ). Then,

dL

dϵ
↾ϵ=0= ⟨∇g(x1) + p1,y1⟩ −

∫ 1

0

⟨ṗ+Hx(t,xt,ut,pt),y⟩+ ⟨Hu(t,xt,ut,pt),v⟩dt,

which motivates us to choose the Lagrangian multiplier (a.k.a. adjoint) pt as follows:

ẋt = Hp, with initial data x0

ṗt = −Hx, with end momentum p1 = −∇g(x1)

∇uL = −Hu.

When the control ut ≡ u, we obtain

∇uL = −
∫ 1

0

Hu dt = −
∫ 1

0

∇uf(t,xt,u) · p dt.

After training u, Chen et al. (2018) also showed the following:

d log pt(xt)

dt
= 1

pt
[∂tpt(xt) + ⟨∇xpt(xt), ft(xt)⟩] = 1

pt
[−∇ · (ptft) + ⟨∇xpt(xt), ft(xt)⟩] = −∇ · ft(xt),

which can be useful in computing the log-likelihood along the trajectory of xt.
Chen, T. Q., Y. Rubanova, J. Bettencourt, and D. K. Duvenaud (2018). “Neural ordinary differential equations”. In:

Advances in Neural Information Processing Systems, pp. 6572–6583.
He, K., X. Zhang, S. Ren, and J. Sun (2016). “Deep Residual Learning for Image Recognition”. In: IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pp. 770–778.
Liberzon, D. (2012). “Calculus of Variations and Optimal Control Theory: A Concise Introduction”. Princeton Uni-

versity Press.
Chen, S., S. Ding, Y. Karayiannidis, and M. Björkman (2023). “Learning Continuous Normalizing Flows For Faster

Convergence To Target Distribution via Ascent Regularizations”. In: The Eleventh International Conference on
Learning Representations.
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Example 1.84: Variational optimal transport (Benamou and Brenier 2000)

Let ρ0 and ρ1 be two given densities, with Wasserstein distance

W2
2(ρ0, ρ1) = min

T:T#ρ0=ρ1

EX∼ρ0
∥TX− X∥22, where ρ0(x) = ρ1(Tx) · detT′x.

Brenier (1991) proved the existence of such a (unique) T = ∇φ for some convex potential function φ.
Let us consider the ODE:

dXt(x) = bt(Xt), where X0 = x.

When X0 ∼ p0, the intermediate densities Xt ∼ pt satisfy the continuity equation and boundary condition:

∂tpt = −∇ · (ptbt), (1.28)
p0 = ρ0, p1 = ρ1. (1.29)

In fact, Benamou and Brenier (2000) showed the following surprising result:∫ ∫ 1

0

pt(x)∥bt(x)∥22 dtdx =

∫ ∫ 1

0

∥bt(Xt(x))∥22 dt · p0(x) dx =

∫ ∫ 1

0

∥ dXt(x)∥22 dt · p0(x) dx

≥
∫

p0(x)∥X1 − x∥22 dx ≥W2
2(ρ0, ρ1).

The first inequality is attained if Xt is affine in t while the second is attained if X1(x) = ∇φ(x). Thus,

W2
2(ρ0, ρ1) = min

pt,bt

∫ ∫ 1

0

pt(x)∥bt(x)∥22 dtdx, s.t. (1.28) and (1.29)

= min
pt s.t. (1.29)

∫ 1

0

min
bt s.t. (1.28)

∫
pt(x)∥bt(x)∥22 dx dt

Let us examine the minimizer bt above. Consider the objective with slight perturbation:

f(bt + ϵdt) :=

∫
pt(x)∥bt(x) + ϵdt(x)∥22 dx, s.t. ∂tpt = −∇ · (pt(bt + ϵdt)) = −∇ · (ptbt)− ϵ∇ · (ptdt).

To maintain the continuity equation we must have ∇ · (ptdt) = 0. Take derivative w.r.t. ϵ at 0:

df

dϵ
↾ϵ=0= 2

∫
pt(x)dt(x) · bt(x) dx = 0.

Thus, bt ⊥ (ptdt) for any ptdt such that ∇ · (ptdt) = 0. According to the Helmholtz decomposition, there
exists a potential function φ such that the minimizer

bt = ∇φt.

Therefore, we obtain the following nice representation of the Wasserstein distance:

W2
2(ρ0, ρ1) = min

pt

∫ 1

0

∥∂tpt∥2pt
dt, s.t. boundary condition (1.29) holds (1.30)

∥∂tpt∥2pt
= min

φt

∫
pt(x)∥∇φt(x)∥22 dx, s.t. ∂tpt = −∇ · (pt∇φt),

where the formula (1.30) is strikingly similar to the geodesic distance on a Riemannian manifold!

Benamou, J.-D. and Y. Brenier (2000). “A computational fluid mechanics solution to the Monge-Kantorovich mass
transfer problem”. Numerische Mathematik, vol. 84, pp. 375–393.

Brenier, Y. (1991). “Polar factorization and monotone rearrangement of vector-valued functions”. Communications
on Pure and Applied Mathematics, vol. 44, no. 4, pp. 375–417.
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Definition 1.85: Wasserstein gradient (Otto 2001)

We can now define the following Wasserstein inner product on two functions h1 and h2 with
∫
h1 =

∫
h2 = 0:

⟨h1, h2⟩p :=

∫
⟨∇φ1,∇φ2⟩ · p dx, where ∇ · (p∇φi) = −hi.

(The condition
∫
hi = 0 is needed in order for the continuity equation to have a solution φi. Recall also that∫

∂tpt = ∂t
∫
pt = 0.)

For a function f : P2 → R, we can define its Wasserstein gradient as the representation of the derivative
w.r.t. the Wasserstein inner product:

⟨∇W2
f(p), ∂tpt ↾t=0⟩p =

df(pt)

dt
↾t=0,

where pt : (−ϵ, ϵ) → P2 is any smooth curve with p0 = p. Suppose f admits a variational gradient (in
L2(dx)) such that:

df(pt)

dt
↾t=0= ⟨∇L2

f(p), ∂tpt ↾t=0⟩L2(dx)
= −⟨∇L2

f(p),∇ · (p∇φ)⟩L2(dx)
=

∫
⟨∇∇L2

f(p),∇φ⟩ · pdx,

where ∇· (p∇φ) = −∂tpt ↾t=0. Thus, comparing to the definition of the Wasserstein inner product, we know

∇W2
f(p) = −∇ · (p∇∇L2

f(p)). (1.31)

For a much more rigorous and thorough discussion, see Ambrosio et al. (2021, 2008).
Otto, F. (2001). “The geometry of dissipative evolution equations: the porous medium equation”. Communications

in Partial Differential Equations, vol. 26, no. 1-2, pp. 101–174.
Ambrosio, L., E. Brué, and D. Semola (2021). “Lectures on Optimal Transport”. Springer.
Ambrosio, L., N. Gigli, and G. Savaré (2008). “Gradient Flows in Metric Spaces and in the Space of Probability

Measures”. 2nd. Springer.

Example 1.86: Typical Wasserstein gradients

We have reduced the computation of the Wasserstein gradient to its L2 counterpart. Let us consider the
following important example:

f(p) =

∫
u(p(x)) dx, (1.32)

where u : R+ → R is a smooth function. Assuming we may switch differentiation and integration,

df(pt)

dt
↾t=0=

∫
u′(p(x))∂tpt ↾t=0 dx = ⟨u′(p), ∂tpt ↾t=0⟩L2(dx)

=⇒ ∇L2
f(p) = u′(p)

∇W2f(p) = −∇ · (pu′′(p)∇p).

When u(p) = p log p− p (negative entropy), we obtain ∇W2f(p) = −∆p. In other words, the heat equation
in Example 1.79 can also be seen as the Wasserstein gradient flow:

dpt
dt

= −∇W2
f(pt).

We leave the following computation as an exercise:

• f(p) =
∫
u(x)p(x) dx =⇒ ∇L2

f = u =⇒ ∇W2
f = −∇ · (p∇u).

• f(p) = 1
2

∫
u(x− y)p(x)p(y) dx dy, u = u(−·) =⇒ ∇L2

f = u ∗ p =⇒ ∇W2
f = −∇ · (p(p ∗ ∇u)).

Figalli, A. and F. Glaudo (2021). “An Invitation to Optimal Transport, Wasserstein Distances, and Gradient Flows”.
European Mathematical Society.
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Definition 1.87: Displacement convexity (McCann 1997)

We say f : P2 → R is λ-W2-convex (or displacement convex), if

[0, 1] ∋ t 7→ f(pt)

is λ-convex for any W2-geodesic p : [0, 1]→ P2. For the integral function (1.32), exploiting the relation

pt = [(1− t)Id + t∇φ]#p0 =: (Tt)#p0, i.e., pt(Ttx) detT
′
t(x) = p0(x)

f(pt) =

∫
u(pt(x)) dx =

∫
u(p0(x)/ detT

′
t(x)) detT

′
t(x) dx, where T′

t = (1− t)Id + t∇2φ.

From Exercise 1.88 we know t 7→ f(pt) is convex, i.e., f is W2-convex, if u : R+ → R is convex.
Similarly, the following can be verified:

• f(p) =
∫
u(x)p(x) dx is λ-W2-convex if u is λ-convex.

• f(p) =
∫
u(x− y)p(x)p(y) dx dy is W2-convex if u is convex.

McCann, R. J. (1997). “A Convexity Principle for Interacting Gases”. Advances in Mathematics, vol. 128, no. 1,
pp. 153–179.

Exercise 1.88: Convexity

Prove the following:

• (0, 1) ∋ t 7→ det1/d[(1− t)Id + tA] is concave for symmetric positive semidefinite A ∈ Rd×d.

• R++ ∋ s 7→ sdu(1/sd) is decreasing convex if u is convex.

Example 1.89: FPK as gradient flow (Jordan et al. 1998)

Consider the SDE

dXt = −∇φ(Xt) dt+
√
2β−1 dBt,

and the FPK equation

∂tp = ∇ · (p∇φ) + β−1∆p = ∇ · [p(∇φ+ β−1s)], (1.33)

where s(t,x) = ∇x log p(t,x) is the score function. When the potential φ satisfies appropriate growth
conditions, there is a unique stationary solution of FPK (the so-called Gibbs distribution):

s = −β∇φ ⇐⇒ p ∝ exp(−βφ).

Comparing to the Wasserstein gradient formula (1.31), we are motivated to consider the Lyapunov function

f(p) =

∫
pφ+ β−1p log p−β−1p dx = β−1KL(p∥q)+β−1c, where q ∝ exp(−βφ).

Then, the FPK equation (1.33) becomes the Wasserstein gradient flow:

dpt
dt

= −∇W2
f(pt).

Assuming φ is λ-convex, we have

df(pt)

dt
= ⟨∇W2f(pt), ∂tpt⟩pt

= −⟨∇W2
f(pt),∇W2

f(pt)⟩pt
≤ −2βλf(pt) =⇒ f(pt) ≤ e−2βλtf(p0) ,

Yaoliang Yu 39 –Version 0.0–Oct 17, 2021–

https://doi.org/10.1006/aima.1997.1634
https://en.wikipedia.org/wiki/Aleksandr_Lyapunov


CS886–Winter 2024 §1 DIFFUSION GENERATIVE MODELS University of Waterloo

whence follows the following bound:

W2
2(pt, q) ≤ 2

λf(pt) ≤
2
λe

−2βλtf(p0)

1
2∥pt − q∥21 ≤ βf(pt) ≤ βe−2βλtf(p0).

More generally, contractivity (Ambrosio et al. 2008) allows one to prove

W2
2(pt, ρt) ≤ e−2βλtW2

2(p0, ρ0).

Jordan, R., D. Kinderlehrer, and F. Otto (1998). “The Variational Formulation of the Fokker–Planck Equation”.
SIAM Journal on Mathematical Analysis, vol. 29, no. 1, pp. 1–17.

Ambrosio, L., N. Gigli, and G. Savaré (2008). “Gradient Flows in Metric Spaces and in the Space of Probability
Measures”. 2nd. Springer.

Remark 1.90: Digesting λ-W2-convexity

From the definition we know f : P2 → R is λ-W2-convexity iff

f(pt) +
λ
2 t(1− t)W2

2(p0, p1) ≤ (1− t)f(p0) + tf(p1).

We can now apply the usual convex calculus. For instance, dividing t and then letting t ↓ 0 we obtain

⟨∇W2
f(p0), ∂tpt ↾t=0⟩p0

+ λ
2W

2
2(p0, p1) ≤ f(p1)− f(p0).

We are now ready to prove the logarithmic Sobolev inequality (Ledoux 2001). Consider the Gibbs density
q ∝ exp(−βφ) for some λ-convex φ. Then,

βf(p) := KL(p∥q) ≤ 1
2λ ⟨∇W2

f(p),∇W2
f(p)⟩p = 1

2λ

∫
∥∇φ+ β−1sp∥22pdx = 1

2λβ2

∫
∥sq − sp∥22p dx.

To put in a more succint and familiar form:

KL(p∥q) ≤ 1
2λβ2F(p∥q) , where q ∝ exp(−βφ) for some λ-convex φ.

Ledoux, M. (2001). “The Concentration of Measure Phenomenon”. American Mathematical Society.

Example 1.91: Langevin revisited

Let us apply the above theory to the Lagenvin equation:

dXt = −bXt dt+ σ dBt.

We have claimed before that Xt → N (0, σ2

2b ) as t→∞.
We identity φ(x) = b

2x
2 and β = 2

σ2 . Indeed, the (unique) stationary density q = N (0, σ2

2b ). Moreover,
we know now that the convergence is linear:

W2
2(pt, q) ≤ 2

b e
−4bt/σ2

f(p0)

1
2∥pt − q∥21 ≤ 2

σ2 e
−4bt/σ2

f(p0).

Yaoliang Yu 40 –Version 0.0–Oct 17, 2021–

https://doi.org/10.1137/S0036141096303359
https://doi.org/10.1007/978-3-7643-8722-8
https://doi.org/10.1007/978-3-7643-8722-8
https://bookstore.ams.org/surv-89-s

