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Definition 1.67: From Markov kernels to linear operators

Let p(s,x, t,dy) be a Markov kernel that satisfies the Chapman-Kolmogorov equation and initial condition:

∀s < τ < t, p(s,x, t,dy) =

∫
p(s,x, τ, dz)p(τ, z, t,dy), (1.13)

p(s,x, s,dy) = δx(dy). (1.14)

A Markov kernel induces two bounded (in fact, contractive) and positive linear opeators (for any s ≤ t):

Ts,t : B(Σ)→ B(Σ), Ts,tf(x) = (Ts,tf)(x) :=

∫
p(s,x, t,dy)f(y), (1.15)

T∗
s,t :M(Σ)→M(Σ), µT∗

s,t(dy) = (µT∗
s,t)(dy) :=

∫
p(s,x, t,dy)µ(dx).

It follows from the Chapman-Kolmogorov equation (1.13) and the initial condition (1.14) that

Ts,t = Ts,τTτ,t, T∗
s,t = T∗

s,τT
∗
τ,t, Tt,t = T∗

s,s = Id.

As the notation suggests, the following adjoint relation follows from Fubini’s theorem:

⟨Ts,tf ;µ⟩ =
〈
f ;µT∗

s,t

〉
.

We call the following “limit” (when exists) the generators of the Markov kernel p(s,x, t,dy):

Lt+ := lim
h↓0

Tt,t+h−Id
h , L∗t+ := lim

h↓0

T∗
t,t+h−Id

h , (1.16)

Ls− := lim
h↓0

Ts−h,s−Id
h , L∗s− := lim

h↓0

T∗
s−h,s−Id

h . (1.17)

(These are clearly linear operators on their domain.) There are two standard topologies that would make
sense the above limits:

• uniform (operator) convergence, where the convergence is uniform over a “ball” of functions f or
measures µ. However, this notion is usually too strong to be useful for Markov processes.

• pointwise convergence, where the convergence is pointwise for any fixed function f or measure µ. By
default this will be what we use below. We have some additional choices on the topology of the range:

– strong/weak(−∗) convergence, where convergence is w.r.t. some norm topology (e.g., the sup
norm restricted to a subspace such as C2c ) or weak(−∗) topology induced by a (pre)dual space.

– pointwise convergence, where convergence is again pointwise for each fixed x ∈ X or A ∈ Σ.

Under the PP (pointwise-pointwise) topology, we have again the nice adjoint relations:

⟨Lt+f ;µ⟩ =
〈
f ;µL∗t+

〉
, ⟨Ls−f ;µ⟩ =

〈
f ;µL∗s−

〉
,

where we have pushed the limit inside the pairing ⟨·; ·⟩.

Theorem 1.68: Diffusion generator of a Markov process (e.g., Skorokhod 1996, p. 161)

Let A(t,x) ⪰ 0. The generator

Lt+f(x) =
1
2A(t,x) · ∇2f(x) + b(t,x) · ∇f(x) (1.18)

for all f ∈ C2b iff the following holds for all t and x:

∀ compact nhood K(x), lim
h↓0

1
h

∫
X\K(x)

p(t,x, t+ h,dy) = 0, (1.19)
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∃ and hence ∀ compact nhood K(x), lim
h↓0

1
h

∫
K(x)

(y − x) · p(t,x, t+ h,dy) = b(t,x), (1.20)

∃ and hence ∀ compact nhood K(x), lim
h↓0

1
h

∫
K(x)

(y − x)⊗ (y − x) · p(t,x, t+ h,dy) = A(t,x). (1.21)

[We remind that for now this is under the PP (pointwise-pointwise) topology.]

Proof: ⇐: Let f ∈ C2b . We apply (1.19) and Taylor expansion on f :

Tt,t+h−Id
h f(x) = 1

h

∫
[f(y)− f(x)] · p(t,x, t+ h,dy) (1.22)

= 1
h

∫
K(x)

[f(y)− f(x)] · p(t,x, t+ h,dy) + oh(1)

= 1
h

∫
K(x)

[(y − x) · ∇f(x) + 1
2 (y − x)⊗ (y − x) · (∇2f(x) + oK(1))] · p(t,x, t+ h,dy) + oh(1).

Letting h ↓ 0, applying (1.20)-(1.21), and then letting K ↓ x proves (1.18).
⇒: We apply the idea of localization. Let f(y) be a bump function around x such that f(x) = ∇f(x) =

∇2f(x) = 0, e.g., f(y) = 1 − exp(−∥y − x∥42). Thus, Lt+f(x) = 0 from (1.18), and hence from (1.22) it
follows (1.19). Let f(y) = (y−x) · z on K(x), which we extend to a bounded smooth function on X. Thus,
Lt+f(x) = b(t,x)·z from (1.18), and hence from (1.22) it follows (1.20). Lastly, let f(y) = 1

2 (y−x)⊗(y−x)·Z
on K(x), which we extend to a bounded smooth function on X. Thus, Lt+f(x) = A(t,x) · Z from (1.18),
and hence from (1.22) it follows (1.21).

The condition (1.19) is about the path continuity (in probability): let K(x) = Bϵ(x), we have

Pr(∥Xt+h − Xt∥ ≥ ϵ|Xt) = o(h),

i.e., Xt+h is unlikely to move too far away from X under small time increment h. Interestingly, the path
continuity condition (1.19) is also equivalent to the “locality” of the generator Lt+, i.e., Lt+f(x) = 0 whenever
f vanishes locally around x . It is clear that (1.19) implies the continuity of the operator Ts,t in (1.15):

∀f ∈ Cb, lim
t↓s

Ts,tf(x) = Ts,sf(x) = f(x), i.e., lim
t↓s

p(s,x, t,dy)→ δx.

When p(s,x, t,dy) satisfies the following condition (e.g., Friedman 2006, Lemma 4.1, p. 114):

∃δ > 0, lim
h↓0

1
hE[∥Xt+h − Xt∥2+δ|Xt] = 0,

then (1.19) automatically holds while (1.20)-(1.21) can be simplified to:

lim
h↓0

E[Xt+h|Xt]− Xt

h
= b(t,Xt), lim

h↓0

E[(Xt+h − Xt)⊗ (Xt+h − Xt)|Xt]

h
= A(t,Xt).

A similar result holds for the (left) generator Ls−. Extension beyond the second order is apparent.
Skorokhod, A. V. (1996). “Lectures on the Theory of Stochastic Processes”. De Gruyter.
Friedman, A. (2006). “Stochastic Differential Equations and Applications”. Dover reprint.

Remark 1.69: Enforcing continuity

Suppose the convergence in the generators (1.16)-(1.17) is locally uniform in t and s, then Lt+ and Ls− are
right and left continuous, respectively, and moreover,

Lt− = lim
s↑t

Ls+, Ls+ = lim
t↓s

Lt−.
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Additionally, if we know either Lt+ or Lt− is continuous, then they coincide, which is signaled by the notation:

Lt = Lt+ = Lt−.

In particular, if the limits in (1.19)-(1.21) are locally uniform in t while b and A are continuous in t, then
Lt = Lt+ = Lt− exists.

For any f ∈ C2c (or even C∞c ), if the limits in (1.19)-(1.21) are uniform in x while b and A are locally
bounded in x (in particular, if they are continuous, so that Lt+f ∈ B(Σ)), then Tt,t+h−Id

h f(x) converges
uniformly in x. Since Ts,t : B(Σ)→ B(Σ) is contractive (w.r.t. the sup norm), we have

∂t+Ts,tf(x) = lim
h↓0

Ts,t+h−Ts,t

h f(x) = lim
h↓0

Ts,t
Tt,t+h−Id

h f(x) = Ts,t lim
h↓0

Tt,t+h−Id
h f(x) = Ts,tLt+f(x),

∂t+T
∗
s,t = T∗

s,tL
∗
t+.

Under similar conditions, we also have

∂s−Ts,t = Ls−Ts,t, ∂s−T
∗
s,t = L∗s−T

∗
s,t.

Combining the above observations, we know that when the limits in (1.19)-(1.21) are locally uniform in
t and uniform in x, and b and A are continuous in (t,x), then for any f ∈ C2c ,

Ltf = 1
2A · ∇

2f + b · ∇f, ∂tTs,tf = Ts,tLtf, ∂sTs,tf = LsTs,tf.

Moreover, using integration by parts, we have the adjoint relation:

L∗tµ = 1
2∇

2 · (µA)−∇ · (µb), ∂tµT
∗
s,t = µT∗

s,tL
∗
t , ∂sµT

∗
s,t = µL∗sT

∗
s,t.

(Recall that f ∈ C2c so the boundary conditions vanish.) Alternatively, assume the limits in (1.19)-(1.21)
are locally uniform in t, the function u(s,x) := Ts,tφ(x) ∈ C2b (jointly in (t,x) where boundedness follows
from φ ∈ B(Σ)), and b and A in (1.18) are continuous in t. Then, −∂su(s,x) = Lsu(s,x) . This follows
immediately from Theorem 1.68 by putting f = u(s,x) (with s fixed) so that

Lsu(s,x) = lim
h↓0

Ts−h,s − Id

h
u(s,x) = lim

h↓0

u(s− h,x)− u(s,x)

h
= −∂su(s,x).

(Since the LHS is continuous in s, we know the left derivative on the RHS is indeed a derivative.)

Theorem 1.70: Fokker-Planck-Kolmogorov (FPK) equation (Kolmogorov 1931, 1933)

Let p(s,x, t,y) be (Markov) densities that satisfy (1.19)-(1.21) locally uniformly in t and uniformly in x.
Assume b and A in (1.18) are (jointly) continuous. Then,

∂tp(s,x, t,y) = L∗t p(s,x, t,y) = −∇y ·
(
p(s,x, t,y)b(t,y)

)
+ 1

2∇
2
y ·
(
p(s,x, t,y)A(t,y)

)
(forward)

−∂sp(s,x, t,y) = Lsp(s,x, t,y) = b(s,x) · ∇xp(s,x, t,y) +
1
2A(s,x) · ∇2

xp(s,x, t,y) (backward) ,

provided that ∂tp(s,x, t,y) is continuous in (t,y), and for the backward equation, additionally ∇xp(s,x, t,y)
and ∇2

xp(s,x, t,y) are also continuous in (x,y).

Proof: Consider any f ∈ C2c . Apply Theorem 1.68 we obtain

⟨f ; ∂tp(s,x, t, ·)⟩ = ∂t ⟨f ; p(s,x, t, ·)⟩ = Ts,tLtf(x) = ⟨Ltf ; p(s,x, t, ·)⟩ = ⟨f ; L∗t p(s,x, t, ·)⟩
⟨f ;−∂sp(s,x, t, ·)⟩ = −∂s ⟨f ; p(s,x, t, ·)⟩ = LsTs,tf(x) = Ls ⟨f ; p(s,x, t, ·)⟩ = ⟨f ; Lsp(s,x, t, ·)⟩ .

(Note the minus sign for the backward equation, due to the definition of Ls− in Equation (1.17).)
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Let us fix s = 0 and integrate x w.r.t. some initial distribution µ0 (assuming we can push differentiation
w.r.t. t under the integral w.r.t. x):

∂tp(t,y) = L∗t p(t,y) = −∇ · (pb) + 1
2∇

2 · (pA),

i.e., the marginal density also satisfies the forward equation.
See the monograph of Bogachev et al. (2015) for more on FPK.

Kolmogorov, A. N. (1931). “Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung”. Mathematische
Annalen, vol. 104. English translation at https://doi.org/10.1007/978-94-011-2260-3_9, pp. 415–458.

— (1933). “Zur Theorie der stetigen zufälligen Prozesse”. Mathematische Annalen, vol. 108. English translation at
https://doi.org/10.1007/978-94-011-2260-3_17, pp. 149–160.

Bogachev, V. I., N. V. Krylov, M. Röckner, and S. V. Shaposhnihov (2015). “Fokker-Planck-Kolmogorov Equations”.
American Mathematical Society.

Remark 1.71: Uniqueness

The uniqueness of a probability solution to the FPK equation has been settled by Bogachev et al. (2021a);
see also Bogachev et al. (2020, 2021b) and Bogachev and Shaposhnihov (2021).
Bogachev, V. I., T. I. Krasovitskiy, and S. V. Shaposhnihov (2021a). “On uniqueness of probability solutions of the

Fokker-Planck-Kolmogorov equation”. Sbornik: Mathematics, vol. 212, no. 6, pp. 745–781.
— (2020). “The Kolmogorov Problem on Uniqueness of Probability Solutions of a Parabolic Equation”. Doklady

Mathematics, vol. 102, no. 3, pp. 464–467.
— (2021b). “On nonuniqueness of probability solutions to the Cauchy problem for the Fokker-Planck-Kolmogorov

equation”. Doklady Mathematics, vol. 103, no. 3, pp. 108–112.
Bogachev, V. I. and S. V. Shaposhnihov (2021). “Uniqueness of a Probability Solution to the Kolmogorov Equation

with a Diffusion Matrix Satisfying Dini’s Condition”. Doklady Mathematics, vol. 104, no. 3, pp. 322–325.

History 1.72: Wolfgang Doeblin and his Pli Cacheté

See the documentary: Wolfgang Doeblin A Mathematician Rediscovered, and the excellent commentary
(Bru and Yor 2002) as well as the original Pli (Doeblin 2000).
Bru, B. and M. Yor (2002). “Comments on the life and mathematical legacy of Wolfgang Doeblin Original Paper”.

Finance and Stochastics, vol. 6, pp. 3–47.
Doeblin, W. (2000). “Sur l’équation de Kolmogoroff”. Comptes Rendus de l’Académie des Sciences, vol. 331, no. 12,

pp. 1059–1102.

Theorem 1.73: FPK for SDE

Consider the stochastic differential equation

dXt = bt(Xt) dt+Gt(Xt) dBt

and its generator

Ltf(x) := bt(x) · ∇f(x) + 1
2 [Gt(x)Gt(x)

⊤] · ∇2f(x).

Then, assuming ∂tp(s,x, t,y) is continuous in (t,y), we have

∂tp(s,x, t,y) = L∗t p(s,x, t,y) = −∇y · [p(s,x, t,y)bt(y)] +
1
2∇

2
y ·
[
p(s,x, t,y)Gt(y)Gt(y)

⊤] .
Proof: For any f ∈ C2c , we apply Itô’s formula to obtain

df(Xt) =
(
bt(Xt) · ∇f(Xt) +

1
2 [Gt(Xt)G

⊤
t (Xt)] · ∇2f(Xt)

)
dt+∇f(Xt) ·Gt(Xt) dBt.
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Take expectation from s at position x to t on both sides:

dE[f(Xt)] = E
[
bt(Xt) · ∇f(Xt) +

1
2 [Gt(Xt)G

⊤
t (Xt)] · ∇2f(Xt)

]
dt

∂t ⟨f ; p(s,x, t,y)⟩ = ⟨f ; ∂tp(s,x, t,y)⟩ = ⟨Ltf ; p(s,x, t,y)⟩ = ⟨f ; L∗t p(s,x, t,y)⟩ ,

where we have exchanged differentiation and integration in the first equality.

Example 1.74: Continuity equation

Consider the ordinary differential equation (i.e., setting Gt ≡ 0)

dXt = bt(Xt) dt,

where the velocity field bt models the movement per unit time. It follows from Theorem 1.73 that

∂tp(s,x, t,y) = −∇y · [p(s,x, t,y)bt(y)] .

Integrating w.r.t. some initial distribution at s (and exchanging differentiation with integration), we obtain
the continuity equation (see also Liouville’s Theorem):

∂tps(t,y) = −∇y · [ps(t,y)bt(y)] ,

where ps(t,y) is the marginal density at time t when we start from time s with some given initial distribution.
Roughly, ∂tps(t,y) dy models the accumulation of quantity per unit volume (dy) and unit time, while
∇y · [ps(t,y)bt(y)] dy, according to the divergence theorem, gives the difference between quantity flowing
out and flowing in. Thus, the continuity equation states that the rate of accumulation of quantity exactly
matches the difference between the in-flow rate and out-flow rate. [The product ps(t,y)bt(y) is called the
flux, i.e., amount of quantity flowing per unit time, through a unit area.]

Example 1.75: Heat equation

Let us start with examining the heat equation

∂tp(t,x) = ∆xp(t,x), (1.23)

which corresponds to the (trivial) SDE

dXt =
√
2 dBt.

(Note that Gt =
√
2I, not merely

√
2.) If we treat pt = p(t, ·) ∈ L2(dx), then we can rewrite the PDE (1.23)

as an ODE with state space L2:

dpt
dt

= −∇f(pt),

where the energy function f(p) := 1
2∥∇p∥

2
L2

. Indeed,

df(p+ ϵq)

dϵ
↾ϵ=0=

∫
∇p · ∇q dx = −

∫
q∆p dx.
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Example 1.76: Continuous flow for density estimation (Tabak and Vanden-Eijnden 2010)

Let p be a known density, e.g., standard normal, and q be a density we wish to learn. We know there exist
mappings T so that

q = T−1
# p, i.e., T−1(X) ∼ q if X ∼ p.

Let us build T−1 through a continuous family T−1
t , leading to

pt := (T−1
t )#p, pt(x) = |detT′

tx| · p(Ttx).

Conversely, we also have

p = T#q, qt := (Tt)#q, qt(Ttx) · | detT′
tx| = q(x).

We use the KL divergence as our objective of learning:

KL(q∥pt) =
∫

q(x) log
q(x)

pt(x)
dx = KL(qt∥p) =

∫
q(x) log

qt(Ttx)

p(Ttx)
dx.

We take the (functional) derivative w.r.t. Tt:

δKL

δTt
(x) = [sqt(Ttx)− sp(Ttx)]q(x) = [sqt(Ttx)− sp(Ttx)] · qt(Ttx)·|detT′

tx| (1.24)

and evolve Tt according to the ODE (that guarantees decrease of our KL objective):

dTt = −b(Tt), where b(z) = [sqt(z)− sp(z)] · qt(z). (1.25)

We have dropped the Jacobian |detT′
tx| in (1.24) for better interpretation. Essentially, we seek an infinites-

imal improvement T over our current estimate Tt, so we compute δKL(T ◦Tt)/δT ↾T=Id, which leads exactly
to (1.25). This Lagrangian view allows us to “forget” the past and focus “myopically” on deforming the
current qt to the target p. In fact, we have the following continuity equation corresponding to (1.25):

∂tqt = ∇ · (qtb) = ∇ · [q2t (sqt − sp)].

Alternatively, we may use the reverse KL divergence as our objective:

LK(q∥pt) = LK(qt∥p) =
∫

p(x) log
p(x)

qt(x)
dx.

Interestingly, the dynamics (1.25) also decreases the reverse KL divergence:

dLK

dt
= −

∫
p(x)

qt(x)
∂tqt(x) dx = −

∫
p(x)

qt(x)
∇ · [q2t (sqt − sp)] dx =

∫
[q2t (sqt − sp)] · ∇

p(x)

qt(x)
dx

= −
∫

pqt∥sqt − sp∥22 dx.
Tabak, E. G. and E. Vanden-Eijnden (2010). “Density estimation by dual ascent of the log-likelihood”. Communica-

tions in Mathematical Sciences, vol. 8, no. 1, pp. 217–233.

Example 1.77: Score matching as gradient flow of KL (Lyu 2009)

The Fisher divergence between two densities is the square L2 distance between their score functions:

F(p∥q) := 1
2∥sp − sq∥22.

Define the noisy versions

pt = p ∗ N (0, t), qt = q ∗ N (0, t).
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Lyu (2009) proved that

d

dt
KL(pt∥qt) = −F(pt∥qt).

Lyu, S. (2009). “Interpretation and generalization of score matching”. In: Proceedings of the Twenty-Fifth Conference
on Uncertainty in Artificial Intelligence (UAI), pp. 359–366.

Example 1.78: Neural ODE (Chen et al. 2018)

Chen, T. Q., Y. Rubanova, J. Bettencourt, and D. K. Duvenaud (2018). “Neural ordinary differential equations”. In:
Advances in Neural Information Processing Systems, pp. 6572–6583.

Example 1.79: Variational optimal transport (Benamou and Brenier 2000)

Let p0 and p1 be two given densities, with Wasserstein distance

W2
2(p0, p1) = min

T:T#p0=p1

EX∼p0
∥TX− X∥22, where p0(x) = p1(Tx) · detT′x.

Brenier (1991) proved the existence of such a (unique) T = ∇φ for some convex potential function φ.
Let us consider the ODE:

dXt = bt(Xt),

where X0 ∼ p0 and X1 ∼ p1. Obviously, this gives us a way to interpolate densities: Xt ∼ pt, which satisfies
the continuity equation:

∂tpt = −∇ · (ptbt).

In fact, Benamou and Brenier (2000) showed the following surprising result:∫ ∫ 1

0

pt(x)∥bt(x)∥22 dx dt =

∫ ∫ 1

0

p0(x)∥bt(Xt)∥22 dx dt

See also Benamou and Brenier 2001; Guittet 2003.

Benamou, J.-D. and Y. Brenier (2000). “A computational fluid mechanics solution to the Monge-Kantorovich mass
transfer problem”. Numerische Mathematik, vol. 84, pp. 375–393.

Brenier, Y. (1991). “Polar factorization and monotone rearrangement of vector-valued functions”. Communications
on Pure and Applied Mathematics, vol. 44, no. 4, pp. 375–417.

Benamou, J.-D. and Y. Brenier (2001). “Mixed L2-Wasserstein Optimal Mapping Between Prescribed Density Func-
tions”. Journal of Optimization Theory and Applications, vol. 111, pp. 255–271.

Guittet, K. (2003). “On the Time-Continuous Mass Transport Problem and Its Approximation by Augmented La-
grangian Techniques”. SIAM Journal on Numerical Analysis, vol. 41, no. 1, pp. 382–399.

Example 1.80: FPK as gradient flow (Jordan et al. 1998)

Consider the SDE

dXt = −∇f(Xt) dt+
√
2β−1 dBt,

and the FPK equation

∂tp = ∇ · (p∇f) + β−1∆p = ∇ · [p(∇f + β−1s)],
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where s(t,x) = ∇x log p(t,x) is the score function. When the potential f satisfies appropriate growth
conditions, there is a unique stationary solution of FPK (the so-called Gibbs distribution):

s = −β∇f ⇐⇒ p ∝ exp(−βf).
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