
CS886: Diffusion Models
Lec 05: Reverse Stochastic Differential Equations

Yaoliang Yu

February 13, 2024

“I can illustrate the ... approach with the ... image of a nut to be opened.
The first analogy that came to my mind is of immersing the nut in some
softening liquid, and why not simply water? From time to time you rub so the
liquid penetrates better, and otherwise, you let time pass. The shell becomes
more flexible through weeks and months — when the time is ripe, hand pressure
is enough, the shell opens like a perfectly ripened avocado! A different image
came to me a few weeks ago. The unknown thing to be known appeared to
me as some stretch of earth or hard marble, resisting penetration ... the sea
advances insensibly in silence, nothing seems to happen, nothing moves, the
water is so far off you hardly hear it ... yet finally it surrounds the resistant
substance.”

— Alexandre Grothendieck

L05 1/20

https://en.wikipedia.org/wiki/Alexander_Grothendieck

Notation for divergence

⟨∇,b⟩ :=
∑
i

∇ibi, in particular ⟨∇,∇p⟩ =
∑
i

∇i(∇ip) =
∑
i

∇2
i p =: ∆p.

• b : Rd → Rd and p : Rd → R

• Not to confuse the scalar ⟨∇,∇p⟩ with the matrix ∇2p

∫
⟨∇p(x),b(x)⟩ dx = −

∫
p(x) ⟨∇,b(x)⟩ dx

• Assuming each pbi vanishes at the boundary

• “Just” pull the scale-valued function p out of the inner product and negate the sign

L05 2/20

〈
∇2, A

〉
=

∑
i,j

∇2
ijAij, in particular

〈
∇2, pI

〉
= ∆p.

• A : Rd → Rd×d and p : Rd → R

• Again, not to confuse the scalar ⟨∇2, A⟩ with the tensor ∇2A

• We omit arguments of functions whenever no confusion will result in

– for instance, we will rewrite integration by parts simply as∫
⟨∇p,b⟩ = −

∫
p ⟨∇,b⟩ ⇐⇒

∫
⟨∇p+ p∇,b⟩ =

∫
⟨∇, pb⟩ = 0

– it should be clear that p and b are functions, whose arguments are being integrated over

L05 3/20

Fokker-Planck-Kolmogorov Equation

∂tp = L∗tp = −⟨∇, pb⟩+ 1
2

〈
∇2, pA

〉
(forward)

−∂sp = Lsp = ⟨b,∇p⟩+ 1
2

〈
A,∇2p

〉
(backward)

L05 4/20

FPK for SDE

Consider the stochastic differential equation

dXt = bt(Xt) dt+Gt(Xt) dBt

and its generator

Ltf(x) := ⟨bt(x),∇f(x)⟩+ 1
2

〈
Gt(x)Gt(x)

⊤,∇2f(x)
〉

Then,

∂tp = L∗tp = −⟨∇y, pb⟩+ 1
2

〈
∇2, pGG⊤〉

∂sp = Lsp = ⟨b,∇p⟩+ 1
2

〈
GG⊤,∇2p

〉
• Continuity equation when G = 0

L05 5/20

Wasserstein Gradient

• Wasserstein inner product on two functions h1 and h2 with
∫
h1 =

∫
h2 = 0:

⟨h1, h2⟩p :=
∫

⟨∇φ1,∇φ2⟩ · p dx, where φi solves ⟨∇, p∇φi⟩ = −hi

• Wasserstein gradient represents derivative w.r.t. Wasserstein inner product:

⟨∇W2f(p), ∂tpt ↾t=0⟩p =
df(pt)

dt
↾t=0,

where pt : (−ϵ, ϵ) → P2 is any smooth curve with p0 = p

• Explicit formula through L2 gradient:

∇W2f(p) = −⟨∇, p∇∇L2f(p)⟩

L05 6/20

FPK as Gradient Flow

dXt = −∇φ(Xt) dt+
√

2β dBt

∂tp = ⟨∇, p∇φ⟩+ β∆p = ⟨∇, p(∇φ+ βsp)⟩

• If φ does not grow too fast, unique solution of FPK, a.k.a. Boltzmann-Gibbs:

sp = −∇φ/β ⇐⇒ p ∝ exp(−φ/β)

• Lyapunov function:

f(p) =

∫
pφ+ βp log p−βp = βKL(p∥q)+f⋆, q ∝ exp(−φ/β), f⋆ := inf f = c(β)

• FPK equation becomes the Wasserstein gradient flow:

dpt
dt

= −∇W2f(pt)

L05 7/20

https://en.wikipedia.org/wiki/Boltzmann_distribution
https://en.wikipedia.org/wiki/Aleksandr_Lyapunov

Assuming φ is λ-convex, we have

df(pt)

dt
= ⟨∇W2f(pt), ∂tpt⟩pt = −⟨∇W2f(pt),∇W2f(pt)⟩pt ≤ −2λ[f(pt)− f⋆]

f(pt)− f⋆ ≤ e−2λt[f(p0)− f⋆]

W2
2(pt, q) ≤ 2

λ
[f(pt)− f⋆] ≤ 2

λ
e−2λt[f(p0)− f⋆]

1
2
∥pt − q∥21 ≤ KL(pt∥q) = [f(pt)− f⋆]/β ≤ e−2λt · f(p0)−f⋆

β

L05 8/20

Log-Sobolev Inequality

Consider the Boltzmann-Gibbs density q ∝ exp(−φ/β) for some λ-convex φ. Then,

βKL(p∥q) = f(p)− f⋆ ≤ 1
2λ

⟨∇W2f(p),∇W2f(p)⟩p =
1
2λ

∫
∥∇φ+ βsp∥22 · p dx

≤ β2

2λ

∫
∥sq − sp∥22 · p dx

To put in a more succinct and familiar form:

KL(p∥q) ≤ β
2λ
F(p∥q) , where q ∝ exp(−φ/β) for some λ-convex φ

L05 9/20

Reverse-time SDE

dXt = bt(Xt) dt+Gt(Xt) dBt (forward-SDE)

d
�
Xt =

�
bt(

�
Xt) dt+

�
Gt(

�
Xt) d

�
Bt (reverse-SDE)

• FPK to reverse-SDE (negation due to time reversal:
�
Xt = X1−t):

−∂s
�
p(s,x, t,y) = −

〈
∇,

�
p

�
b
〉
+ 1

2

〈
∇2,

�
p

�
A
〉
, where

�
A :=

�
G

�
G

⊤

• FPK to forward-SDE for p(s,x, t,y) and q(s,x):

−∂s log p =
⟨b,∇p⟩+ 1

2
⟨A,∇2p⟩

p
, −∂s log q =

⟨∇, qb⟩ − 1
2
⟨∇2, qA⟩

q
, A := GG⊤

B. D. O. Anderson. “Reverse-time diffusion equation models”. Stochastic Processes and their Applications, vol. 12, no. 3 (1982),
pp. 313–326.

L05 10/20

https://doi.org/10.1016/0304-4149(82)90051-5

Let r = pq (the joint density of Xs and Xt). We add the above two equations:

−∂s log r =
⟨b,∇p⟩+ 1

2
⟨A,∇2p⟩

p
+

⟨∇, qb⟩ − 1
2
⟨∇2, qA⟩

q

= ⟨b,∇ log p⟩+ 1
2p

〈
A,∇2p

〉
+ ⟨∇ log q,b⟩+ ⟨∇,b⟩ − 1

2q

〈
∇2, qA

〉
= 1

r
[⟨∇, rb⟩+ q

2

〈
A,∇2p

〉
− p

2

〈
∇2, qA

〉
]

= 1
r
[⟨∇, rb⟩+ 1

2

〈
qA,∇2p

〉
− 1

2
⟨p∇,∇ · (qA)⟩]

= 1
r
[⟨∇, rb⟩+ 1

2

〈
qA,∇2p

〉
+ 1

2
⟨∇p,∇ · (qA)⟩ − 1

2
⟨∇p,∇ · (qA)⟩−

− 1
2
⟨p∇,∇ · (qA)⟩]

= 1
r
[⟨∇, rb⟩+ 1

2
⟨∇, (∇p) · (qA)⟩ − 1

2
⟨∇, p∇ · (qA)⟩]

= 1
r
[⟨∇, rb⟩+ 1

2
⟨∇,∇ · (pqA)⟩ − ⟨∇, p∇ · (qA)⟩]

= 1
r

[〈
∇, r(b− 1

q
∇ · (qA))

〉
+ 1

2

〈
∇2, rA

〉]
L05 11/20

−∂sr =
〈
∇, r(b− 1

q
∇ · (qA))

〉
+ 1

2

〈
∇2, rA

〉
• Dividing both sides by q(t,y) (and noting that ∇ and ∇2 are w.r.t. x):

−∂s
�
p(s,x, t,y) =

〈
∇,

�
p(b− 1

q
∇ · (qA))

〉
+ 1

2

〈
∇2,

�
pA

〉
=

〈
∇,

�
p(b− Asq +

1
2
As�

p
− 1

2
∇ · A)

〉
• Comparing with the FPK for reverse-SDE, we may identify

�
G1−t = Gt,

�
b1−t = −bt +

1
q
∇ · (qGtG

⊤
t), or,

�
G1−t = 0,

�
b1−t = −bt +GtG

⊤
t sq − 1

2
GtG

⊤
t s�

p
+ 1

2
∇ · (GtG

⊤
t)

L05 12/20

Expectation-Maxmization

• Given training data {x1,x2, . . . ,xn} ∼ q(x), the data density

• Parameterize pθ(x, z), the joint model density, e.g. Gaussian mixture

• Estimate θ by minimizing some “distance” between q (the unknown data density)
and pθ (the chosen model density):

min
θ

min
q(z|x)

KL
(
q(x)q(z|x) ∥ pθ(x, z)

)
≈ − 1

n

n∑
i=1

∫
[log q(z|xi)− log pθ(xi, z)] · q(z|xi) dz

q(z|x) = pθ(z|x)

• After training, can generate new data X ∼ pθ(x, z) (by discarding Z)
• Need a training sample from q(x), an explicit form of pθ(x, z) and pθ(z|x)

– Monte Carlo EM: can sample from pθ(z|x)
L05 13/20

Variational Inference

min
θ

min
ϕ

KL
(
q(x)qϕ(z|x) ∥ pθ(x|z)p(z)

)
• Parameterize pθ(x, z) = p(z) · pθ(x|z), with p(z) standard Gaussian (say)

• Parameterize qϕ(z|x), in case the optimal solution pθ(z|x) is hard to compute

• Encoder: pθ(x|z), from latent z to observation x

• Decoder: qϕ(z|x), from observation x to latent z

• After training, can generate new data X ∼ pθ(x|Z), where Z ∼ p(z)

• With only a training sample from q(x), pθ(x|z) and qϕ(z|x)

L05 14/20

VAE as Triangular Flow

• Consider reference densities s(x, z) = p(z) · q(x) and r(x, z) = p(z) · N (x;0, I)

– recall that q is the (unknown) data density and p is say standard Gaussian

Theorem: Uniqueness for increasing triangular maps

For any two densities r and p on Rd, there exists a unique (up to permutation)
increasing triangular map T so that p = T#r.

• It follows that pθ(x, z) = p(z)pθ(x|z) = (Tθ × Id)#r, where Tθ : Rz+x → Rx

• Similarly, qϕ(x, z) = q(x)qϕ(z|x) = (Id× Sϕ)#s, where Sϕ : Rz+x → Rz

L05 15/20

A Trivial Look

KL
(
q(x)qϕ(z|x) ∥ pθ(x|z)p(z)

)
= KL

(
(Id× Sϕ)#s∥(Tθ × Id)#r

)
• Can apply change-of-variable to compute density of pθ(x, z) = (Tθ × Id)#r

• Can sample from qϕ(x, z) = (Id× Sϕ)#s; recall s(x, z) = p(z) · q(x)

– e.g. Sϕ(x, z) = mϕ(x) + σϕ(x)⊙ z

KL
(
q(x)qϕ(z|x) ∥ pθ(x|z)p(z)

)
≡ −Eqϕ(x,z) log pθ(x|z)︸ ︷︷ ︸

reconstruction

+Eq(x)

[
KL

(
qϕ(z|x), p(z)

)]
︸ ︷︷ ︸

regularization

L05 16/20

Euler-Maruyama

Xt = Xs +

∫ t

s

bτ (Xτ) dτ +

∫ t

s

Gτ (Xτ) dBτ

≈ Xs + bs(Xs) · [t− s] +Gs(Xs)[Bt − Bs]

• Divide 0 := t0 < t1 < · · · < tn < tn+1 = t

• For k = 1, . . . , n, compute

Xtk+1
= Xtk + btk(Xtk) ·∆tk +Gtk(Xtk) ·∆Btk

– ∆Btk

i.i.d.≃ N (0,∆tk)

L05 17/20

Score Matching

F(p∥q) := 1
2
EX∼q∥∂x log p(X)− ∂x log q(X)∥22

= EX∼q

[
1
2
∥sp(X)∥22 + ⟨∂x, sp(X)⟩+ 1

2
∥sq(X)∥22

]
≈ ÊX∼q

[
1
2
∥sp(X)∥22 + ⟨∂x, sp(X)⟩

]
• Under mild conditions, F(p∥q) = 0 ⇐⇒ p ∝ q

• A Convenient way to estimate the score sq and hence the density q

• The model score function sp can be chosen as any NN

A. Hyvärinen. “Estimation of Non-Normalized Statistical Models by Score Matching”. Journal of Machine Learning Research, vol. 6, no. 24
(2005), pp. 695–709.

L05 18/20

http://jmlr.org/papers/v6/hyvarinen05a.html

Score Matching for Exponential Family

min
θ

ÊX∼q

[
1
2
∥s(X;θ)∥22 + ⟨∂x, s(X;θ)⟩

]
• If the model density p is in the exponential family:

s(x;θ) = ∂x ⟨T(x),θ⟩ = [∂xT(x)]⊤θ

⟨∂x, s(x;θ)⟩ = ⟨∂x, ∂x ⟨T(x),θ⟩⟩ =
〈
∂2
xT(x),θ

〉
• Can solve θ in closed-form by simply setting the derivative w.r.t. θ to 0:

θ = −
{
ÊX∼q[∂xT(x)]⊤[∂xT(x)]

}−1 · ÊX∼q[∂
2
xT(x)]

• For multivariate Gaussian, θ = (S−1, S−1µ), T(x) = (−1
2
xx⊤,x) and

min
µ,S

Ê
X∼q

1
2
∥S−1(x− µ)∥22 − tr(S−1)

L05 19/20

Denoising Auto-Encoder

• Suppose also have a latent variable Z with joint density q(x, z)

• Exchage differentiation with integration we obtain:

F(p∥q) := 1
2
EX∼q∥∂x log p(X)− ∂x log q(X)∥22

= 1
2
E(X,Z)∼q[∥sp(X)− ∂x log q(X|Z)∥22 + ∥sq(X)∥22 − ∥∂x log q(X|Z)∥22]

≈ 1
2
Ê(X,Z)∼q∥sp(X)− ∂x log q(X|Z)∥22

• Useful when the conditional density ∂x log q(X|Z) is easy to obtain

P. Vincent. “A Connection Between Score Matching and Denoising Autoencoders”. Neural Computation, vol. 23, no. 7 (2011),
pp. 1661–1674.

L05 20/20

https://doi.org/10.1162/NECO_a_00142

