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Itô Process

dX(t, ω) = F(t, ω) dt+ G(t, ω) dB(t, ω)

X(t, ω) = X(0, ω) +

∫ t

0

F(s, ω) ds+

∫ t

0

G(s, ω) dB(s, ω)

• The 1st integral is the familiar Riemann or Lebesgue integral

• The 2nd integral is Itô’s stochastic integral

Itô’s formula:

df(Xt,Vt) = fx(Xt,Vt) dXt + fy(Xt,Vt) dVt +
1
2
fxx(Xt,Vt) d[X]t

• [X]t := limn→∞
∑n

k=0(Xtk+1
− Xtk)

2 = G⊤G · [B]t, [B]t = t
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Martingale

(Mt,Ft) is a martingale iff

• Mt ∈ Ft, i.e., Mt determined by information Ft up to t

– e.g., Ft = σ(Ms : s ≤ t), i.e., all (measurable) functions of {Ms : s ≤ t}

• for all t, E|Mt| < ∞

• for all t ≥ s, E[Mt|Fs] = Ms

– E[Mt|Ms] = E[(Mt −Ms) +Ms|Fs] = Ms ⇐⇒ E[Mt −Ms|Fs] = 0

– given what we know (Fs) at time s, changes in the future (Mt −Ms) are 0 in expectation

– e.g. cumsum of independent r.v., Sn :=
∑n

i=1(Xi − E[Xi]), Fn := σ(Xi, i = 1, . . . , n)
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Itô’s Integral is a Square Integrable Martingale

Xt =

∫ t

0

Gs dBs

• If t 7→ Gt is continuous, so is t 7→ Xt

• X0 := 0, E[Xt] = E[X0] = 0, Xt ∈ Ft

• E[X2
t − X2

s] = E[Xt − Xs]
2
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Theorem: Martingale representation

Let (Mt,Ft) be a square integrable martingale. Then, there exists a unique process
Gt such that

Mt = E[M0] +

∫ t

0

Gs dBs.
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Itô’s Stochastic Differential Equation (SDE)

dXt = b(t,Xt) dt+G(t,Xt) dBt

Xt = X0 +

∫ t

0

bs(Xs) ds+

∫ t

0

Gs(Xs) dBs

• We will see that t 7→ Xt is continuous

• We assume b and G are continuous

• The 1st integral is the usual Riemann integral

• The 2nd integral is Itô’s stochastic integral

But, does such Xt actually exist?
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Geometric Brownian Motion

dSt

St
= b dt+ σ dBt, or equivalently dSt = bSt dt+ σSt dBt

• b(St) = bSt

• G(St) = σSt

• Apply Itô’s formula to f(St) = ln(St):

d ln(St) =
1
St
dSt − 1

2S2
t
d[S]t =

1
St
dSt − σ2

2
dt = (b− σ2

2
) dt+ σ dBt

St = S0 · exp
[
(b− σ2

2
)t+ σBt

]
• Take expectation:

dE[St] = bE[St] · dt =⇒ E[St] = E[S0] · exp(bt)
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Langevin’s Equation

dXt = −bXt dt+ σ dBt

• Xt is the velocity of a particle

• b is the friction coefficient

• σ models random perturbation

Xt = exp(−bt) · X0 + σ

∫ t

0

exp[−b(t− s)] dBs

E[Xt] = exp(−bt) · E[X0], E[X2
t ] = exp(−2bt) · E[X2

0] +
σ2

2b
[1− exp(−2bt)]

• As t → ∞, Xt → N (0, σ
2

2b
)
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Brownian Motion on a Riemannian Manifold

X(t) = (cosBt, sinBt)

{
dX1 = −1

2
X1 dt− X2 dBt

dX2 = −1
2
X2 dt+ X1 dBt

⇐⇒ dX = −1
2
X dt+ JX dBt, J =

[
0 −1
1 0

]

dE[X] = −1
2
E[X] dt =⇒ E[X] = E[X(0)] · exp(−1

2
t)
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Brownian Bridge

dXt =
−Xt

1− t
dt+ dBt, 0 ≤ t < 1, X0 = 0

Xt =

∫ t

0

1− t

1− s
dBs, E[Xt] ≡ 0
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Constructing the Solution

Xt = X0 +

∫ t

0

bs(Xs) ds+

∫ t

0

Gs(Xs) dBs

Xk+1 := T (Xk) := Xk
0 +

∫ t

0

bs(X
k
s) ds+

∫ t

0

Gs(X
k
s) dBs

• A solution Xt is simply a fixed point of the mapping T

• Perhaps the iterated sequence Xk converges to a solution?
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E

[
sup
0≤s≤t

|T (Ys)− T (Zs)|2
]
≲ E[|Y0 − Z0|2] + E

[∫ t

0

|Ys − Zs|2 ds
]

|T (Ys)−T (Zs)|2 ≲ |Y0 − Z0|2 + |
∫ t

0

[Gs(Ys)−Gs(Zs)] dBs|2 + |
∫ t

0

[bs(Ys)−bs(Zs)] ds|2

E|
∫ t

0

[Gs(Ys)−Gs(Zs)] dBs|2 ≲ E[

∫ t

0

|Gs(Ys)−Gs(Zs)|2 ds] ≲ E[

∫ t

0

|Ys − Zs|2 ds]

E|
∫ t

0

[bs(Ys)−bs(Zs)] ds|2 ≲ tE[

∫ t

0

|bs(Ys)−bs(Zs)|2] ≲ E[

∫ t

0

|Ys − Zs|2 ds]
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• Existence

E
[
sup
0≤s≤t

|T (Xn+1
s )− T (Xn

s )|2︸ ︷︷ ︸
Dn+1

t

]
≲ E

[ ∫ t

0

|Xn+1
s − Xn

s |2︸ ︷︷ ︸
≤Dn

s

ds
]

– apply recursion to obtain Dn
t ≲ tn

n! +
tn+1

(n+1)!

– it follows that XntX, which is indeed a solution

• Uniqueness

E

[
sup
0≤s≤t

|Ys − Zs|2
]
≲ E

[∫ t

0

|Ys − Zs|2 ds
]

– apply Gronwall’s inequality: D(t) ≲
∫ t

0
D(s) ds =⇒ D(t) ≤ 0

L02 13/28



Existence and Uniqueness

Xt = X0 +

∫ t

0

bs(Xs) ds+

∫ t

0

Gs(Xs) dBs

There exists a unique continuous solution of SDE, if

• b and G are locally Lipschitz continuous (e.g., continuously differentiable)

– i.e., |b(x)− b(y)| ≤ L · |x− y| for all x,y ∈ B(0, r)

• b and G have linear growth

– i.e., |b(x)|2 ≤ K · (1 + |x|2)

– trivially holds if b is linear in x
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Markov Process

Xt = X0 +

∫ t

0

bs(Xs) ds+

∫ t

0

Gs(Xs) dBs

For any bounded and continuous function f :

Ex[f(Xt+s)|Fs] = EXs [f(Xt)]

• Ex: when we start with X0 = x
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Euler-Maruyama

Xt = Xs +

∫ t

s

bτ (Xτ ) dτ +

∫ t

s

Gτ (Xτ ) dBτ

≈ Xs + bs(Xs) · [t− s] +Gs(Xs)[Bt − Bs]

• Divide 0 := t0 < t1 < · · · < tn < tn+1 = t

• For k = 1, . . . , n, compute

Xtk+1
= Xtk + btk(Xtk) ·∆tk +Gtk(Xtk) ·∆Btk

– ∆Btk

i.i.d.≃ N (0,∆tk)

• Interpolate
– X̂t :=

∑
k Xtk · Jtk ≤ t < tk+1K

– X̄t := T (X̂t)
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“I did not hear any reaction from other mathematicians about my paper
until long after the end of the war, when Gisiro Maruyama told me in person
that he had been drafted into the army and had read my paper in the barracks
in 1942. Perhaps he and I were the only researchers then interested in the
problem of sample paths.”

— Kiyosi Itô
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Langevin again

dXt = −b(Xt) dt+ σt dBt

• Euler-Maruyama:

Xk+1 = Xk − b(Xk)∆tk +N (0, σ2
k∆tk)

• Let ∆tk =: ηk and b(Xk) =: ∇f(Xt)

Xk+1 = Xk − ηk[∇f(Xk) +N (0, σ2
k/ηk)]

• In typical SGD, ηk = O(1/
√
k) and σ2

k/ηk = O(1), meaning σk = k−1/4

• In Langevin gradient, σk ≡ 1
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Complexity

It can be shown that the Euler-Muruyama scheme has
• weak convergence of order O(∆t)

• strong convergence of order O(
√
∆t)

More generally, for a scheme with convergence order O(∆t)p, to achieve ϵ accuracy:
• Need ∆t = ϵ1/p

• Need to evaluates b and G roughly 1/∆t times

• For p = 1/2, obtain the familiar rate 1/ϵ2 for SGD
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Implicit methods

Xt = Xs +

∫ t

s

bτ (Xτ ) dτ +

∫ t

s

Gτ (Xτ ) dBτ

Xtk+1
= Xtk + [(1− θ)btk(Xtk) + θbtk+1

(Xtk+1
)] ·∆tk +Gtk(Xtk) ·∆Btk

• θ = 0: Euler-Muruyama

• θ = 1: implicit method

• θ = 1
2
: Trapezoid
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Richardson Extrapolation

Suppose

E[X∆
t ]− E[Xt] = A∆+B∆2 + · · ·

Then, with half of ∆:

E[X
∆/2
t ]− E[Xt] = A∆/2 +B∆2/4 + · · ·

Thus,

E[2X
∆/2
t − X∆

t ]− E[Xt] = −B∆2/2 + · · ·

Extrapolation eliminates lower order terms!
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Multi-level Monte Carlo
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High order methods
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Score Matching

F(p∥q) := 1
2
EX∼q∥∂x log p(X)− ∂x log q(X)∥22

= EX∼q

[
1
2
∥sp(X)∥22 + ⟨∂x, sp(X)⟩+ 1

2
∥sq(X)∥22

]
≈ ÊX∼q

[
1
2
∥sp(X)∥22 + ⟨∂x, sp(X)⟩

]
• Under mild conditions, F(p∥q) = 0 ⇐⇒ p ∝ q

• A Convenient way to estimate the score sq and hence the density q

• The model score function sp can be chosen as any NN

A. Hyvärinen. “Estimation of Non-Normalized Statistical Models by Score Matching”. Journal of Machine Learning Research, vol. 6, no. 24
(2005), pp. 695–709.
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Score Matching for Exponential Family

min
θ

ÊX∼q

[
1
2
∥s(X;θ)∥22 + ⟨∂x, s(X;θ)⟩

]
• If the model density p is in the exponential family:

s(x;θ) = ∂x ⟨T(x),θ⟩ = [∂xT(x)]⊤θ

⟨∂x, s(x;θ)⟩ = ⟨∂x, ∂x ⟨T(x),θ⟩⟩ =
〈
∂2
xT(x),θ

〉
• Can solve θ in closed-form by simply setting the derivative w.r.t. θ to 0:

θ = −
{
ÊX∼q[∂xT(x)]⊤[∂xT(x)]

}−1 · ÊX∼q[∂
2
xT(x)]

• For multivariate Gaussian, θ = (S−1, S−1µ), T(x) = (−1
2
xx⊤,x) and

min
µ,S

Ê
X∼q

1
2
∥S−1(x− µ)∥22 − tr(S−1)
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Denoising Auto-Encoder

• Suppose also have a latent variable Z with joint density q(x, z)

• Exchage differentiation with integration we obtain:

F(p∥q) := 1
2
EX∼q∥∂x log p(X)− ∂x log q(X)∥22

= 1
2
E(X,Z)∼q[∥sp(X)− ∂x log q(X|Z)∥22 + ∥sq(X)∥22 − ∥∂x log q(X|Z)∥22]

≈ 1
2
Ê(X,Z)∼q∥sp(X)− ∂x log q(X|Z)∥22

• Useful when the conditional density ∂x log q(X|Z) is easy to obtain

P. Vincent. “A Connection Between Score Matching and Denoising Autoencoders”. Neural Computation, vol. 23, no. 7 (2011),
pp. 1661–1674.
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