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An Inherent Difficulty

How do we make sense of the stochastic differential equation?

dXt = ft(Xt) dt+Gt(Xt) dBt

• Brownian motion is nowhere differentiable: dBt does not exist!

• Interpret as an integral:

XT = X0 +

∫ T

0

ft(Xt) dt+

∫ T

0

Gt(Xt) dBt

– the 1st integral is the familiar one (Riemann or Lebesgue)

– the 2nd integral?
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“There are in this world optimists who feel that any symbol that starts off
with an integral sign must necessarily denote something that will have every
property that they should like an integral to possess. This of course is quite
annoying to us rigorous mathematicians; what is even more annoying is that
by doing so they often come up with the right answer.”

— Edward J. McShane

E. J. McShane. “Integrals devised for special purposes”. Bulletin of the American Mathematical Society, vol. 69 (1963), pp. 597–627.
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https://en.wikipedia.org/wiki/Edward_J._McShane
https://www.ams.org/journals/bull/1963-69-05/S0002-9904-1963-10964-7


What Is An Integral Anyway?

∫ T

0

Gt(Xt) dBt

• Integrand: Gt(Xt), living in some space

• Integrator: Bt, living in some possibly different space

• An integral is simply some notation that pairs an integrand and an integrator

– often also written as a dual pairing ⟨G(X);B⟩

• We have yet to specify the pairing, i.e., integral
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What Makes An Integral Useful?

• The properties that it enjoys, ideally conform to our “intuition” or tradition

• e.g., a bilinear form of integrand and integrator:

–
∫
(αf + βg) dB = α

∫
f dB+ β

∫
g dB, i.e., ⟨αf + βg;B⟩ = α ⟨f ;B⟩+ β ⟨g;B⟩

–
∫
f d(αB+ βM) = α

∫
f dB+ β

∫
f dM, i.e., ⟨f ;αB+ βM⟩ = α ⟨f ;B⟩+ β ⟨f ;M⟩

• e.g., some continuity w.r.t. integrand and integrator

• Generality: can accommodate a large class of integrands and integrators

• Change of variable formula

• Possible to compute numerically, at least approximately
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Wiener Integral

• Let g : [0, T ] → R be of bounded variation (e.g., continuously differentiable)

• g(0) = g(T ) = 0

• Define the integral through integration by parts:∫ T

0

g(t) dBt = −
∫ T

0

Bt dg(t)

– the rhs exists if t 7→ Bt is continuous, a.k.a. Riemann-Stieltjes integral

• For more general g, apply approximation and define
∫
g dB = limn→∞

∫
gn dB

• What about
∫ T

0
Bt dBt?
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A Conundrum

• Let 0 = t0 < t1 < · · · < tn < tn+1 = 1, with δn := max0≤k≤n |tk+1 − tk| → 0

• Let τk := (1− λ)tk + λtk+1 for some λ ∈ [0, 1]

• Riemann-Stieltjes approximation of
∫ 1

0
Bt dBt:

R := R(δn, λ) =
n∑

k=0

Bτk [Btk+1
− Btk ]

=
B2
1

2
− 1

2

n∑
k=0

[Btk+1
− Btk ]

2

︸ ︷︷ ︸
Sn(1)

+
n∑

k=0

[Bτk − Btk ]
2

︸ ︷︷ ︸
Sn(λ)

+
n∑

k=0

[Btk+1
− Bτk︸ ︷︷ ︸√

(1−λ)∆tkNk

][Bτk − Btk︸ ︷︷ ︸√
λ∆tkMk

]
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Quadratic Variation

E
( n∑

k=0

(Bτk − Btk)
2 − λ

)2

= E
n∑

k,l=0

[(Bτk − Btk)
2 − (τk − tk)] · [(Bτl − Btl)

2 − (τl − tl)]

=
n∑

k=0

E[(Bτk − Btk)
2 − (τk − tk)]

2

=
n∑

k=0

(τk − tk)
2 · E[χ2

1 − 1]2

≤ λ2δn · E[χ2
1 − 1]2 → 0

• λ = 0: R = (B2
1 − 1)/2 Itô’s integral

• λ = 1
2
: R = B2

1/2 Stratonovich’s integral
• λ = 1: R = (B2

1 + 1)/2
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How to Build Things?

• Start with very simple primitives, e.g., a rectangle

– for an interval (a, b] let µ(a, b] = b− a

– for any n, Xt1 ,Xt2 , . . . ,Xtn exists

• Extend by “obvious” desires, e.g., by linearity

• Extend by less “obvious” desires, e.g., by some form of continuity

• Extend by more technical means
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Building Itô’s Integral

• Recall that Xt = X(t, ω) is a function of two variables

• Indicator: X(t, ω) = 1(ς,τ ](t) · 1A(ω) for some A ⊆ Ω

– A can only depend on {Bt : t ∈ [0, ς]}, i.e., A ∈ Fς (information up to time ς)

–
∫
Xt dBt := [Bτ − Bς ] · 1A is a function of ω but not t (integrated out)

– linear in the integrator by definition

• Also want linearity in the integrand

– for X(t, ω) =
∑

k ck1(ςk,τk] · 1Ak
, define

∫
Xt dBt =

∑
k ck[Bτk − Bςk ] · 1Ak

– indeed well-defined
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Approximation

• Adapted (non-anticipating): Xt ∈ Ft = σ({Bs : 0 ≤ s ≤ t}), information up to t

• Left continuous (l.c.): t 7→ Xt is continuous from the left

Xn
t := X(⌈t2n⌉−1)/2n =

∞∑
k=0

Xk/2n Jk/2n < t ≤ (k + 1)/2nK

– can approximate Xk/2n(ω) ≈
∑

i
i

2m1Ai(ω), Ai := {(i− 1)/2m < Xk/2n ≤ i/2m}

• Define
∫
Xt dBt = limn

∫
Xn
t dBt?
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Isometry

• Recall X(t, ω) : R+ × Ω → R

• Define the Doléans measure λ = λB2 as follows:

λ{(s, t]× 1A} := E[(B2
t − B2

s)1A] = E[(Bt − Bs)
21A]

= (t− s) · µ(A) = (Lebesgue × µ){(s, t]× 1A}

– i.e., λ = λB2 = Lebesgue × µ

• Can now treat X(t, ω) as a r.v. from L2(R+ × Ω,P , λ) to R
• The integral

∫
Xt dBt is a linear map that sends X ∈ L2(R+ × Ω, λ) to L2(Ω, µ)

∥X∥2L2(R+×Ω,λ) =

∥∥∥∥∫ Xt dBt

∥∥∥∥2

L2(Ω,µ)
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For X(t, ω) =
∑

k 1(ςk,τk](t) · Yk(ω), where Yk ∈ Fςk , we have∫
Xt dBt :=

∑
k

[Bτk − Bςk ] · Yk

∥X∥2L2(R+×Ω,λ) =

∫ (∑
k

1(ςk,τk](t) · Yk(ω)
)2

dλ =
∑
k

∫
1(ςk,τk](t) · Y

2
k(ω) dλ(t, ω)

=
∑
k

E[(Bτk − Bςk)
2 · Y2

k]

∥∥∥∥∫ Xt dBt

∥∥∥∥2

L2(Ω,µ)

=
∑
k

∑
l

∫ ∫
[Bτk − Bςk ] · Yk · [Bτl − Bςl ] · Yl dµ(ω)

=
∑
k

E
[
(Bτk − Bςk)

2 · Y2
k

]
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Xn(t, ω) X(t, ω)

∫
Xn(t, ω) dBt

∫
X(t, ω) dBt

isometry

L2(λ)

def

L2(µ)
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Calculus of Itô’s Integral

• Linear in integrand (and integrator)

• Zero mean (as some kind of average of Brownian motion):

E

(∫
Xt(ω) dBt(ω)

)
=

∫ [∫
Xt(ω) dBt(ω)

]
dµ(ω) = 0

• Isometry, and hence continuity
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From Definite to Indefinite

For any (left) continuous and bounded Xt, obtain

Mt =

∫ t

0

Xτ dBτ =

∫
1(0,t](τ) · Xτ dBτ , now as a function of both t and ω

• If t 7→ Xt is continuous, so is t 7→ Mt

• M0 := 0, E[Mt] = 0, Mt ∈ Ft

•
∫ t

s
Xτ dBτ =

∫ t

0
Xτ dBτ −

∫ s

0
Xτ dBτ

• E[Mt|Fs] = E[(Mt −Ms) +Ms|Fs] = Ms, a martingale

• E[M2
t −M2

s] = E[Mt −Ms]
2
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The Power of Abstraction

We have in fact defined the integral ∫
Zt dMt

• If t 7→ Zt is (left) continuous and adapted

• If Mt is a (continuous) martingale

∫ t

0

XZ dB =

∫ t

0

Z dM where Mt =

∫ t

0

X dB
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“There are in this world optimists who feel that any symbol that starts off
with an integral sign must necessarily denote something that will have every
property that they should like an integral to possess. This of course is quite
annoying to us rigorous mathematicians; what is even more annoying is that
by doing so they often come up with the right answer.”

— Edward J. McShane

E. J. McShane. “Integrals devised for special purposes”. Bulletin of the American Mathematical Society, vol. 69 (1963), pp. 597–627.
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https://www.ams.org/journals/bull/1963-69-05/S0002-9904-1963-10964-7


Quadratic Variation, again

Sn
t :=

n∑
k=0

[Mtk+1
−Mtk ]

2

• 0 = t0 < t1 < · · · < tn < tn+1 = t a partition of [0, t]

• Mt is a continuous martingale (e.g., Brownian motion)

• As δn := maxk tk+1 − tk → 0,

Sn
t → [M]t := M2

t − 2

∫ t

0

M dM − M2
0

• For Brownian motion, [B]t = t

• Quadratic variation [M]t is increasing, continuous with [M]0 = 0
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Another Integral

∫ t

0

Xτ d[M]τ

• Fix ω, reduce to Riemann-Stieltjes integral
• Essentially a conditional measure of the Doléans measure

λM2(dt, dω) = µ(dω) · [M](dt, ω)

• For Brownian motion:

λ(dt, dω) = µ(dω)× Lebesgue(dt), [B](dt, ω) = dt

∫
X2(t, ω) dλ(dt, dω) =

∫ (∫
X2(t, ω) d[M]t

)
dµ(dω)
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Itô’s Formula

f(Mt,Vt)−f(M0,V0)=

∫ t

0

fx(Ms,Vs) dMs +

∫ t

0

fy(Ms,Vs) dVs +
1
2

∫ t

0

fxx(Ms,Vs) d[M]s

• Mt is a continuous martingale, e.g., Brownian motion

• Vt is continuously differentiable in t

• Continuous partial derivatives fx, fy, fxx exist

• Recall that for Brownian motion, [B]t = t
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f(Mt,Vt)−f(M0,V0) =
∑
k

[f(Mtk+1
,Vtk+1

)−f(Mtk+1
,Vtk) + f(Mtk+1

,Vtk)−f(Mtk ,Vtk)]

≈
∑
k

fy(Mtk ,Vtk)∆Vtk+fx(Mtk ,Vtk)∆Mtk+
1
2
fxx(Mtk ,Vtk)(∆Mtk)

2

As δn := maxk tt+1 − tk → 0, apply continuity to obtain the limit:∫ t

0

fy(Ms,Vs) dVs +

∫ t

0

fx(Ms,Vs) dMs +
1
2

∫ t

0

fxx(Ms,Vs) d[M]s
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From Integral to Differential

df(Mt,Vt) = fx(Mt,Vt) dMt + fy(Mt,Vt) dVt +
1
2
fxx(Mt,Vt) d[M]t

• Recall also ∫ t

0

XZ dB =

∫ t

0

Z dM where Mt =

∫ t

0

X dB

• Rewritten in terms of differential

Z dM = XZ dB where dM = X dB

• Let ⟨X;M⟩ :=
∫ t

0
X dM, then

[⟨X;M⟩] =
〈
X2; [M]

〉
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Example

dX = F dt+ G dMt

Derive the differential of f(X, t):

df(X, t) = fx(X, t) dX+ fy(X, t) dt+
1
2
fxx(X, t) d[X]t

= fx(X, t)[F dt+ G dMt] + fy(X, t) dt+
1
2
fxx(X, t)G

2 d[M]t

= [fx(X, t) · F+ fy(X, t)] dt+ [fx(X, t) · G] dMt +
1
2
fxx(X, t)G

2 d[M]t

For the Brownian motion, we have

df(X, t) = [fx(X, t) · F+ fy(X, t) +
1
2
fxx(X, t) · G2] dt+ [fx(X, t) · G] dMt

• Rule of thumb: (dt)2 = 0, dt dBt = 0, (dBt)
2 = dt, dBt dB̃t = 0
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More Examples

d(Bm
t ) = mBm−1

t dBt +

(
m

2

)
Bm−2
t dt

• For m = 2, d(B2
t ) = 2Bt dBt + dt

d
(
exp(λBt − λ2t

2
)
)
= λ exp(λBt − λ2t

2
) dBt

• Let Yt = exp(λBt − λ2t
2
), then

dYt = λYt dBt, Y0 = 1
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Score Matching

F(p∥q) := 1
2
EX∼q∥∂x log p(X)− ∂x log q(X)∥22

= EX∼q

[
1
2
∥sp(X)∥22 + ⟨∂x, sp(X)⟩+ 1

2
∥sq(X)∥22

]
≈ ÊX∼q

[
1
2
∥sp(X)∥22 + ⟨∂x, sp(X)⟩

]
• Under mild conditions, F(p∥q) = 0 ⇐⇒ p ∝ q

• A Convenient way to estimate the score sq and hence the density q

• The model score function sp can be chosen as any NN

A. Hyvärinen. “Estimation of Non-Normalized Statistical Models by Score Matching”. Journal of Machine Learning Research, vol. 6, no. 24
(2005), pp. 695–709.
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Score Matching for Exponential Family

min
θ

ÊX∼q

[
1
2
∥s(X;θ)∥22 + ⟨∂x, s(X;θ)⟩

]
• If the model density p is in the exponential family:

s(x;θ) = ∂x ⟨T(x),θ⟩ = [∂xT(x)]⊤θ

⟨∂x, s(x;θ)⟩ = ⟨∂x, ∂x ⟨T(x),θ⟩⟩ =
〈
∂2
xT(x),θ

〉
• Can solve θ in closed-form by simply setting the derivative w.r.t. θ to 0:

θ = −
{
ÊX∼q[∂xT(x)]⊤[∂xT(x)]

}−1 · ÊX∼q[∂
2
xT(x)]

• For multivariate Gaussian, θ = (S−1, S−1µ), T(x) = (−1
2
xx⊤,x) and

min
µ,S

Ê
X∼q

1
2
∥S−1(x− µ)∥22 − tr(S−1)
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Denoising Auto-Encoder

• Suppose also have a latent variable Z with joint density q(x, z)

• Exchage differentiation with integration we obtain:

F(p∥q) := 1
2
EX∼q∥∂x log p(X)− ∂x log q(X)∥22

= 1
2
E(X,Z)∼q[∥sp(X)− ∂x log q(X|Z)∥22 + ∥sq(X)∥22 − ∥∂x log q(X|Z)∥22]

≈ 1
2
Ê(X,Z)∼q∥sp(X)− ∂x log q(X|Z)∥22

• Useful when the conditional density ∂x log q(X|Z) is easy to obtain

P. Vincent. “A Connection Between Score Matching and Denoising Autoencoders”. Neural Computation, vol. 23, no. 7 (2011),
pp. 1661–1674.
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