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Course Logistics

• Course web: https://cs.uwaterloo.ca/~y328yu/mycourses/886

• Learn: https://learn.uwaterloo.ca/d2l/home/982259

• Piazza: https://piazza.com/uwaterloo.ca/winter2024/cs886yu

• Part I: Necessary technical background (me)

• Part II: Paper presentation and discussion (you)

• Evaluation: presentation 40% + project report 60%

• Office hour: Thursday 1:30 - 2:30, DC3617
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Auto-Regressive (AR) Flow Recalled

(T#r)(x) = r(z) / det
(
∇T(1)z

)
/ det

(
∇T(2)z1

)
/ det

(
∇T(3)z2

)
/ det

(
∇T(4)z3

)
xj = zj · exp

(
αj(z1, . . . , zj−1)

)
+ µj(z1, . . . , zj−1) =: Tj(z1, . . . , zj−1, zj)

Now let the number of layers approach ∞!
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Neural Ordinary Differential Equations (ODE)

xt+1 ≈ xt + ηt · ft(xt) =: Tt(xt)

dxt+1 = ft(xt) dt

• Suppose xt ∼ pt
• Apply change-of-variable-formula we know xt+1 ∼ pt+1, where

log pt+1(xt+1) = log pt(xt)− log | det ∂xTt(xt)|
= log pt(xt)− log | det[Id + ηt · ∂xft(xt]|
≈ log pt(xt)− ηt · ⟨∂x, ft(xt)⟩

• Continuous change-of-variable formula:

d log pt(xt)

dt
= −⟨∂x, ft(xt)⟩

T. Q. Chen et al. “Neural ordinary differential equations”. In: Advances in Neural Information Processing Systems. 2018, pp. 6572–6583.
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Stochastic Differential Equations (SDE)

dxt+1 = ft(xt) dt+Gt(xt) dnt

xt+1 ≈ xt + ηt · ft(xt) + gt(xt), where gt(xt) ∼ N (0, η2tGt(xt)Gt(xt)
⊤)

• xt+1 is now a noisy version of xt

• Suppose xt ∼ pt

• Kolmogorov forward equation (a.k.a. Fokker-Planck equation):

∂tpt = −⟨∂x, ptft⟩+ 1
2

〈
∂x∂

⊤
x , ptGtG

⊤
t

〉
• Kolmogorov backward equation (with fixed end time t > s):

−∂sps = ⟨fs, ∂xps⟩+ 1
2

〈
GsG

⊤
s , ∂x∂

⊤
x ps
〉
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ODE ⇔ SDE

dxt+1 = ft(xt) dt

dxt+1 = ft(xt) dt+Gt(xt) dnt

• Any ODE is a (trivial) SDE with Gt ≡ 0

• Conversely, any SDE is equivalent to an ODE:

ft ← ft − 1
2
GtG

⊤
t ∂x − 1

2
GtG

⊤
t ∂x log pt

• The score function plays an important role:

s(x) = sp(x) := ∂x log p(x)
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Reverse-time SDE

dxt+1 = ft(xt) dt+Gt(xt) dnt

dx̄t+1 = f̄t(x̄t) dt+Gt(x̄t) dn̄t, where f̄t = ft −GtG
⊤
t ∂x −GtG

⊤
t ∂x log pt

• Time flows backwards for the bar quantities

• Forward SDE: diffuses date into noise

• Reverse SDE: molds noise into data

• ft and Gt together specify f̄t: key is to estimate the score ∂x log pt

B. D. O. Anderson. “Reverse-time diffusion equation models”. Stochastic Processes and their Applications, vol. 12, no. 3 (1982),
pp. 313–326.
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Y. Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: International Conference on Learning
Representations. 2021.
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https://openreview.net/forum?id=PxTIG12RRHS


Y. Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: International Conference on Learning
Representations. 2021.
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Score Matching

F(p∥q) := 1
2
EX∼q∥∂x log p(X)− ∂x log q(X)∥22

= EX∼q

[
1
2
∥sp(X)∥22 + ⟨∂x, sp(X)⟩+ 1

2
∥sq(X)∥22

]
≈ ÊX∼q

[
1
2
∥sp(X)∥22 + ⟨∂x, sp(X)⟩

]
• Under mild conditions, F(p∥q) = 0 ⇐⇒ p ∝ q

• A Convenient way to estimate the score sq and hence the density q

• The model score function sp can be chosen as any NN

A. Hyvärinen. “Estimation of Non-Normalized Statistical Models by Score Matching”. Journal of Machine Learning Research, vol. 6, no. 24
(2005), pp. 695–709.
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Score Matching for Exponential Family

min
θ

ÊX∼q

[
1
2
∥s(X;θ)∥22 + ⟨∂x, s(X;θ)⟩

]
• If the model density p is in the exponential family:

s(x;θ) = ∂x ⟨T(x),θ⟩ = [∂xT(x)]⊤θ

⟨∂x, s(x;θ)⟩ = ⟨∂x, ∂x ⟨T(x),θ⟩⟩ =
〈
∂2
xT(x),θ

〉
• Can solve θ in closed-form by simply setting the derivative w.r.t. θ to 0:

θ = −
{
ÊX∼q[∂xT(x)]⊤[∂xT(x)]

}−1 · ÊX∼q[∂
2
xT(x)]

• For multivariate Gaussian, θ = (S−1, S−1µ), T(x) = (−1
2
xx⊤,x) and

min
µ,S

Ê
X∼q

1
2
∥S−1(x− µ)∥22 − tr(S−1)
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Denoising Auto-Encoder

• Suppose also have a latent variable Z with joint density q(x, z)

• Exchage differentiation with integration we obtain:

F(p∥q) := 1
2
EX∼q∥∂x log p(X)− ∂x log q(X)∥22

= 1
2
E(X,Z)∼q[∥sp(X)− ∂x log q(X|Z)∥22 + ∥sq(X)∥22 − ∥∂x log q(X|Z)∥22]

≈ 1
2
Ê(X,Z)∼q∥sp(X)− ∂x log q(X|Z)∥22

• Useful when the conditional density ∂x log q(X|Z) is easy to obtain

P. Vincent. “A Connection Between Score Matching and Denoising Autoencoders”. Neural Computation, vol. 23, no. 7 (2011),
pp. 1661–1674.
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Score-based Diffusion Generative Models

dxt+1 = ft(xt) dt+Gt(xt) dnt

xt+1 ≈ xt + ηt · ft(xt) + gt(xt), where gt(xt) ∼ N (0, η2tGt(xt)Gt(xt)
⊤)

• Key is to estimate the score st(x) = ∂x log pt

• Apply denoising auto-encoder score matching:

min
θ

Ê
t∼µ,(Xt,X0)∼q(xt,x0)

λt∥st(Xt;θ)− ∂x log q(Xt|X0)∥22

– X0 ∼ q(x), the data density

– q(xt|x0) can be derived from the forward SDE, in closed-form if ft is affine
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Inference After Learning

dxt+1 = ft(xt) dt+Gt(xt) dnt

dx̄t+1 = ft −GtG
⊤
t ∂x −GtG

⊤
t st(x̄t;θ) dt+Gt(x̄t) dn̄t

dxt+1 = ft − 1
2
GtG

⊤
t ∂x − 1

2
GtG

⊤
t st(xt;θ) dt

• Run the reverse SDE or the equivalent ODE

– sample x ∼ N (0, Id)

– apply numerical SDE or ODE solver (e.g. Euler-Maruyama)

D. J. Higham. “An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations”. SIAM Review, vol. 43, no. 3
(2001), pp. 525–546.
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https://en.wikipedia.org/wiki/Euler-Maruyama_method
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Y. Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: International Conference on Learning
Representations. 2021.
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Y. Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: International Conference on Learning
Representations. 2021.L00 15/54

https://openreview.net/forum?id=PxTIG12RRHS


Y. Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: International Conference on Learning
Representations. 2021.
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Stable Diffusion

R. Rombach et al. “High-Resolution Image Synthesis with Latent Diffusion Models”. In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2022, pp. 10674–10685.

L00 17/54

http://dx.doi.org/https://doi.org/10.1109/CVPR52688.2022.01042




dxt+1 = ft(xt) dt +Gt(xt) dBt

• What is a Brownian motion Bt?

• What is the integral
∫ t

0
Gt(xt) dBt?

• What is a stochastic differential equation (SDE)?

– Fokker-Planck-Kolmogorov equation

• What is a reverse SDE?

• What is a score function and how to estimate it?

• How to numerically simulate an SDE or its reverse?
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What Is a Random Variable?

• We fix a standard sample space (Ω,F , µ)

– F ⊆ 2Ω, µ : F → [0, 1] assigns probability

– e.g. Ω = [0, 1] and µ the Lebesgue measure

• A random variable (r.v.) is a function X : (Ω,F , µ)→ (S,B)

– S is the state space (range), e.g., S = R

– the distribution of X is a probability measure on B ⊆ 2S:

∀S ∈ B, (X#µ)(S) := µ({ω : X(ω) ∈ S}) = µ(X−1(S))

– for this to always make sense, need X−1(B) ⊆ F (so-called measurability)
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Push-forward

∀S ∈ B, (X#µ)(S) := µ({ω : X(ω) ∈ S}) = µ(X−1(S))

• The function (r.v.) X “pushes” the probability µ forward to the state space

X : (Ω,F , µ)→ (S,B,X#µ)

– by pulling the computation on B back to the sample space (Ω,F , µ) through X−1

• In particular, if ω ≃ µ, then X(ω) ≃ X#µ

• This is one of the main ideas behind generative modeling
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Example

• X ≃ N (0, 1), meaning, X : (Ω,F , µ)→ (R,B) and X#µ = N (0, 1)

– ω ≃ µ =⇒ X(ω) ≃ N (0, 1)

• Y ≃ χ2
1, meaning, Y : (Ω,F , µ)→ (R,B) and Y#µ = χ2

1

– ω ≃ µ =⇒ Y(ω) ≃ χ2
1

• Consider the function f : (R,B)→ (R,B), x 7→ x2

• Then, the composition f(X) : (Ω,F , µ)→ (R,B)

• What is the distribution of f(X)?
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Function −→ Distribution

µ[f(X) ∈ S] = µ[X ∈ f−1(S)] = µ[X−1
(
f−1(S)

)
] = [X#µ]

(
f−1(S)

)
= [f#(X#µ)](S)

• The distribution of f(X) is thus (f ◦ X)#µ = f#[X#µ]

– recall that X#µ is the distribution of X

• For our choice of f , we know f(X) ≃ Y, i.e., f#[X#µ] = Y#µ

– in other words, X ≃ X#µ =⇒ f(X) ≃ Y#µ

• Two equivalent views

– f ◦ X as composition: X : (Ω,F , µ)→ (R,B), f : (R,B)→ (R,B)

– abstract 1 layer away: f : (R,B,N (0, 1))→ (R,B)

• From one probability µ on Ω, each function f induces a distribution f#µ on S
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Function ←− Distribution

Inverse problem: given distributions P and Q, find f such that f#P = Q

• In generative models, P = N (0, I) is pure noise, Q data distribution

• If possible, draw X ≃ P to get f(X) ≃ Q (a.k.a. sampling or inference)

Theorem: Representation through Push-forward

Let P be any continuous distribution on Rm. For any distribution Q on Rd, there
exist push-forward maps f : Rm → Rd such that

Z ≃ P =⇒ f(Z) ≃ Q, i.e., f#P = Q.

• In reality, only have empirical Q̂, which is discrete
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Example: X ≃ N (0, 1), Y ≃ χ2
1

• By definition, Y ≃ X2 hence f(x) = x2 works

• What is the distribution of Φ(X), Φ being c.d.f. of N (0, 1)?

Pr(Φ(X) ≤ u) = Pr(X ≤ Φ−1u) = Φ[Φ−1(u)] = u

• What is the distribution of Ψ−1(Φ(X)), Ψ being c.d.f. of χ2?

Pr(Ψ−1(Φ(X)) ≤ t) = Pr(Φ(X) ≤ Ψ(t)) = Ψ(t)

• Thus, f(x) = [Ψ−1 ◦ Φ](x) also works
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Generalization

• Forward: X
g−→ µ

– X
g1−→ X1

g2−→ X2
g3−→ · · · gn−→ Xn ≈ µ

• Backward: Y
h←− µ

– Y ≈ Yn
hn←− · · · h3←− Y2

h2←− Y1
h1←− µ

• f = h ◦ g brings X to Y; will stretch n→∞

• Difficulty?
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What Is a Stochastic Process?

• A collection of random variables X : T→ RΩ, t 7→ X(t, ·)

• A random function X : Ω→ RT, ω 7→ X(·, ω)

• A bivariate function X(t, ω) : T× Ω→ R
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Brownian Motion

A stochastic process {Bt : t ≥ 0} is called Brownian motion if
• Initialization: B0 ≡ 0

• Independent increment: ∀n, ∀t0 ≤ t1 ≤ · · · ≤ tn, Bt1 − Bt0 ⊥ · · · ⊥ Btn − Btn−1

• Stationary increment: ∀s ≤ t, Bt − Bs ≃ Bt−s−B0

• Gaussian: Bt ≃ N (0, t)

• Continuous sample path: for (almost) all ω, t 7→ Bt(ω) is continuous

Brownian motion is a (continuous) Gaussian process with covariance kernel

κ(s, t) := E(BsBt) = s ∧ t
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Derivative Kernel

• Let κ : X×X→ R be a (reproducing) kernel

– ∀n, ∀x1, . . . ,xn ∈ X, let Kij := κ(xi,xj), we have K ⪰ 0

– equivalently, ∃φ : X→ H such that κ(x, z) = ⟨φ(x), φ(z)⟩

• The partial derivative κ′ := ∂12κ is also a kernel

• Derivative kernel of the Brownian motion kernel κ(s, t) = s ∧ t?

• “White noise” B′
t as derivative of Brownian motion Bt
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“There are in this world optimists who feel that any symbol that starts off
with an integral sign must necessarily denote something that will have every
property that they should like an integral to possess. This of course is quite
annoying to us rigorous mathematicians; what is even more annoying is that
by doing so they often come up with the right answer.”

— Edward J. McShane

E. J. McShane. “Integrals devised for special purposes”. Bulletin of the American Mathematical Society, vol. 69 (1963), pp. 597–627.
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Continuity

Theorem: Continuity condition of stochastic processes

Let Xt be a stochastic process with index t ∈ Rm. If for some α, β, L > 0,

∀s,∀t, E[∥Xs − Xt∥α] ≤ L∥t− s∥m+β,

then there exists a modification X̃t that is locally Hölder continuous of order γ < β/α.

Hölder continuous at s of order γ:

∀t around s, ∥Xs − Xt∥ ≤ c · ∥s− t∥γ

• Gaussian kernel: κ(s, t) = κ(s− t) = exp(−(s− t)2)

• Laplacian kernel: κ(s, t) = κ(s− t) = exp(−|s− t|)
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Kolmogorov’s Construction of Brownian Motion

• For any finitely many t1, . . . , tn,

B1:n := (Bt1 , . . . ,Btn) ≃ N (0, Kn)

where Kn(ti, tj) = ti ∧ tj.

• Kolmogorov extension theorem =⇒ Gaussian process Bt exists

• Moment: E|Bs − Bt|2k = E|
√
t− s · B1|2k = |t− s|k · E|B1|k

• Identifying α = 2k,m = 1, β = k −m = k − 1 =⇒ γ < k−1
2k

Brownian motion is locally Hölder continuous of order γ < 1
2
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Nondifferentiable Almost Everywhere (a.e.)

Theorem: Irregularity

Brownian motion is nowhere Hölder continuous of order γ > 1
2
.

• Sample path of Brownian motion is of infinite variation over any (nonempty)
interval

• With a bit more work, it can be proved that

Pr

(
lim sup

h→0

sup0≤t≤1−h |Bt+h − Bt|√
2h| log h|

= 1

)
= 1,

thus Brownian motion is not Hölder continuous of order 1
2

(at some point t).
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Brownian Motion is Markov

Theorem: (Strong) Markov property

{Bt+τ − Bτ}t≥0 is a Brownian motion and independent of Fτ

• For τ = s, Fs = σ(B1, . . . ,Bs): information up to time τ

• For small t > 0, Brownian motion has forgotten how it went into Bτ

• It started afresh and hence cannot match the left and right derivatives at τ

• Brownian motion is a Markov process:

Pr(Bt+s ∈ S|Fs) = Pr(Bt+s − Bs + Bs ∈ S|Fs) = Pr(Bt+s ∈ S|Bs)
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Brownian Bridge

A stochastic process {B◦
t : t ∈ [0, 1]} is called a Brownian bridge if

• Initialization: B◦
0 = B◦

1 ≡ 0

• Independent increment: ∀n, ∀t0 ≤ t1 ≤ · · · ≤ tn, B◦
t1
− B◦

t0
⊥ · · · ⊥ B◦

tn − B◦
tn−1

• Stationary increment: ∀0 ≤ s ≤ t ≤ 1, B◦
t − B◦

s ≃ B◦
t−s−B◦

0

• Gaussian: B◦
t ≃ N (0, t(1− t))

• Continuous sample path: for (almost) all ω, t 7→ B◦
t (ω) is continuous

Brownian bridge is a (continuous) Gaussian process with covariance kernel

κ(s, t) := s ∧ t− st
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Some Calculus

Restricting t to [0, 1]:

• B◦
t ≃ Bt − tB1

• Bt ≃ B◦
t + tZ, where Z ≃ N (0, 1) ⊥ B◦

t

The following are Brownian motions:

• Change of time: 1√
c
Bct

• Time inversion: tB1/t (what about 1
t
Bt?)

• Independent combination:
√
λBt +

√
1− λZt for Bt ⊥ Zt
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Lévy Process

A stochastic process {Xt} is called a Lévy process if
• Initialization: X0 ≡ 0

• Independent increment: ∀n, ∀t0 ≤ t1 ≤ · · · ≤ tn, Xt1 − Xt0 ⊥ · · · ⊥ Xtn − Xtn−1

• Stationary increment: ∀s ≤ t, Xt − Xs ≃ Xt−s−X0

• Continuity in probability: limt↓0 Xt → X0 = 0 (i.p.)

Consequence of independent and stationary increment:

Xt =
n∑

i=1

[Xit/n − X(i−1)t/n︸ ︷︷ ︸
i.i.d.∼Xt/n

]

i.e., Xt is infinitely divisible. Continuity forces Xt ≃ F (t) for some distribution F .
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Lévy-Khintchine Formula

Theorem: Lévy process representation

Xt is a Lévy process iff

E exp(iuXt) = exp

{
t
[
iub︸︷︷︸
1○
−σ2u2/2︸ ︷︷ ︸

2○

+

∫
(eiux − 1− iux Jx ≤ 1K︸ ︷︷ ︸

3○

) dν(x)
]}

,

where ν is a measure with ν({0}) = 0 and
∫
(1 ∧ x2) dν(x) <∞.

1○ : Deterministic process Xt = bt

2○ : Brownian motion σBt

3○ : Purely jump process
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Poisson Process

A stochastic process Nt is called a Poisson process if
• Initialization: N0 ≡ 0

• Independent increment: ∀n,∀t0 ≤ t1 ≤ · · · ≤ tn, Nt1 − Nt0 ⊥ · · · ⊥ Ntn − Ntn−1

• Stationary increment: ∀s ≤ t, Nt − Ns ≃ Nt−s−N0

• Poisson: Nt ≃ Pois(λt)

• Right continuity: for (almost) all ω, t 7→ Nt(ω) is right continuous with left limit

Nt ∈ Z+, increasing, finitely many jumps of size 1 in finite time
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Wiener’s Construction of Brownian Motion

Bt = tG0 +
∞∑
n=1

sin(nπt)

nπ
Gn

• Trigonometric functions φn(t) := exp(inπt) as orthogomal basis in L2([0, 1])

• Gn
i.i.d.≃ N (0, 1)

• Truncating n leads to a discretized path
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Ciesielski’s Construction of Brownian Motion

• Haar wavelets: φ0(t) ≡ 1, for n ∈ N, k = 1, 3, . . . , 2n − 1,

φk/2n(t) = 2(n−1)/2 ·
(

Jk − 1 < t2n ≤ kK− Jk < t2n ≤ k + 1K
)

• Expand B′
t over the Haar wavelets:∫ 1

0

B′
t · φk/2n(t) dt = 2(n−1)/2 · [(Bk/2n − B(k−1)/2n)− (B(k+1)/2n − Bk/2n)] ≃ Gk/2n

• Reconstruct B′
t = G0φ0 +

∑
n Gk/2n · φk/2n(t) and thus

Bt =

∫ 1

0

B′
t dt = tG0 +

∑
n

Gk/2n

∫ t

0

φk/2n(s) ds
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Lévy’s Construction of Brownian Motion

• Initialize B0 = 0,B1 ≃ N (0, 1)

• Repeat for each n = 0, 1, 2, . . ., l = 1, 2, . . . , 2n+1 − 1

Bl/2n+1 =

{
Bk/2n , l = 2k
1
2
[Bk/2n + B(k+1)/2n ] + 2−(n+2)/2Gk/2n , l = 2k + 1

– refine the grid by appending each middle point

– linearly interpolate at the middle point

– add scaled, independent, Gaussian perturbation to the middle point
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Donsker’s Construction of Brownian Motion

Theorem: Convergence in distribution

Suppose Xn
t converges to Xt for any finite section (i.e., for finitely many t), X1 −

X1−δ ⇒ 0 as δ → 0, and for any r ≤ s ≤ t and λ > 0,

Pr[|Xn
s − Xn

r | ∧ |Xn
t − Xn

s | ≥ λ] ≤ 1
λ4β [h(t)− h(r)]2α,

where β ≥ 0, α > 1
2

and h is increasing continuous. Then, Xn ⇒ X.

• Let ξi
i.i.d.≃ F with 0 mean and unit variance

• Let Sn =
∑n

i=1 ξi be the cumsum

• Xn
t := 1√

n
S⌊nt⌋ ⇒ Bt and X̃n

t := Xn
t + (nt− ⌊nt⌋) 1√

n
ξ⌊nt⌋+1 ⇒ Bt

• Q̂n
t := 1√

n

∑n
i=1

(
Jξi ≤ tK− F (t)

)
⇒ B◦

F (t); supt |Q̂n
t | → supt |B◦

F (t)|
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Integration

• Let g : [0, T ]→ R be of bounded variation (e.g., continuously differentiable)

• g(0) = g(T ) = 0

• Define the integral through integration by parts:∫ T

0

g(t) dXt = −
∫ T

0

Xt dg(t)

– the rhs exists if t 7→ Xt is continuous, a.k.a. Riemann-Stieltjes-integral

• What about
∫ T

0
Bt dBt?

– need significantly new ideas
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