CS886: Diffusion Models

Lec 00: Introduction

Yaoliang Yu

January 9, 2024

Course Logistics

- Course web: https://cs.uwaterloo.ca/~y328yu/mycourses/886
- Learn: https://learn.uwaterloo.ca/d2l/home/982259
- Piazza: https://piazza.com/uwaterloo.ca/winter2024/cs886yu
- Part I: Necessary technical background (me)
- Part II: Paper presentation and discussion (you)
- Evaluation: presentation $40 \%+$ project report 60%
- Office hour: Thursday 1:30-2:30, DC3617

Auto-Regressive (AR) Flow Recalled

$$
\begin{aligned}
\left(\mathbf{T}_{\# r} r\right)(\mathbf{x}) & =r(\mathbf{z}) / \operatorname{det}\left(\nabla \mathbf{T}^{(1)} \mathbf{z}\right) / \operatorname{det}\left(\nabla \mathbf{T}^{(2)} \mathbf{z}_{1}\right) / \operatorname{det}\left(\nabla \mathbf{T}^{(3)} \mathbf{z}_{2}\right) / \operatorname{det}\left(\nabla \mathbf{T}^{(4)} \mathbf{z}_{3}\right) \\
x_{j} & =z_{j} \cdot \exp \left(\alpha_{j}\left(z_{1}, \ldots, z_{j-1}\right)\right)+\mu_{j}\left(z_{1}, \ldots, z_{j-1}\right)=: T_{j}\left(z_{1}, \ldots, z_{j-1}, z_{j}\right)
\end{aligned}
$$

Now let the number of layers approach $\infty!$

Neural Ordinary Differential Equations (ODE)

$$
\begin{aligned}
\mathbf{x}_{t+1} & \approx \mathbf{x}_{t}+\eta_{t} \cdot \mathbf{f}_{t}\left(\mathbf{x}_{t}\right)=: \mathbf{T}_{t}\left(\mathbf{x}_{t}\right) \\
\mathrm{d} \mathbf{x}_{t+1} & =\mathbf{f}_{t}\left(\mathbf{x}_{t}\right) \mathrm{d} t
\end{aligned}
$$

- Suppose $\mathrm{x}_{t} \sim p_{t}$
- Apply change-of-variable-formula we know $\mathrm{x}_{t+1} \sim p_{t+1}$, where

$$
\begin{aligned}
\log p_{t+1}\left(\mathbf{x}_{t+1}\right) & =\log p_{t}\left(\mathbf{x}_{t}\right)-\log \left|\operatorname{det} \partial_{\mathbf{x}} \mathbf{T}_{t}\left(\mathbf{x}_{t}\right)\right| \\
& =\log p_{t}\left(\mathbf{x}_{t}\right)-\log \mid \operatorname{det}\left[\operatorname{Id}+\eta_{t} \cdot \partial_{\mathbf{x}} \mathbf{f}_{t}\left(\mathbf{x}_{t}\right] \mid\right. \\
& \approx \log p_{t}\left(\mathbf{x}_{t}\right)-\eta_{t} \cdot\left\langle\partial_{\mathbf{x}}, \mathbf{f}_{t}\left(\mathbf{x}_{t}\right)\right\rangle
\end{aligned}
$$

- Continuous change-of-variable formula:

$$
\frac{\mathrm{d} \log p_{t}\left(\mathbf{x}_{t}\right)}{\mathrm{d} t}=-\left\langle\partial_{\mathbf{x}}, \mathbf{f}_{t}\left(\mathbf{x}_{t}\right)\right\rangle
$$

Stochastic Differential Equations (SDE)

$$
\begin{aligned}
\mathrm{d} \mathbf{x}_{t+1} & =\mathbf{f}_{t}\left(\mathbf{x}_{t}\right) \mathrm{d} t+G_{t}\left(\mathbf{x}_{t}\right) \mathrm{d} \mathbf{n}_{t} \\
\mathbf{x}_{t+1} & \approx \mathbf{x}_{t}+\eta_{t} \cdot \mathbf{f}_{t}\left(\mathbf{x}_{t}\right)+\mathbf{g}_{t}\left(\mathbf{x}_{t}\right), \quad \text { where } \quad \mathbf{g}_{t}\left(\mathbf{x}_{t}\right) \sim \mathcal{N}\left(\mathbf{0}, \eta_{t}^{2} G_{t}\left(\mathbf{x}_{t}\right) G_{t}\left(\mathbf{x}_{t}\right)^{\top}\right)
\end{aligned}
$$

- x_{t+1} is now a noisy version of x_{t}
- Suppose $\mathbf{x}_{t} \sim p_{t}$
- Kolmogorov forward equation (a.k.a. Fokker-Planck equation):

$$
\partial_{t} p_{t}=-\left\langle\partial_{\mathbf{x}}, p_{t} \mathrm{f}_{t}\right\rangle+\frac{1}{2}\left\langle\partial_{\mathbf{x}} \partial_{\mathbf{x}}^{\top}, p_{t} G_{t} G_{t}^{\top}\right\rangle
$$

- Kolmogorov backward equation (with fixed end time $t>s$):

$$
-\partial_{s} p_{s}=\left\langle\mathbf{f}_{s}, \partial_{\mathbf{x}} p_{s}\right\rangle+\frac{1}{2}\left\langle G_{s} G_{s}^{\top}, \partial_{\mathbf{x}} \partial_{\mathbf{x}}^{\top} p_{s}\right\rangle
$$

$\mathrm{ODE} \Leftrightarrow \mathrm{SDE}$

$$
\begin{aligned}
\mathrm{d} \mathbf{x}_{t+1} & =\mathbf{f}_{t}\left(\mathbf{x}_{t}\right) \mathrm{d} t \\
\mathrm{~d} \mathbf{x}_{t+1} & =\mathrm{f}_{t}\left(\mathbf{x}_{t}\right) \mathrm{d} t+G_{t}\left(\mathbf{x}_{t}\right) \mathrm{d} \mathbf{n}_{t}
\end{aligned}
$$

- Any ODE is a (trivial) SDE with $G_{t} \equiv 0$
- Conversely, any SDE is equivalent to an ODE:

$$
\mathbf{f}_{t} \leftarrow \mathbf{f}_{t}-\frac{1}{2} G_{t} G_{t}^{\top} \partial_{\mathbf{x}}-\frac{1}{2} G_{t} G_{t}^{\top} \partial_{\mathbf{x}} \log p_{t}
$$

- The score function plays an important role:

$$
\mathbf{s}(\mathbf{x})=\mathbf{s}_{p}(\mathbf{x}):=\partial_{\mathrm{x}} \log p(\mathbf{x})
$$

Reverse-time SDE

$$
\begin{aligned}
& \mathrm{d} \mathbf{x}_{t+1}=\mathrm{f}_{t}\left(\mathbf{x}_{t}\right) \mathrm{d} t+G_{t}\left(\mathbf{x}_{t}\right) \mathrm{d} \mathbf{n}_{t} \\
& \mathrm{~d} \overline{\mathbf{x}}_{t+1}=\overline{\mathbf{f}}_{t}\left(\overline{\mathbf{x}}_{t}\right) \mathrm{d} t+G_{t}\left(\overline{\mathbf{x}}_{t}\right) \mathrm{d} \overline{\mathbf{n}}_{t}, \quad \text { where } \quad \overline{\mathbf{f}}_{t}=\mathbf{f}_{t}-G_{t} G_{t}^{\top} \partial_{\mathbf{x}}-G_{t} G_{t}^{\top} \partial_{\mathbf{x}} \log p_{t}
\end{aligned}
$$

- Time flows backwards for the bar quantities
- Forward SDE: diffuses date into noise
- Reverse SDE: molds noise into data
- f_{t} and G_{t} together specify $\overline{\mathrm{f}}_{t}$: key is to estimate the score $\partial_{\mathrm{x}} \log p_{t}$

[^0]

[^1]
Score Matching

$$
\begin{aligned}
\mathbb{F}(p \| q) & :=\frac{1}{2} \mathbb{E}_{\mathbf{X} \sim q}\left\|\partial_{\mathbf{x}} \log p(\mathrm{X})-\partial_{\mathbf{x}} \log q(\mathbf{X})\right\|_{2}^{2} \\
& =\mathbb{E}_{\mathbf{X} \sim q}\left[\frac{1}{2}\left\|\mathbf{s}_{p}(\mathbf{X})\right\|_{2}^{2}+\left\langle\partial_{\mathbf{x}}, \mathbf{s}_{p}(\mathbf{X})\right\rangle+\frac{1}{2}\left\|\mathbf{s}_{q}(\mathbf{X})\right\|_{2}^{2}\right] \\
& \approx \hat{\mathbb{E}}_{\mathbf{X} \sim q}\left[\frac{1}{2}\left\|\mathbf{s}_{p}(\mathbf{X})\right\|_{2}^{2}+\left\langle\partial_{\mathbf{x}}, \mathbf{s}_{p}(\mathbf{X})\right\rangle\right]
\end{aligned}
$$

- Under mild conditions, $\mathbb{F}(p \| q)=0 \Longleftrightarrow p \propto q$
- A Convenient way to estimate the score s_{q} and hence the density q
- The model score function s_{p} can be chosen as any NN

[^2]
Score Matching for Exponential Family

$$
\min _{\boldsymbol{\theta}} \hat{\mathbb{E}}_{\mathrm{X} \sim q}\left[\frac{1}{2}\|\mathrm{~s}(\mathrm{X} ; \boldsymbol{\theta})\|_{2}^{2}+\left\langle\partial_{\mathbf{x}}, \mathrm{s}(\mathrm{X} ; \boldsymbol{\theta})\right\rangle\right]
$$

- If the model density p is in the exponential family:

$$
\begin{aligned}
\mathrm{s}(\mathbf{x} ; \boldsymbol{\theta}) & =\partial_{\mathrm{x}}\langle\mathrm{~T}(\mathbf{x}), \theta\rangle=\left[\partial_{\mathrm{x}} \mathrm{~T}(\mathrm{x})\right]^{\top} \boldsymbol{\theta} \\
\left\langle\partial_{\mathrm{x}}, \mathrm{~s}(\mathbf{x} ; \boldsymbol{\theta})\right\rangle & =\left\langle\partial_{\mathbf{x}}, \partial_{\mathrm{x}}\langle\mathrm{~T}(\mathbf{x}), \theta\rangle\right\rangle=\left\langle\partial_{\mathrm{x}}^{2} \mathrm{~T}(\mathrm{x}), \theta\right\rangle
\end{aligned}
$$

- Can solve θ in closed-form by simply setting the derivative w.r.t. θ to 0 :

$$
\boldsymbol{\theta}=-\left\{\hat{\mathbb{E}}_{\mathrm{X} \sim q}\left[\partial_{\mathbf{x}} \mathbf{T}(\mathbf{x})\right]^{\top}\left[\partial_{\mathbf{x}} \mathbf{T}(\mathbf{x})\right]\right\}^{-1} \cdot \hat{\mathbb{E}}_{\mathbf{x} \sim q}\left[\partial_{\mathbf{x}}^{2} \mathbf{T}(\mathbf{x})\right]
$$

- For multivariate Gaussian, $\theta=\left(S^{-1}, S^{-1} \mu\right), \mathrm{T}(\mathrm{x})=\left(-\frac{1}{2} \mathrm{xx}^{\top}, \mathrm{x}\right)$ and

$$
\min _{\mu, S} \underset{x \sim q}{\hat{\mathbb{E}}} \frac{1}{2}\left\|S^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\|_{2}^{2}-\operatorname{tr}\left(S^{-1}\right)
$$

Denoising Auto-Encoder

- Suppose also have a latent variable Z with joint density $q(\mathrm{x}, \mathrm{z})$
- Exchage differentiation with integration we obtain:

$$
\begin{aligned}
\mathbb{F}(p \| q) & :=\frac{1}{2} \mathbb{E}_{\mathbf{X} \sim q}\left\|\partial_{\mathbf{x}} \log p(\mathrm{X})-\partial_{\mathbf{x}} \log q(\mathrm{X})\right\|_{2}^{2} \\
& \left.=\frac{1}{2} \mathbb{E}_{(\mathrm{X}, \mathrm{Z}) \sim q}\left\|\mathbf{s}_{p}(\mathrm{X})-\partial_{\mathbf{x}} \log q(\mathrm{X} \mid \mathrm{Z})\right\|_{2}^{2}+\left\|\mathbf{s}_{q}(\mathrm{X})\right\|_{2}^{2}-\left\|\partial_{\mathbf{x}} \log q(\mathrm{X} \mid \mathrm{Z})\right\|_{2}^{2}\right] \\
& \approx \frac{1}{2} \hat{\mathbb{E}}_{(\mathrm{X}, \mathrm{Z}) \sim q}\left\|\mathbf{s}_{p}(\mathrm{X})-\partial_{\mathbf{x}} \log q(\mathrm{X} \mid \mathrm{Z})\right\|_{2}^{2}
\end{aligned}
$$

- Useful when the conditional density $\partial_{\mathrm{x}} \log q(\mathrm{X} \mid \mathrm{Z})$ is easy to obtain

[^3] pp. 1661-1674.

Score-based Diffusion Generative Models

$$
\begin{aligned}
\mathrm{d} \mathbf{x}_{t+1} & =\mathbf{f}_{t}\left(\mathbf{x}_{t}\right) \mathrm{d} t+G_{t}\left(\mathbf{x}_{t}\right) \mathrm{d} \mathbf{n}_{t} \\
\mathbf{x}_{t+1} & \approx \mathbf{x}_{t}+\eta_{t} \cdot \mathbf{f}_{t}\left(\mathbf{x}_{t}\right)+\mathbf{g}_{t}\left(\mathbf{x}_{t}\right), \quad \text { where } \quad \mathbf{g}_{t}\left(\mathbf{x}_{t}\right) \sim \mathcal{N}\left(\mathbf{0}, \eta_{t}^{2} G_{t}\left(\mathbf{x}_{t}\right) G_{t}\left(\mathbf{x}_{t}\right)^{\top}\right)
\end{aligned}
$$

- Key is to estimate the score $\mathbf{s}_{t}(\mathbf{x})=\partial_{\mathbf{x}} \log p_{t}$
- Apply denoising auto-encoder score matching:

$$
\min _{\boldsymbol{\theta}} \underset{t \sim \mu,\left(\mathrm{X}_{t}, \mathrm{X}_{0}\right) \sim q\left(\mathbf{x}_{t}, \mathrm{x}_{0}\right)}{\hat{\mathbb{E}}} \lambda_{t}\left\|\mathbf{s}_{t}\left(\mathrm{X}_{t} ; \boldsymbol{\theta}\right)-\partial_{\mathbf{x}} \log q\left(\mathrm{X}_{t} \mid \mathrm{X}_{0}\right)\right\|_{2}^{2}
$$

- $\mathrm{X}_{0} \sim q(\mathrm{x})$, the data density
- $q\left(\mathbf{x}_{t} \mid \mathbf{x}_{0}\right)$ can be derived from the forward SDE, in closed-form if f_{t} is affine

Inference After Learning

$$
\begin{aligned}
& \mathrm{d} \mathbf{x}_{t+1}=\mathbf{f}_{t}\left(\mathbf{x}_{t}\right) \mathrm{d} t+G_{t}\left(\mathbf{x}_{t}\right) \mathrm{d} \mathbf{n}_{t} \\
& \mathrm{~d} \overline{\mathbf{x}}_{t+1}=\mathbf{f}_{t}-G_{t} G_{t}^{\top} \partial_{\mathbf{x}}-G_{t} G_{t}^{\top} \mathbf{s}_{t}\left(\overline{\mathbf{x}}_{t} ; \boldsymbol{\theta}\right) \mathrm{d} t+G_{t}\left(\overline{\mathbf{x}}_{t}\right) \mathrm{d} \overline{\mathbf{n}}_{t} \\
& \mathrm{~d} \mathbf{x}_{t+1}=\mathbf{f}_{t}-\frac{1}{2} G_{t} G_{t}^{\top} \partial_{\mathbf{x}}-\frac{1}{2} G_{t} G_{t}^{\top} \mathbf{s}_{t}\left(\mathbf{x}_{t} ; \boldsymbol{\theta}\right) \mathrm{d} t
\end{aligned}
$$

- Run the reverse SDE or the equivalent ODE
- sample $\mathrm{x} \sim \mathcal{N}(0, \mathrm{Id})$
- apply numerical SDE or ODE solver (e.g. Euler-Maruyama)
D. J. Higham. "An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations". SIAM Review, vol. 43, no. 3 (2001), pp. 525-546.

[^4] Representations. 2021.

Interpolation

Y. Song et al. "Score-Based Generative Modeling through Stochastic Differential Equations". In: International Conference on Learning

Stable Diffusion

R. Rombach et al. "High-Resolution Image Synthesis with Latent Diffusion Models". In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, pp. 10674-10685.

$\mathrm{d} \mathbf{x}_{t+1}=\mathrm{f}_{t}\left(\mathbf{x}_{t}\right) \mathrm{d} t+G_{t}\left(\mathbf{x}_{t}\right) \mathrm{dB} \mathrm{B}_{t}$

- What is a Brownian motion B_{t} ?
- What is the integral $\int_{0}^{t} G_{t}\left(\mathrm{x}_{t}\right) \mathrm{dB}_{t}$?
- What is a stochastic differential equation (SDE)?
- Fokker-Planck-Kolmogorov equation
- What is a reverse SDE?
- What is a score function and how to estimate it?
- How to numerically simulate an SDE or its reverse?

What Is a Random Variable?

- We fix a standard sample space $(\Omega, \mathcal{F}, \mu)$
- $\mathcal{F} \subseteq 2^{\Omega}, \mu: \mathcal{F} \rightarrow[0,1]$ assigns probability
- e.g. $\Omega=[0,1]$ and μ the Lebesgue measure
- A random variable (r.v.) is a function $\mathrm{X}:(\Omega, \mathcal{F}, \mu) \rightarrow(\mathbb{S}, \mathcal{B})$
- \mathbb{S} is the state space (range), e.g., $\mathbb{S}=\mathbb{R}$
- the distribution of X is a probability measure on $\mathcal{B} \subseteq 2^{\mathbb{S}}$:

$$
\forall S \in \mathcal{B}, \quad\left(\mathrm{X}_{\#} \mu\right)(S):=\mu(\{\omega: \mathrm{X}(\omega) \in S\})=\mu\left(\mathrm{X}^{-1}(S)\right)
$$

- for this to always make sense, need $\mathrm{X}^{-1}(\mathcal{B}) \subseteq \mathcal{F}$ (so-called measurability)

$$
\forall S \in \mathcal{B}, \quad\left(\mathrm{X}_{\#} \mu\right)(S):=\mu(\{\omega: \mathrm{X}(\omega) \in S\})=\mu\left(\mathrm{X}^{-1}(S)\right)
$$

- The function (r.v.) X "pushes" the probability μ forward to the state space

$$
X:(\Omega, \mathcal{F}, \mu) \rightarrow\left(\mathbb{S}, \mathcal{B}, X_{\#} \mu\right)
$$

- by pulling the computation on \mathcal{B} back to the sample space $(\Omega, \mathcal{F}, \mu)$ through X^{-1}
- In particular, if $\omega \simeq \mu$, then $X(\omega) \simeq X_{\#} \mu$
- This is one of the main ideas behind generative modeling

Example

- $X \simeq \mathcal{N}(0,1)$, meaning, $X:(\Omega, \mathcal{F}, \mu) \rightarrow(\mathbb{R}, \mathcal{B})$ and $X_{\# \mu}=\mathcal{N}(0,1)$

$$
-\omega \simeq \mu \Longrightarrow X(\omega) \simeq \mathcal{N}(0,1)
$$

- $Y \simeq \chi_{1}^{2}$, meaning, $Y:(\Omega, \mathcal{F}, \mu) \rightarrow(\mathbb{R}, \mathcal{B})$ and $Y \# \mu=\chi_{1}^{2}$

$$
-\omega \simeq \mu \Longrightarrow Y(\omega) \simeq \chi_{1}^{2}
$$

- Consider the function $f:(\mathbb{R}, \mathcal{B}) \rightarrow(\mathbb{R}, \mathcal{B}), \quad x \mapsto x^{2}$
- Then, the composition $f(X):(\Omega, \mathcal{F}, \mu) \rightarrow(\mathbb{R}, \mathcal{B})$
- What is the distribution of $f(\mathrm{X})$?

Function \longrightarrow Distribution

$$
\mu[f(\mathbf{X}) \in S]=\mu\left[\mathbf{X} \in f^{-1}(S)\right]=\mu\left[\mathbf{X}^{-1}\left(f^{-1}(S)\right)\right]=\left[\mathbf{X}_{\#} \mu\right]\left(f^{-1}(S)\right)=\left[f_{\#}\left(\mathbf{X}_{\#} \mu\right)\right](S)
$$

- The distribution of $f(X)$ is thus $(f \circ \mathrm{X})_{\# \mu}=f_{\#}\left[\mathrm{X}_{\#} \mu\right]$
- recall that $X_{\#} \mu$ is the distribution of X
- For our choice of f, we know $f(X) \simeq Y$, i.e., $f_{\#}\left[X_{\#} \mu\right]=Y_{\#} \mu$
- in other words, $X \simeq X_{\#} \mu \Longrightarrow f(X) \simeq Y_{\#} \mu$
- Two equivalent views
- $f \circ \mathrm{X}$ as composition: $\mathrm{X}:(\Omega, \mathcal{F}, \mu) \rightarrow(\mathbb{R}, \mathcal{B}), f:(\mathbb{R}, \mathcal{B}) \rightarrow(\mathbb{R}, \mathcal{B})$
- abstract 1 layer away: $f:(\mathbb{R}, \mathcal{B}, \mathcal{N}(0,1)) \rightarrow(\mathbb{R}, \mathcal{B})$
- From one probability μ on Ω, each function f induces a distribution $f_{\# \mu}$ on \mathbb{S}

Function \longleftarrow Distribution

Inverse problem: given distributions P and Q, find f such that $f_{\#} P=Q$

- In generative models, $P=\mathcal{N}(0, I)$ is pure noise, Q data distribution
- If possible, draw $\mathrm{X} \simeq P$ to get $f(\mathrm{X}) \simeq Q$ (a.k.a. sampling or inference)

Theorem: Representation through Push-forward
Let P be any continuous distribution on \mathbb{R}^{m}. For any distribution Q on \mathbb{R}^{d}, there exist push-forward maps $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ such that

$$
\mathrm{Z} \simeq P \Longrightarrow f(\mathrm{Z}) \simeq Q \text {, i.e., } \quad f_{\#} P=Q .
$$

- In reality, only have empirical \hat{Q}, which is discrete

Example: $X \simeq \mathcal{N}(0,1), Y \simeq \chi_{1}^{2}$

- By definition, $\mathrm{Y} \simeq \mathrm{X}^{2}$ hence $f(x)=x^{2}$ works
- What is the distribution of $\Phi(\mathrm{X}), \Phi$ being c.d.f. of $\mathcal{N}(0,1)$?

$$
\operatorname{Pr}(\Phi(\mathrm{X}) \leq u)=\operatorname{Pr}\left(\mathrm{X} \leq \Phi^{-1} u\right)=\Phi\left[\Phi^{-1}(u)\right]=u
$$

- What is the distribution of $\Psi^{-1}(\Phi(X)), \Psi$ being c.d.f. of χ^{2} ?

$$
\operatorname{Pr}\left(\Psi^{-1}(\Phi(\mathrm{X})) \leq t\right)=\operatorname{Pr}(\Phi(\mathrm{X}) \leq \Psi(t))=\Psi(t)
$$

- Thus, $f(x)=\left[\Psi^{-1} \circ \Phi\right](x)$ also works

Generalization

- Forward: $X \xrightarrow{g} \mu$
$-\mathrm{X} \xrightarrow{g_{1}} \mathrm{X}_{1} \xrightarrow{g_{2}} \mathrm{X}_{2} \xrightarrow{g_{3}} \cdots \xrightarrow{g_{n}} \mathrm{X}_{n} \approx \mu$
- Backward: $Y \stackrel{h}{\leftarrow^{h}} \mu$
$-\mathrm{Y} \approx \mathrm{Y}_{n} \stackrel{h_{n}}{\stackrel{h^{\prime}}{h_{3}}} \mathrm{Y}_{2} \stackrel{h_{2}}{\leftarrow} \mathrm{Y}_{1} \stackrel{h_{1}}{\leftarrow} \mu$
- $f=h \circ g$ brings X to Y; will stretch $n \rightarrow \infty$
- Difficulty?
- A collection of random variables $\mathrm{X}: \mathbb{T} \rightarrow \mathbb{R}^{\Omega}, t \mapsto \mathrm{X}(t, \cdot)$
- A random function $X: \Omega \rightarrow \mathbb{R}^{\mathbb{T}}, \omega \mapsto X(\cdot, \omega)$
- A bivariate function $X(t, \omega): \mathbb{T} \times \Omega \rightarrow \mathbb{R}$

Brownian Motion

A stochastic process $\left\{B_{t}: t \geq 0\right\}$ is called Brownian motion if

- Initialization: $\mathrm{B}_{0} \equiv 0$
- Independent increment: $\forall n, \forall t_{0} \leq t_{1} \leq \cdots \leq t_{n}, \mathrm{~B}_{t_{1}}-\mathrm{B}_{t_{0}} \perp \cdots \perp \mathrm{~B}_{t_{n}}-\mathrm{B}_{t_{n-1}}$
- Stationary increment: $\forall s \leq t, \mathrm{~B}_{t}-\mathrm{B}_{s} \simeq \mathrm{~B}_{t-s}-\mathrm{B}_{0}$
- Gaussian: $B_{t} \simeq \mathcal{N}(0, t)$
- Continuous sample path: for (almost) all $\omega, t \mapsto \mathrm{~B}_{t}(\omega)$ is continuous

Brownian motion is a (continuous) Gaussian process with covariance kernel

$$
\kappa(s, t):=\mathbb{E}\left(\mathrm{B}_{s} \mathrm{~B}_{t}\right)=s \wedge t
$$

Derivative Kernel

- Let $\kappa: \mathbb{X} \times \mathbb{X} \rightarrow \mathbb{R}$ be a (reproducing) kernel
- $\forall n, \forall \mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{X}$, let $K_{i j}:=\kappa\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$, we have $K \succeq \mathbf{0}$
- equivalently, $\exists \varphi: \mathbb{X} \rightarrow \mathbb{H}$ such that $\kappa(\mathrm{x}, \mathbf{z})=\langle\varphi(\mathrm{x}), \varphi(\mathrm{z})\rangle$
- The partial derivative $\kappa^{\prime}:=\partial_{12} \kappa$ is also a kernel
- Derivative kernel of the Brownian motion kernel $\kappa(s, t)=s \wedge t$?
- "White noise" B_{t}^{\prime} as derivative of Brownian motion B_{t}
"There are in this world optimists who feel that any symbol that starts off with an integral sign must necessarily denote something that will have every property that they should like an integral to possess. This of course is quite annoying to us rigorous mathematicians; what is even more annoying is that by doing so they often come up with the right answer."
- Edward J. McShane

Continuity

Theorem: Continuity condition of stochastic processes
Let X_{t} be a stochastic process with index $t \in \mathbb{R}^{m}$. If for some $\alpha, \beta, \mathrm{L}>0$,

$$
\forall s, \forall t, \quad \mathbb{E}\left[\left\|\mathrm{X}_{s}-\mathrm{X}_{t}\right\|^{\alpha}\right] \leq \mathrm{L}\|t-s\|^{m+\beta},
$$

then there exists a modification \tilde{X}_{t} that is locally Hölder continuous of order $\gamma<\beta / \alpha$.
Hölder continuous at s of order γ :

$$
\forall t \text { around } s, \quad\left\|\mathrm{X}_{s}-\mathrm{X}_{t}\right\| \leq c \cdot\|s-t\|^{\gamma}
$$

- Gaussian kernel: $\kappa(s, t)=\kappa(s-t)=\exp \left(-(s-t)^{2}\right)$
- Laplacian kernel: $\kappa(s, t)=\kappa(s-t)=\exp (-|s-t|)$

Kolmogorov's Construction of Brownian Motion

- For any finitely many t_{1}, \ldots, t_{n},

$$
\mathrm{B}_{1: n}:=\left(\mathrm{B}_{t_{1}}, \ldots, \mathrm{~B}_{t_{n}}\right) \simeq \mathcal{N}\left(\mathbf{0}, K_{n}\right)
$$

where $K_{n}\left(t_{i}, t_{j}\right)=t_{i} \wedge t_{j}$.

- Kolmogorov extension theorem \Longrightarrow Gaussian process B_{t} exists
- Moment: $\mathbb{E}\left|\mathrm{B}_{s}-\mathrm{B}_{t}\right|^{2 k}=\mathbb{E}\left|\sqrt{t-s} \cdot \mathrm{~B}_{1}\right|^{2 k}=|t-s|^{k} \cdot \mathbb{E}\left|\mathrm{~B}_{1}\right|^{k}$
- Identifying $\alpha=2 k, m=1, \beta=k-m=k-1 \Longrightarrow \gamma<\frac{k-1}{2 k}$

$$
\text { Brownian motion is locally Hölder continuous of order } \gamma<\frac{1}{2}
$$

Nondifferentiable Almost Everywhere (a.e.)

Theorem: Irregularity
Brownian motion is nowhere Hölder continuous of order $\gamma>\frac{1}{2}$.

- Sample path of Brownian motion is of infinite variation over any (nonempty) interval
- With a bit more work, it can be proved that

$$
\operatorname{Pr}\left(\limsup _{h \rightarrow 0} \frac{\sup _{0 \leq t \leq 1-h}\left|\mathrm{~B}_{t+h}-\mathrm{B}_{t}\right|}{\sqrt{2 h|\log h|}}=1\right)=1,
$$

thus Brownian motion is not Hölder continuous of order $\frac{1}{2}$ (at some point t).

Brownian Motion is Markov

Theorem: (Strong) Markov property
$\left\{B_{t+\tau}-B_{\tau}\right\}_{t \geq 0}$ is a Brownian motion and independent of \mathcal{F}_{τ}

- For $\tau=s, \mathcal{F}_{s}=\sigma\left(\mathrm{B}_{1}, \ldots, \mathrm{~B}_{s}\right)$: information up to time τ
- For small $t>0$, Brownian motion has forgotten how it went into B_{τ}
- It started afresh and hence cannot match the left and right derivatives at τ
- Brownian motion is a Markov process:

$$
\operatorname{Pr}\left(\mathrm{B}_{t+s} \in S \mid \mathcal{F}_{s}\right)=\operatorname{Pr}\left(\mathrm{B}_{t+s}-\mathrm{B}_{s}+\mathrm{B}_{s} \in S \mid \mathcal{F}_{s}\right)=\operatorname{Pr}\left(\mathrm{B}_{t+s} \in S \mid \mathrm{B}_{s}\right)
$$

Brownian Bridge

A stochastic process $\left\{\mathrm{B}_{t}^{\circ}: t \in[0,1]\right\}$ is called a Brownian bridge if

- Initialization: $\mathrm{B}_{0}^{\circ}=\mathrm{B}_{1}^{\circ} \equiv 0$
- Independent increment: $\forall n, \forall t_{0} \leq t_{1} \leq \cdots \leq t_{n}, \mathrm{~B}_{t_{1}}^{\circ}-\mathrm{B}_{t_{0}}^{\circ} \perp \cdots \perp \mathrm{B}_{t_{n}}^{\circ}-\mathrm{B}_{t_{n-1}}^{\circ}$
- Stationary increment: $\forall 0 \leq s \leq t \leq 1, \mathrm{~B}_{t}^{\circ}-\mathrm{B}_{s}^{\circ} \simeq \mathrm{B}_{t-s}^{\circ}-\mathrm{B}_{0}^{\circ}$
- Gaussian: $\mathrm{B}_{t}^{\circ} \simeq \mathcal{N}(0, t(1-t))$
- Continuous sample path: for (almost) all $\omega, \quad t \mapsto \mathrm{~B}_{t}^{\circ}(\omega)$ is continuous

Brownian bridge is a (continuous) Gaussian process with covariance kernel

$$
\kappa(s, t):=s \wedge t-s t
$$

Some Calculus

Restricting t to $[0,1]$:

- $\mathrm{B}_{t}^{0} \simeq \mathrm{~B}_{t}-t \mathrm{~B}_{1}$
- $\mathrm{B}_{t} \simeq \mathrm{~B}_{t}^{\circ}+t \mathrm{Z}$, where $\mathrm{Z} \simeq \mathcal{N}(0,1) \perp \mathrm{B}_{t}^{\circ}$

The following are Brownian motions:

- Change of time: $\frac{1}{\sqrt{c}} \mathrm{~B}_{c t}$
- Time inversion: $t \mathrm{~B}_{1 / t}$ (what about $\frac{1}{t} \mathrm{~B}_{t}$?)
- Independent combination: $\sqrt{\lambda} \mathrm{B}_{t}+\sqrt{1-\lambda} \mathrm{Z}_{t}$ for $\mathrm{B}_{t} \perp \mathrm{Z}_{t}$

Lévy Process

A stochastic process $\left\{\mathrm{X}_{t}\right\}$ is called a Lévy process if

- Initialization: $X_{0} \equiv 0$
- Independent increment: $\forall n, \forall t_{0} \leq t_{1} \leq \cdots \leq t_{n}, \mathrm{X}_{t_{1}}-\mathrm{X}_{t_{0}} \perp \cdots \perp \mathrm{X}_{t_{n}}-\mathrm{X}_{t_{n-1}}$
- Stationary increment: $\forall s \leq t, \mathrm{X}_{t}-\mathrm{X}_{s} \simeq \mathrm{X}_{t-s}-\mathrm{X}_{0}$
- Continuity in probability: $\lim _{t \downarrow 0} X_{t} \rightarrow X_{0}=0$ (i.p.)

Consequence of independent and stationary increment:

$$
\mathrm{X}_{t}=\sum_{i=1}^{n}[\underbrace{\mathrm{X}_{i t / n}-\mathrm{X}_{(i-1) t / n}}_{i . i . d . \sim \mathrm{X}_{t / n}}]
$$

i.e., X_{t} is infinitely divisible. Continuity forces $X_{t} \simeq F^{(t)}$ for some distribution F.

Lévy-Khintchine Formula

Theorem: Lévy process representation
X_{t} is a Lévy process iff

where ν is a measure with $\nu(\{0\})=0$ and $\int\left(1 \wedge x^{2}\right) \mathrm{d} \nu(x)<\infty$.
(1) : Deterministic process $X_{t}=b t$
(2) : Brownian motion $\sigma \mathrm{B}_{t}$
(3) : Purely jump process

Poisson Process

A stochastic process N_{t} is called a Poisson process if

- Initialization: $\mathrm{N}_{0} \equiv 0$
- Independent increment: $\forall n, \forall t_{0} \leq t_{1} \leq \cdots \leq t_{n}, N_{t_{1}}-N_{t_{0}} \perp \cdots \perp N_{t_{n}}-N_{t_{n-1}}$
- Stationary increment: $\forall s \leq t, \mathrm{~N}_{t}-\mathrm{N}_{s} \simeq \mathrm{~N}_{t-s}-\mathrm{N}_{0}$
- Poisson: $\mathrm{N}_{t} \simeq \operatorname{Pois}(\lambda t)$
- Right continuity: for (almost) all $\omega, t \mapsto N_{t}(\omega)$ is right continuous with left limit
$N_{t} \in \mathbb{Z}_{+}$, increasing, finitely many jumps of size 1 in finite time

Poisson process

Wiener's Construction of Brownian Motion

$$
\mathrm{B}_{t}=t \mathrm{G}_{0}+\sum_{n=1}^{\infty} \frac{\sin (n \pi t)}{n \pi} \mathrm{G}_{n}
$$

- Trigonometric functions $\varphi_{n}(t):=\exp (i n \pi t)$ as orthogomal basis in $L^{2}([0,1])$
- $\mathrm{G}_{n} \stackrel{i . i . d .}{\sim} \mathcal{N}(0,1)$
- Truncating n leads to a discretized path

Ciesielski's Construction of Brownian Motion

- Haar wavelets: $\varphi_{0}(t) \equiv 1$, for $n \in \mathbb{N}, k=1,3, \ldots, 2^{n}-1$,

$$
\varphi_{k / 2^{n}}(t)=2^{(n-1) / 2} \cdot\left(\llbracket k-1<t 2^{n} \leq k \rrbracket-\llbracket k<t 2^{n} \leq k+1 \rrbracket\right)
$$

- Expand B_{t}^{\prime} over the Haar wavelets:

$$
\int_{0}^{1} \mathrm{~B}_{t}^{\prime} \cdot \varphi_{k / 2^{n}}(t) \mathrm{d} t=2^{(n-1) / 2} \cdot\left[\left(\mathrm{~B}_{k / 2^{n}}-\mathrm{B}_{(k-1) / 2^{n}}\right)-\left(\mathrm{B}_{(k+1) / 2^{n}}-\mathrm{B}_{k / 2^{n}}\right)\right] \simeq \mathrm{G}_{k / 2^{n}}
$$

- Reconstruct $\mathrm{B}_{t}^{\prime}=\mathrm{G}_{0} \varphi_{0}+\sum_{n} \mathrm{G}_{k / 2^{n}} \cdot \varphi_{k / 2^{n}}(t)$ and thus

$$
\mathrm{B}_{t}=\int_{0}^{1} \mathrm{~B}_{t}^{\prime} \mathrm{d} t=t \mathrm{G}_{0}+\sum_{n} \mathrm{G}_{k / 2^{n}} \int_{0}^{t} \varphi_{k / 2^{n}}(s) \mathrm{d} s
$$

Lévy's Construction of Brownian Motion

- Initialize $B_{0}=0, B_{1} \simeq \mathcal{N}(0,1)$
- Repeat for each $n=0,1,2, \ldots, l=1,2, \ldots, 2^{n+1}-1$

$$
\mathrm{B}_{l / 2^{n+1}}= \begin{cases}\mathrm{B}_{k / 2^{n}}, & l=2 k \\ \frac{1}{2}\left[\mathrm{~B}_{k / 2^{n}}+\mathrm{B}_{(k+1) / 2^{n}}\right]+2^{-(n+2) / 2} \mathrm{G}_{k / 2^{n}}, & l=2 k+1\end{cases}
$$

- refine the grid by appending each middle point
- linearly interpolate at the middle point
- add scaled, independent, Gaussian perturbation to the middle point

Donsker's Construction of Brownian Motion

Theorem: Convergence in distribution
Suppose X_{t}^{n} converges to X_{t} for any finite section (i.e., for finitely many t), $X_{1}-$ $\mathrm{X}_{1-\delta} \Rightarrow 0$ as $\delta \rightarrow 0$, and for any $r \leq s \leq t$ and $\lambda>0$,

$$
\operatorname{Pr}\left[\left|\mathrm{X}_{s}^{n}-\mathrm{X}_{r}^{n}\right| \wedge\left|\mathrm{X}_{t}^{n}-\mathrm{X}_{s}^{n}\right| \geq \lambda\right] \leq \frac{1}{\lambda^{4 \beta}}[h(t)-h(r)]^{2 \alpha},
$$

where $\beta \geq 0, \alpha>\frac{1}{2}$ and h is increasing continuous. Then, $X^{n} \Rightarrow X$.

- Let $\xi_{i} \stackrel{i . i . d .}{\sim} F$ with 0 mean and unit variance
- Let $S_{n}=\sum_{i=1}^{n} \xi_{i}$ be the cumsum
- $X_{t}^{n}:=\frac{1}{\sqrt{n}} S_{\lfloor n t\rfloor} \Rightarrow \mathrm{B}_{t}$ and $\tilde{X}_{t}^{n}:=\mathrm{X}_{t}^{n}+(n t-\lfloor n t\rfloor) \frac{1}{\sqrt{n}} \xi_{\lfloor n t\rfloor+1} \Rightarrow \mathrm{~B}_{t}$
- $\hat{Q}_{t}^{n}:=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(\llbracket \xi_{i} \leq t \rrbracket-F(t)\right) \Rightarrow \mathrm{B}_{F(t)}^{\circ} ; \sup _{t}\left|\hat{Q}_{t}^{n}\right| \rightarrow \sup _{t}\left|\mathrm{~B}_{F(t)}^{\circ}\right|$

Integration

- Let $g:[0, T] \rightarrow \mathbb{R}$ be of bounded variation (e.g., continuously differentiable)
- $g(0)=g(T)=0$
- Define the integral through integration by parts:

$$
\int_{0}^{T} g(t) \mathrm{d} \mathrm{X}_{t}=-\int_{0}^{T} \mathrm{X}_{t} \mathrm{~d} g(t)
$$

- the rhs exists if $t \mapsto \mathrm{X}_{t}$ is continuous, a.k.a. Riemann-Stieltjes-integral
- What about $\int_{0}^{T} \mathrm{~B}_{t} \mathrm{~dB}_{t}$?
- need significantly new ideas

[^0]: B. D. O. Anderson. "Reverse-time diffusion equation models". Stochastic Processes and their Applications, vol. 12, no. 3 (1982), pp. 313-326.

[^1]: Y. Song et al. "Score-Based Generative Modeling through Stochastic Differential Equations". In: International Conference on Learning Representations. 2021.

[^2]: A. Hyvärinen. "Estimation of Non-Normalized Statistical Models by Score Matching". Journal of Machine Learning Research, vol. 6, no. 24 (2005), pp. 695-709.

[^3]: P. Vincent. "A Connection Between Score Matching and Denoising Autoencoders". Neural Computation, vol. 23, no. 7 (2011),

[^4]: Y. Song et al. "Score-Based Generative Modeling through Stochastic Differential Equations"

 In: International Conference on Learning

