
CO673/CS794–Fall 2022 §23 VARIANCE REDUCTION University of Waterloo

23 Variance Reduction

Goal

Sampling, bias and variance, finite sum, variance reduction, SVRG, IG, IAG, SAG

Alert 23.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Definition 23.2: Problem

In this lecture we continue our discussion of the most common problem in ML:

min
w

`(w) + r(w)| {z }
f(w)

, where `(w) :=
1

n

nX

i=1

`i(w),

where each `i and r are (closed) convex functions. Our main interest is the setting where n is extremely
large, so that naively computing the (sub)gradient at each iteration is likely infeasible.

As mentioned in Example 22.3, we can apply stochastic gradient algorithms, where in each iteration t
we randomly sample a minibatch It = *i1, . . . , im+ ✓ {1, . . . , n} of functions and update with the stochastic
(sub)gradient:

@̂`(wt) :=
1

|It|
X

i2It

@`i(wt) ⇡
1

n

nX

i=1

@`i(wt) =: @`(wt).

Remark 23.3: The bias and variance

We may think of each minibatch as a random set of size m (or in more fancy language, random counting
measure or point process). We define its intensity

µi,t = EIt(i),

where It(i) is the random number of repetitions of `i in our minibatch It (of size m) at iteration t. Then,

E@̂`(wt) :=
1

m
E

"
X

i2It

@`i(wt)

#
=

1

m

nX

i=1

µi,t@`i(wt).

Thus, as long as µi,t ⌘ m/n we obtain an unbiased estimate of the (sub)gradient. Similarly, let

si,j,t = EIt(i)It(j)
p
si,tsj,t, where si,t := si,i,t = EI

2
t
(i).

Then, we also have

Ek@̂`(wt)k22 :=
1

m2
E
���
X

i2It

@`i(wt)
���
2

2
=

1

m2

nX

i,j=1

si,j,t h@`i(wt), @`j(wt)i

 1

m2

X

i,j

p
si,tsj,tk@`i(wt)k2 · k@`j(wt)k2 =

1

m2

X

i

p
si,tk@`i(wt)k2

!2

 1

m2

X

i

si,tk@`i(wt)k22.

Yaoliang Yu 246

CO673/CS794–Fall 2022 §23 VARIANCE REDUCTION University of Waterloo

Exercise 23.4: Sampling w/o replacement

The following three sampling schemes are usually used in practice:

• Sampling with replacement. Verify that

It ⌘
mX

k=1

�Zk ,

where Zk’s are i.i.d. uniformly random sample from {1, . . . , n}, and �Z is the delta mass such that
�Z(A) = 1 if Z 2 A and 0 otherwise. It then follows that

µi,t = EIt(i) = m/n, si,t = m/n+m(m� 1)/n2 2m/n, 8i 6= j, si,j,t = m(m� 1)/n2 =)

E@̂`(wt) = @`(wt), Ek@̂`(wt)k22
2

m
· 1
n

nX

i=1

k@`i(wt)k22.

This is the most common and convenient scheme as we need only draw the m minibatch samples
independently and identically. See Zhou et al. (2018) for some interesting extension.

• Sampling without replacement, in which case

µi,t =

✓
n� 1

m� 1

◆
/

✓
n

m

◆
=

m

n
, si,t = µi,t =

m

n
, 8i 6= j, si,j,t =

✓
n� 2

m� 2

◆
/

✓
n

m

◆
=

m(m� 1)

n(n� 1)
 m

n

E@̂`(wt) = @`(wt), Ek@̂`(wt)k22
1

m
· 1
n

nX

i=1

k@`i(wt)k22.

See Shamir (2016) for some interesting analysis.

• Randomly permuting the n functions followed by taking the n/m consecutive blocks as minibatches.
This scheme empirically behaves similarly to sampling without replacement. See Gürbüzbalaban et al.
(2019) for some interesting analysis.

Thus, we see that we can obtain unbiased estimate of the gradient while the size of the minibatch reduces the
variance proportionally. However, inspecting Theorem 22.6 we see that reducing the variance helps improve
the constant, but it does not seem to affect the O(1/

p
t) rate of convergence.

Zhou, P., X. Yuan, and J. Feng (2018). “New Insight into Hybrid Stochastic Gradient Descent: Beyond With-
Replacement Sampling and Convexity”. In: Advances in Neural Information Processing Systems 31.

Shamir, O. (2016). “Without-Replacement Sampling for Stochastic Gradient Methods”. In: Advances in Neural In-
formation Processing Systems, pp. 46–54.

Gürbüzbalaban, M., A. Ozdaglar, and P. A. Parrilo (2019). “Why random reshuffling beats stochastic gradient
descent”. Mathematical Programming.

Theorem 23.5: Faster rate under strong convexity

Under the same setting as in Remark 22.8, if f is L-Lipschitz continuous and �-strongly convex (w.r.t. the

norm k · k2), and the noise in (sub)gradient has variance bounded by &2, then with ⌘t =
1

�(t+1) we have

min
0tT�1

E[f(wt)� f(w)]
T�1X

t=0

1

T
E[f(wt)� f(w)] (L2 + &2) ln(T + 1)

2�T
.

Proof: The proof is similar to that of Theorem 5.18. Conditioned on wt:

E kwt+1 �wk22 kwt �wk22 + ⌘2
t
E kŵ⇤

t
k22 � 2⌘t hwt �w,Eŵ⇤

t
i

[unbiasedness] � = kwt �wk22 + ⌘2
t
[kEŵ⇤

t
k2 +Var(ŵ⇤

t
)]� 2⌘t hwt �w,w⇤

t
i

Yaoliang Yu 247

https://en.wikipedia.org/wiki/Dirac_delta_function
https://papers.nips.cc/paper/2018/hash/67e103b0761e60683e83c559be18d40c-Abstract.html
https://papers.nips.cc/paper/2018/hash/67e103b0761e60683e83c559be18d40c-Abstract.html
https://proceedings.neurips.cc/paper/2016/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://doi.org/10.1007/s10107-019-01440-w
https://doi.org/10.1007/s10107-019-01440-w

CO673/CS794–Fall 2022 §23 VARIANCE REDUCTION University of Waterloo

[�-strong convexity] � (1� �⌘t) kwt �wk22 + ⌘2
t
[kw⇤

t
k2 +Var(ŵ⇤

t
)] + 2⌘t(f(w)� f(wt))

[@f is bounded by L] � t

t+ 1
kwt �wk22 + ⌘2

t
(L2 + &2) + 2⌘t(f(w)� f(wt)).

Telescoping we obtain

TE kwT �wk22
L
2 + &2

�2

T�1X

t=0

1

t+ 1
+

2

�

T�1X

t=0

E[f(w)� f(wt)].

Thus,

min
0tT�1

E[f(wt)� f(w)]
T�1X

t=0

1

T
E[f(wt)� f(w)]

(L2 + &2)
P

T�1
t=0

1
t+1

2�T
 (L2 + &2) ln(T + 1)

2�T
,

as claimed.

If we define w̄T = 1
T

P
T�1
t=0 wt, then obviously

E[f(w̄T)� f(w)]
T�1X

t=0

1

T
E[f(wt)� f(w)] (L2 + &2) ln(T + 1)

2�T
.

Exercise 23.6: Stochastic GDA under strong convexity

Extend Theorem 23.5 to the stochastic gradient descent ascent algorithm for any monotone VI.

Alert 23.7: Grave danger of wrong parameter

What if we do not know � and unfortunately overestimate it? The following example from Nemirovski et al.
(2009) is quite illuminating.

Consider f(w) = w2/10 (so that � = 1/5) and C = [�1, 1]. Suppose we set ⌘t = 1/(t+ 1). Then

wt+1 = wt � 1
t+1

1
5wt =

⇣
1� 1

5(t+1)

⌘
wt.

Thus, with w0 = 1 we have

wt =
tY

s=1

�
1� 1

5s

�
= exp

(
�

tX

s=1

ln
⇣
1 + 1

5s�1

⌘)
> exp

(
�

tX

s=1

1
5s�1

)
> 0.8(t+ 1)�1/5,

which is even slower than the O(1/
p
t) rate we obtained in Remark 22.8 without strong convexity!

Of course, if we guessed the strong convexity parameter � correctly and used ⌘t = 5/(t+1), the algorithm
would converge to the minimizer 0 in a single iteration! Unfortunately, it is not easy to line search �, especially
in the presence of stochastic noise.
Nemirovski, A., A. Juditsky, G. Lan, and A. Shapiro (2009). “Robust Stochastic Approximation Approach to Stochas-

tic Programming”. SIAM Journal on Optimization, vol. 19, no. 4, pp. 1574–1609.

Yaoliang Yu 248

https://doi.org/10.1137/070704277
https://doi.org/10.1137/070704277

CO673/CS794–Fall 2022 §23 VARIANCE REDUCTION University of Waterloo

Algorithm 23.8: Stochastic variance reduced gradient (SVRG, Johnson and Zhang 2013)

Algorithm: Stochastic variance reduced proximal gradient
Input: w0 2 dom f

1 for k = 0, 1, 2, . . . do
2 gk 1

n

P
n

i=1r`i(wk) // compute the full gradient at epoch k
3 wk,0 wk

4 for t = 0, . . . ,m� 1 do
5 randomly draw it = i with probability pi
6 gk,t gk � 1

npit
r`it(wk) +

1
npit
r`it(wk,t) // update gradient in amortized fashion

7 wk,t+1 P⌘k
r
(wk,t � ⌘kgk,t) // stochastic proximal gradient

8 wk+1 1
m

P
m

t=1 wk,t // in practice, can also do wk+1 wk,m

The above algorithm, with r ⌘ 0, is due to Johnson and Zhang (2013) and later extended by Xiao and
Zhang (2014) to any convex r whose proximal map can be easily computed. The main idea is to amortize the
computation of full gradient. Compared to vanilla stochastic gradient, on average SVRG requires computing
2 gradients per step (3, if we choose to recompute each r`it(wk) instead of storing them).

Let us note that the stochastic gradient used in SVRG is still unbiased:

Egk,t = gk +
nX

i=1

pi · 1
npi

[�r`i(wk) +r`i(wk,t)] = gk � gk + 1
n

nX

i=1

r`i(wk,t) = r`(wk,t).

Moreover, if wk ⇡ wk,t, e.g. when the algorithm is close to convergence, the variance of gk,t will be small
(since the random fluctuations cancel each other). Indeed, let L = maxi Li/(npi) where `i is Li-smooth.
Then,

Ekgk,t � Egk,tk22 Ek 1
npit

[r`it(wk,t)�r`it(wk)]k22 =
nX

i=1

1
n2pi
kr`i(wk,t)�r`i(wk)k22

[(a+ b)2 2(a2 + b2)] � 4L
nX

i=1

1
2nLi

[kr`i(wk,t)�r`i(w?)k22 + kr`i(wk)�r`i(w?)k22]

[Alert 6.25] � 4L
nX

i=1

1
n
[D`i(wk,t,w?) + D`i(wk,w?)] = 4L[D`(wk,t,w?) + D`(wk,w?)]

 4L[f(wk,t)� f(w?) + f(wk)� f(w?)],

where we applied Proposition 4.20 to w? 2 argmin f in the last line.
Johnson, R. and T. Zhang (2013). “Accelerating Stochastic Gradient Descent using Predictive Variance Reduction”.

In: Advances in Neural Information Processing Systems.
Xiao, L. and T. Zhang (2014). “A Proximal Stochastic Gradient Method with Progressive Variance Reduction”. SIAM

Journal on Optimization, vol. 24, no. 4, pp. 2057–2075.

Lemma 23.9: Inexact proximal gradient

Let ` be L-smooth convex and r be convex. For any ⌘ 2 (0, 1/L] define

w+ = P⌘

r

�
w � ⌘(r`(w) + ")

�
= argmin

z
hz,r`(w) + "i+ 1

2⌘kz�wk22 + r(z).

Then, for any z we have

f(z) � f(w+) + 1
⌘

⌦
w �w+, z�w

↵
+ 1

2⌘kw �w+k22 �
⌦
z�w+, "

↵
(23.1)

Yaoliang Yu 249

https://papers.nips.cc/paper/2013/file/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf
https://doi.org/10.1137/140961791

CO673/CS794–Fall 2022 §23 VARIANCE REDUCTION University of Waterloo

Proof: We apply Proposition 4.20 to w+:

hz,r`(w) + "i+ 1
2⌘kz�wk22 + r(z) �

⌦
w+,r`(w) + "

↵
+ 1

2⌘kw �w+k22 + r(w+) + 1
2⌘kz�w+k22.

Adding the following inequalities from L-smoothness and convexity:

`(w) +
⌦
w+ �w,r`(w)

↵
+ 1

2⌘kw �w+k22 � `(w+)

`(z) � `(w) + hz�w,r`(w)i ,

and rearranging and simplifying leads to (23.1).
When ` or r are strongly convex, we can sharpen the bound (23.1), although this is not needed below. When
" = 0, i.e. the gradient is exact, the resulting bound has been obtained and used before (e.g. with z = w).

Theorem 23.10: Linear convergence of SVRG (Xiao and Zhang 2014)

Let `i be Li smooth convex and f be �-strongly convex. Let L = maxi Li/(npi) and ⌘k ⌘ ⌘ 2 (0, 1/(4L)).
Then, for the epoch updates:

E[f(wk+1)� f?] cE[f(wk)� f?], where c =
1/(⌘�) + 4⌘L(m+ 1)

(1� 4⌘L)m
.

Note that c < 1 if m is sufficiently large.

Proof: Let w? = argmin f and we bound the progress of SVRG in the inner-loop as usual:

kwk,t+1 �w?k22 = kwk,t �w?k22 + 2 hwk,t �wk,t+1,w? �wk,ti+ kwk,t+1 �wk,tk22
[Lemma 23.9] � kwk,t �w?k22 � 2⌘k[f(wk,t+1)� f(w?)] + 2⌘k hwk,t+1 �w?,r`(wk,t)� gk,ti

Let w̃k,t+1 := P⌘k
r
(wk,t � ⌘kr`(wk,t)) we can continue bounding

hwk,t+1 �w?,r`(wk,t)� gk,ti hwk,t+1 � w̃k,t+1,r`(wk,t)� gk,ti+ hw̃k,t+1 �w?,r`(wk,t)� gk,ti
 kwk,t+1 � w̃k,t+1k2 · kr`(wk,t)� gk,tk2 + hw̃k,t+1 �w?,r`(wk,t)� gk,ti
 ⌘kkr`(wk,t)� gk,tk22 + hw̃k,t+1 �w?,r`(wk,t)� gk,ti .

Taking expectations and noting that w̃k,t+1 does not depend on it, we apply the unbiasedness and variance
bound in Line 8:

Ekwk,t+1 �w?k22 Ekwk,t �w?k22 � 2⌘kE[f(wk,t+1)� f?] + 8L⌘2
k
E[f(wk,t)� f? + f(wk)� f?]

Summing over t from 0 to m� 1 and noting that wk,0 = wk:

Ekwk,m �w?k22 Ekwk �w?k22 � 2⌘k

m�1X

t=0

E[f(wk,t+1)� f?] + 8L⌘2
k

m�1X

t=0

E[f(wk,t)� f? + f(wk)� f?].

Rearranging and using the definition of wk+1:

2⌘k(1� 4⌘kL)mE[f(wk+1)� f?] Ekwk �w?k22 + 8⌘2
k
L(m+ 1)E[f(wk)� f?]

�
2/� + 8⌘2

k
L(m+ 1)

�
E[f(wk)� f?].

Dividing the constant we obtain the formula for c and the proof is complete.
If we let ⌘ = 1/

p
4�L(m+ 1) with m+ 1 > 4, where := L/� � 1 is the condition number, then

c =
4
p

p
m+ 1� 2

p
k
· m+ 1

m
,

leading to the expected overall complexity O
�
(n+) log 1

✏

�
for an ✏-approximation minimizer.

Xiao, L. and T. Zhang (2014). “A Proximal Stochastic Gradient Method with Progressive Variance Reduction”. SIAM
Journal on Optimization, vol. 24, no. 4, pp. 2057–2075.

Yaoliang Yu 250

https://doi.org/10.1137/140961791

CO673/CS794–Fall 2022 §23 VARIANCE REDUCTION University of Waterloo

Exercise 23.11: Non-uniform vs. uniform sampling

To minimize L = maxi Li/(npi), we solve

min
p2�

max
i

Li/pi.

Prove that the optimal pi / Li, leading to L = 1
n

P
i
Li, which makes intuitive sense: the more “curvy” (i.e.

a large Li) a component function is, the more attention we pay to it.
In contrast, if we set pi ⌘ 1/n, then L = maxi Li, which is strictly larger.
When Li’s are not available or expensive to estimate, we may use the successive difference of the gradients

to approximate it; recall the line search procedure of Khobotov in Line 6.

Algorithm 23.12: Incremental gradient (IG, e.g. Bertsekas 2011)

Algorithm: Incremental gradient (IG)
Input: w 2 dom f

1 for k = 0, 1, 2, . . . do
2 for t = 0, . . . ,m� 1 do
3 choose it // cyclic or random
4 w P⌘k

rit
(w � ⌘kr`it(w)) // proximal gradient on component `it + rit

For simplicity, let us assume r =
P

i
ri ⌘ 0 and we choose the cyclic rule (hence m = n). Then, we may

write the inner loop compactly as:

wk+n = wk � ⌘k
1

n

nX

i=1

`i(wk+i�1), where wk+i = wk+i�1 � ⌘k
1
n
r`i(wk+i�1)

= wk � ⌘kr`(wk) + ⌘k
1

n

nX

i=1

[r`i(wk)�r`i(wk+i�1)]

| {z }
"k

If `i’s are L-smooth and ⌘k ! 0, then it is possible for the gradient error to diminish, see e.g. Bertsekas
(2011) and Lan and Zhou (2018).

Bertsekas, D. P. (2011). “Incremental proximal methods for large scale convex optimization”. Mathematical Program-
ming, vol. 129, pp. 163–195.

Lan, G. and Y. Zhou (2018). “Random Gradient Extrapolation for Distributed and Stochastic Optimization”. SIAM
Journal on Optimization, vol. 28, no. 4, pp. 2753–2782.

Yaoliang Yu 251

https://doi.org/10.1007/s10107-011-0472-0
https://doi.org/10.1137/17M1157891

CO673/CS794–Fall 2022 §23 VARIANCE REDUCTION University of Waterloo

Algorithm 23.13: Incremental/Stochastic averaged gradient (I/SAG, e.g. Blatt et al. 2007)

Algorithm: Incremental/stochastic averaged gradient (I/SAG)
Input: w0 2 dom f , G 2 Rd⇥n

1 g�1 1
n
G1 // G stores most recent gradient for each `i

2 for t = 0, 1, 2, . . . do
3 choose it // cyclic or random
4 gt gt�1 � 1

n
G:,it +

1
n
r`it(wt) // replace old with new

5 G:,it r`it(wt)
6 wt+1 P⌘t

r
(wt � ⌘tgt) // inexact proximal gradient

When we update the component functions `i sequentially, the update may be written more compactly
as:

wt+1 P⌘t
r

wt � ⌘t

1
n

nX

i=1

r`it�n+i(wt�n+i)

!

The sequential version was analyzed in Gürbüzbalaban et al. (2017), Mokhtari et al. (2018), Vanli et al.
(2018), and Gürbüzbalaban et al. (2019) while the randmized version in Schmidt et al. (2017), achieving
similar rates of convergence as SVRG (see Theorem 23.10).
Blatt, D., A. O. Hero, and H. Gauchman (2007). “A Convergent Incremental Gradient Method with a Constant Step

Size”. SIAM Journal on Optimization, vol. 18, no. 1, pp. 29–51.
Gürbüzbalaban, M., A. Ozdaglar, and P. A. Parrilo (2017). “On the Convergence Rate of Incremental Aggregated

Gradient Algorithms”. SIAM Journal on Optimization, vol. 27, no. 2, pp. 1035–1048.
Mokhtari, A., M. Gürbüzbalaban, and A. Ribeiro (2018). “Surpassing Gradient Descent Provably: A Cyclic Incre-

mental Method with Linear Convergence Rate”. SIAM Journal on Optimization, vol. 28, no. 2, pp. 1420–1447.
Vanli, N. D., M. Gürbüzbalaban, and A. Ozdaglar (2018). “Global Convergence Rate of Proximal Incremental Ag-

gregated Gradient Methods”. SIAM Journal on Optimization, vol. 28, no. 2, pp. 1282–1300.
Gürbüzbalaban, M., A. Ozdaglar, and P. A. Parrilo (2019). “Why random reshuffling beats stochastic gradient

descent”. Mathematical Programming.
Schmidt, M., N. L. Roux, and F. Bach (2017). “Minimizing finite sums with the stochastic average gradient”. Math-

ematical Programming, vol. 162, pp. 83–112.

Yaoliang Yu 252

https://doi.org/10.1137/040615961
https://doi.org/10.1137/040615961
https://doi.org/10.1137/15M1049695
https://doi.org/10.1137/15M1049695
https://doi.org/10.1137/16M1101702
https://doi.org/10.1137/16M1101702
https://doi.org/10.1137/16M1094415
https://doi.org/10.1137/16M1094415
https://doi.org/10.1007/s10107-019-01440-w
https://doi.org/10.1007/s10107-019-01440-w
https://doi.org/10.1007/s10107-016-1030-6

	Optimization Basics
	Polynomial methods for linear systems
	Gradient Descent
	Projected Gradient
	Proximal Gradient
	Subgradient Algorithms
	Conditional Gradient
	Fictitious Play
	Mirror Descent
	Metric Gradient
	Acceleration
	Smoothing
	Minimax
	n-person Game
	Alternating Minimization
	Fejér-type Algorithms
	Fixed Point Iteration
	Maximal Monotone Maps
	The Proximal Point Algorithm
	Splitting
	Reflectors
	Extragradient
	Stochastic Gradient
	Variance Reduction
	Gradient-free
	Randomized smoothing
	Riemannian Gradient
	Newton's Algorithm
	Gauss-Newton
	Extrapolation
	Bilevel Optimization
	Relative-smoothness

