
CO673/CS794–Fall 2022 §19 SPLITTING University of Waterloo

19 Splitting

Goal

Splitting, ergodic averaging, gradient-descent-ascent, forward-backward, backward-backward.

Alert 19.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Definition 19.2: The splitting/decomposition problem

Recall the familiar problem of finding a zero of a maximal monotone map T : Rd
◆ Rd. We now add a

small twist:

find z s.t. 0 2 Tz, where T = A+ B, (19.1)

i.e., the map T can be decomposed into the sum of two maps A : Rd
◆ Rd and B : Rd

◆ Rd. The
catch is that we often cannot evaluate the resolvant JT easily (so the proximal point algorithm is not directly
applicable), and yet it might be possible to find a decomposition so that both JA and JB are readily available.
Surprisingly, as we will see, many familiar algorithms are in fact instantiations of this simple but powerful
idea.

We also associate the following dual with the primal problem (19.1):

find z⇤ s.t. 0 2 T
⇤z⇤, where T

⇤ := [�A�1 �(�Id) +B
�1]. (19.2)

See Example 12.9 for an explanation of the dual when both A and B are subdifferentials of convex functions.

Theorem 19.3: Ergodic forward-backward splitting converges (Passty 1979)

Let B : Rd
◆ Rd

be maximal monotone, A : domB ◆ Rd
be monotone, and T := A + B be maximal

monotone. Let w0 2 domA and for all t � 0 define

wt+1 := J⌘t

B
(wt � ⌘ta

⇤

t
), where a⇤

t
2 Awt, ⌘t � 0, (19.3)

zt =
tX

k=0

⌘̄t,kwk, where ⌘̄t,k := ⌘k/Ht, Ht :=
tX

k=0

⌘k.

The following estimate holds for any (w,w⇤) 2 gphT and b⇤ 2 Bw:

hzt �w,w⇤i 
tX

k=0

⌘̄t,k hwk �w,a⇤
k
+ b⇤i 

kw0 �wk22 +
P

t

k=0 ⌘
2
k
ka⇤

k
+ b⇤k22

2Ht

. (19.4)

Moreover,

• if
P

t
⌘2
t
ka⇤

t
+ b⇤k22 <1 and F := T

�10 6= ;, then kwt �wk2 converges for any w 2 F;

• if
P

t
⌘2
t
ka⇤

t
+ b⇤k22 < 1 and Ht ! 1, then either F = ;, in which case kztk ! 1, or zt * z1 2 F

(hence also follows the previous claim).

Yaoliang Yu 209

CO673/CS794–Fall 2022 §19 SPLITTING University of Waterloo

Proof: The assumptions guarantee that the iterates {wt} are well-defined. We now verify Proposition 16.2,
starting with the last condition (III). For any (w,w⇤) 2 gphT and b⇤ 2 Bw:

kwk+1 �wk22 = kJ⌘k

B
(wk � ⌘ka

⇤

k
)� J⌘t

B
(w + ⌘kb

⇤)k22
(firm nonexpansiveness of J⌘k

B
)  kwk �w � ⌘ka

⇤

k
� ⌘kb

⇤k22 � kwk � ⌘ka
⇤

k
�wk+1 � ⌘kb

⇤k22
= kwk �wk22 � kwk �wk+1k22 � 2⌘k hwk+1 �w,a⇤

k
+ b⇤i

(�kxk22 + 2 hx,yi  kyk22)  kwk �wk22 + ⌘2
k
ka⇤

k
+ b⇤k22�2⌘k hwk �w,a⇤

k
+ b⇤i (19.5)

(monotonicity of A)  kwk �wk22 + ⌘2
k
ka⇤

k
+ b⇤k22 �2⌘k hwk �w,w⇤i . (19.6)

Summing from k = 0 to k = t, dividing by Ht =
P

t

k=0 ⌘k, telescoping and rearranging we obtain:

2 hw � zt,w
⇤i+

tX

k=0

⌘2
k
ka⇤

k
+ b⇤k22/Ht � (kwt+1 �wk22 � kw0 �wk22)/Ht,

whence follows the estimate (19.4) (using also (19.5)). If
P

t
⌘2
t
ka⇤

t
+ b⇤k22 < 1 and Ht ! 1, we deduce

that

lim inf
t!1

hw � zt,w
⇤i � 0,

whence follows from the maximality of T that any limit point of {zt} is a zero. Note that if kztk remains
bounded then it admits a limit point. Therefore, from now on we assume F 6= ;. For any w 2 F, from (19.6)
it follows

kwt+1 �wk22  kwt �wk22 + ⌘2
t
ka⇤

t
+ b⇤k22 � 2⌘t hwt �w,w⇤i  kwt �wk22 + ⌘2

t
ka⇤

t
+ b⇤k22.

If the last term is summable, then obviously kwt �wk22 converges hence {wt} is bounded. Lastly,

dist(zt,Wk) 

�����zt �
tX

s=k

⌘̄t,sws/
tX

=k

⌘̄t,

�����
2


k�1X

=0

⌘̄t,

"
kwk2 +

�����

tX

s=k

⌘̄t,sws

�����
2

/
tX

=k

⌘̄t,

#
t!1�! 0,

since wt is bounded and for any k, ⌘̄t,k ! 0 as t!1.

The special case B = NC for some closed convex set C first appeared in (Bruck 1977).

Passty, G. B. (1979). “Ergodic convergence to a zero of the sum of monotone operators in Hilbert space”. Journal of
Mathematical Analysis and Applications, vol. 72, no. 2, pp. 383–390.

Bruck, R. E. (1977). “On the weak convergence of an ergodic iteration for the solution of variational inequalities
for monotone operators in Hilbert space”. Journal of Mathematical Analysis and Applications, vol. 61, no. 1,
pp. 159–164.

Remark 19.4: Parsing the previous result

For B = NC for some closed convex set C, we may take b⇤ = 0, in which case, as suggested by Nemirovskii
and Judin (1978), we may choose

⌘t =
1p

ka⇤
t k

2
2+1

1
(t+1)p , p 2 (12 , 1], (19.7)

so that obviously
P

t
k⌘ta⇤t k22 < 1. If there exists a zero (or C is bounded) then {wt} is bounded. If A is

also bounded on bounded sets (so that sup
t
ka⇤

t
k2 <1), then letting Ht !1 the estimate (19.4) goes to 0

while {zt} converges to a zero.
It is clear that the proximal gradient Algorithm 4.17, the subgradient Algorithm 5.14 and the gradient-

descent-ascent (GDA) Algorithm 12.22 are all special cases of the so-called forward-backward splitting in
(19.3). In fact, Theorem 5.17 for the convergence of the subgradient Algorithm 5.14 is strictly contained

Yaoliang Yu 210

https://doi.org/10.1016/0022-247X(79)90234-8
https://doi.org/10.1016/0022-247X(77)90152-4
https://doi.org/10.1016/0022-247X(77)90152-4

CO673/CS794–Fall 2022 §19 SPLITTING University of Waterloo

in Theorem 19.3, and now we have a similar result for GDA. Indeed, let A = (@xf, @y-f) as suggested in
Exercise 17.15, for any w = (x,y) 2 C we have from (19.4):

kw0�wk22 +
P

t

k=0 k⌘ka⇤kk22
2Ht

�
tX

k=0

⌘̄t,k hwk �w,a⇤
k
i

=
tX

k=0

⌘̄t,k [hxk � x, @xf(xk,yk)i �f(xk,yk)+f(xk,yk)+hyk � y, @y-f(xk,yk)i]

�
Xt

k=0
⌘̄t,k [�f(x,yk) + f(xk,y)]

� �f(x, ȳt) + f(x̄t,y), where (x̄t, ȳt) :=
Xt

k=0
⌘̄t,kwk. (19.8)

We can make the following conclusions:

• If C is bounded and A is bounded on C, then maximizing w.r.t. w = (x,y) 2 C on both sides we have

diam(C)2 + L
2S2

t

2Ht

� d? � f(ȳt)| {z }
dual gap �0

+ f(x̄t)� p?| {z }
primal gap �0

+ p? � d?| {z }
strong duality =0

� 0,

where diam(C) is the diameter of C, L := sup
t
ka⇤

t
k2 < 1 and S2

t
=

P
t
⌘2
t
. Thus, the primal and

dual gaps go to 0 if Ht !1 and ⌘t ! 0, in which case any limit point of {zk} is a saddle point while
convergence of the whole sequence requires the stronger condition

P
t
⌘2
t
< 1. In particular, setting

⌘t = O(1/
p
t) leads to O((ln t)/

p
t) rate of convergence for the sum of gaps.

• Suppose C = X ⇥ Y with say X bounded,
P

t
k⌘ta⇤t k22 < 1, there exists a saddle point, and A is

bounded on bounded sets. Then, setting y = y? for any y? 2 Y
? we obtain:

kx0�xk22 + ky0 � y?k22 +
P

t

k=0 k⌘ka⇤kk22
2Ht

� �f(x, ȳt) + f(x̄t,y
?) � p? � f(x, ȳt).

Maximizing w.r.t. x 2 X on both sides leads us to

diam(X)2 + dist(y0,Y?)2 +
P

t

k=0 k⌘ka⇤kk22
2Ht

� p? � f(ȳt) � d? � f(ȳt) � 0,

i.e. the dual gap is bounded and converges to 0 if Ht !1. And similarly for the primal gap.

• Inspecting the proof of Theorem 19.3 we realize that completely similar results still hold even with
different step sizes for x and y, with one intriguing change: in the function estimate (19.8) we need
to average xk using the step size on y and vice versa. This observation is useful when only say X is
bounded (such as in a Lagrangian) so that we need only use the adaptive step size (19.7) for updating
y.

Nemirovskii, A. S. and D. B. Judin (1978). “Cesari convergence of the gradient method of approximating saddle
points of convex-concave functions”. Soviet Mathematics Doklady, vol. 19, no. 2, pp. 482–486.

Alert 19.5: Never over-invest on transient steps

In the regularization approach in Remark 18.46 and the proximal point approach in (19.19) (and also (19.18)
and Uzawa’s Algorithm 12.21) we need to solve some intermediate subproblems exactly, which is clearly
wasteful, after all the exact solution will only be used for a single iteration on the next round. Intuitively, an
inexact solution would probably do equally well as long as the “inexactness” is proportional to the algorithms’

Yaoliang Yu 211

https://cs.uwaterloo.ca/~y328yu/classics/NemirovskiiJudin78.pdf
https://cs.uwaterloo.ca/~y328yu/classics/NemirovskiiJudin78.pdf

CO673/CS794–Fall 2022 §19 SPLITTING University of Waterloo

progress. Indeed, Bakušinkĭı and Poljak (1974), following Gajewski and Kluge (1970), considered the iterate

wt+1 = P
C
(wt � ⌘tTtwt), where Tt := T+ �tId��tw0,

which amounts to performing 1 (projected) GDA step on (18.24) and then changing �t and ⌘t immediately
(i.e. proceed to the next round).

Bakušinkĭı and Poljak (1974) showed that the following condition suffices for L-Lipschitz continuous T:

1○ 0 < �t # 0; 2○
P

t
�t⌘t =1; 3○ �t/�t+1 = 1 + o(�t⌘t); 4○ lim sup

t!1 ⌘t(L+ �t)2/�t < 2/L;

where the last condition may be relaxed to (the familiar) lim sup
t!1(L+ �t)⌘t < 2 if T = (@xf, @y-f). For

example, if ⌘t = c�t,�t = L/tp, p 2 (0, 1/2), c 2 (0, 2/L3), or ⌘t ⌘ ⌘ 2 (0, 1/L),�t = L/tp, p 2 (0, 1) when
T = (@xf, @y-f). In fact, convergence to the closest solution, i.e.

wt ! argmin
w2C?

kw �w0k2,

was claimed in Bakušinkĭı and Poljak (1974).
Bakušinkĭı, A. B. and B. T. Poljak (1974). “On the solution of variational inequalities”. Soviet Mathematics Doklady,

vol. 15, no. 6, pp. 1705–1710.
Gajewski, H. and R. Kluge (1970). “Projektionsverfahren bei nichtlinearen Variationsungleichungen”. Mathematische

Nachrichten, vol. 46, no. 1-6, pp. 363–373.

Theorem 19.6: Ergodic backward-backward splitting converges (Passty 1979)

Let A,B : Rd
◆ Rd

be maximal monotone, with maximal monotone sum T := A + B. Starting with any

w0 and for all t � 0 define

wt+1 := J⌘t

B
J⌘t

A
wt, where ⌘t � 0, (19.9)

zt =
tX

k=0

⌘̄t,kwk, where ⌘̄t,k := ⌘k/Ht, Ht :=
tX

k=0

⌘k.

If
P

t
⌘t =1 and ⌘t ! 0, then either F := T

�10 = ;, in which case kztk ! 1, or zt * z1 2 F.

Proof: We simply verify Proposition 16.2. Let w 2 domT, a⇤ 2 Aw and b⇤ 2 Bw. Applying the firm
nonexpansiveness of J⌘k (see Exercise 16.9):

kJ⌘k

A
wk �wk22 = kJ⌘k

A
wk � J⌘k

A
(w + ⌘ka

⇤)k22  kwk �w � ⌘ka
⇤k22 � kwk � J⌘k

A
wk � ⌘ka

⇤k22
= kwk�wk22 � kwk�J⌘k

A
wkk22 + 2⌘k hw�J⌘k

A
wk;a

⇤i (19.10)
kJ⌘k

B
J⌘k

A
wk �wk22  kJ

⌘k

A
wk �wk22 � kJ

⌘k

A
wk � J⌘k

B
J⌘k

A
wkk22 + 2⌘k hw � J⌘k

B
J⌘k

A
wk;b

⇤i .

Summing the above two inequalities and applying the inequality �kxk22 + 2 hx;yi  kyk22 repeatedly:

kJ⌘k

B
J⌘k

A
wk �wk22  kwk �wk22 + 2⌘k hw �wk;a

⇤ + b⇤i+ ⌘2
k
[ka⇤ + b⇤k22 + ka⇤k22]. (19.11)

Summing from k = 0 to k = t and rearranging as in Theorem 19.3 we obtain for any w 2 domT,w⇤ =
a⇤ + b⇤ 2 Tw:

2 hw � zt;w
⇤i+ [ka⇤k22 + kw⇤k22]

tX

k=0

⌘2
k
/Ht � (kwt+1 �wk22 � kw0 �wk22)/Ht.

Using the assumptions on ⌘t we thus know

lim inf
t!1

hw � zt;w
⇤i � 0,

Yaoliang Yu 212

https://cs.uwaterloo.ca/~y328yu/classics/BakusinkiiPoljak74.pdf
https://doi.org/10.1002/mana.19700460128

CO673/CS794–Fall 2022 §19 SPLITTING University of Waterloo

whence follows from the maximality of the sum T that any limit point of {zt} is a zero. If {zt} is bounded,
then F 6= ;, which we assume now. Let w 2 F and set w⇤ = 0 we know from (19.11) that {wt} is (uniformly)
quasi-Fejér monotone w.r.t. F. Lastly, we verify condition (II) in Proposition 16.2 as in Theorem 19.3.

The special case B = NC for some closed convex set first appeared in (Lions 1978). We may also define

zt+1 :=
tX

k=0

⌘̄t,kwk+1,

which will remove the constant ka⇤ + b⇤k22.
Passty, G. B. (1979). “Ergodic convergence to a zero of the sum of monotone operators in Hilbert space”. Journal of

Mathematical Analysis and Applications, vol. 72, no. 2, pp. 383–390.
Lions, P.-L. (1978). “Une methode iterative de resolution d’une inequation variationnelle”. Israel Journal of Mathe-

matics, vol. 31, no. 2, pp. 204–208.

Alert 19.7: Comparing forward-backward and backward-backward

It is instructive to compare forward-backward with backward-backward:

F := J⌘

B
(Id� ⌘A) vs. B := J⌘

B
J⌘

A
.

For the former, it is clear that

w 2 Fw () [w + ⌘Bw] \ [w � ⌘Aw] 6= ; () 0 2 (A+ B)w

9(w,w⇤) 2 gphA,w 2 Fw () 9(w,w⇤) 2 gphA,0 2 (A+ B)w () 0 2 �A�1(�w⇤) + B
�1w⇤.

Therefore, applying the forward-backward map with any ⌘ at least makes sense in principle. However, the
latter, as pointed out by Bauschke et al. (2005), solves a “regularized” problem:

w = Bw () 0 2 (⌘A + B)w, where ⌘
A :=

Id�J
⌘
A

⌘
.

In other words,

backward-backward on A+ B is forward-backward on ⌘
A + B!

In general, (⌘A + B)�10 \ (A + B)�10 = ;, with one notable exception: when A
�10 \ B

�10 6= ;, see
Theorem 19.8 below. This is the reason why in all our results about backward-backward (e.g. Theorem 19.6)
we require ⌘t ! 0, since then ⌘

A ! 0
A as ⌘ ! 0, where recall that 0

Aw is the minimum-norm element
in Aw. In contrast, it is possible to use constant ⌘ in forward-backward (e.g. Theorem 19.14), at the
expense of ⌘ depending on properties of A. Still, it is surprising that with ⌘t decreasing to 0 slowly, (ergodic)
backward-backward actually converges to a zero!
Bauschke, H. H., P. L. Combettes, and S. Reich (2005). “The asymptotic behavior of the composition of two resol-

vents”. Nonlinear Analysis: Theory, Methods & Applications, vol. 60, no. 2, pp. 283–301.

Theorem 19.8: Backward-backward converges under a common fixed point (Tseng 1992)

Let Ti : Rd ! Rd, i = 1, . . . ,m be ↵-averaged with a common fixed point, i.e. F := \iFixTi 6= ;. Then, the

(random) iterate

wt+1 = (1� �t)wt + �tTi(t)wt + ✏t, it 2 {1, . . . ,m}, �t 2 (0, 1
↵
),

X

t

k✏tk2 <1

converges to some w1 2 F, as long as each Ti appears infinitely often and lim inft �t(
1
↵
� �t) > 0.

Yaoliang Yu 213

https://doi.org/10.1016/0022-247X(79)90234-8
https://doi.org/10.1007/BF02760552
https://doi.org/10.1016/j.na.2004.07.054
https://doi.org/10.1016/j.na.2004.07.054

CO673/CS794–Fall 2022 §19 SPLITTING University of Waterloo

Proof: From the proof of Theorem 16.13 we know {wt} is (uniformly) quasi-Fejér monotone w.r.t. F and

wt � Ti(t)wt ! 0.

Let z 2 \i2IFixTi be a limit point of {wt} for some I 6= ; (e.g. I = {i} for some i; see Proposition 16.6).
Take a subsequence wtk ! z and let sk = min{t � tk : i(t) 62 I}. Pass to a subsequence we may assume
i(sk) ⌘ j and wsk ! w. Since wsk � Tjwsk ! 0 we have w 2 FixTj (see Proposition 16.6). Since
z 2 \i2IFixTi and i(t) 2 I for t 2 [tk, sk) we have

kwsk � zk2  kwtk � zk2 +
sk�1X

=tk

k✏tk2 ! 0,

and hence z = w 2 FixTj . Since each Ti appears infinitely often, we may continue the argument to conclude
that any limit point z 2 F. Applying Proposition 16.2 we know the whole sequence wt ! w1 2 F.

Aleyner and Reich (2009) pointed out that we only need the following weaker condition on each Ti: it is
continuous and there exists some ↵ > 0 such that for any z 2 FixTi

kTiw � zk22 + ↵kw � Tiwk22  kw � zk22.

Tseng, P. (1992). “On the Convergence of the Products of Firmly Nonexpansive Mappings”. SIAM Journal on Opti-
mization, vol. 2, no. 3, pp. 425–434.

Aleyner, A. and S. Reich (2009). “Random Products of Quasi-Nonexpansive Mappings in Hilbert Space”. Journal of
Convex Analysis, vol. 16, no. 3, pp. 633–640.

Example 19.9: Method of barycenter (Cimmino 1938)

Let Hi := {w : hw,aii = bi} be a hyperplane and P
i

the orthogonal projection onto it. Cimmino (1938)
proposed the method of barycenter for finding a point in the intersection H = \iHi:

wt+1
1

n

X

i

P
i
wt,

which is exactly a backward-backward algorithm for the reformulation:

min
w=(w1,...,wn)

X

i

◆Hi(wi) + ◆L(w), where L := {w : w1 = · · · = wn}.

Applying Theorem 19.8, we actually know the more general version

wt+1 Avg(P
i1
, . . . ,P

ik(t)
)wt

also converges to a point in H, as long as each projection appears infinitely often. Setting k(t) ⌘ 1 we obtain
Kaczmarz’s (sequential) algorithm (Kaczmarz 1937).

Reich (1983) studied the Barycenter method for both linear and nonlinear projectors in Banach spaces.

Cimmino, G. (1938). “Calcolo Approssimato Per le Soluzioni dei Sistemi di Equazioni Lineari”. La Ricerca Scientifica,
vol. 9, no. 1, pp. 326–333.

Kaczmarz, S. (1937). “Angenäherte Auflösung von Systemen linearer Gleichunger”. Bulletin International de l’Académie
Polonaise des Sciences et des Lettres, vol. 35, pp. 355–357. “Approximate solution of systems of linear equations”,
English translation in International Journal of Control, 1993, vol. 57, no.6, pp. 1269–1271.

Reich, S. (1983). “A note on the mean ergodic theorem for nonlinear semigroups”. Journal of Mathematical Analysis
and Applications, vol. 91, no. 2, pp. 547–551.

Yaoliang Yu 214

https://doi.org/10.1137/0802021
https://www.heldermann.de/JCA/JCA16/JCA163/jca16036.htm
https://cs.uwaterloo.ca/~y328yu/classics/Cimmino.pdf
https://www.tandfonline.com/doi/abs/10.1080/00207179308934446
https://doi.org/10.1016/0022-247X(83)90168-3

CO673/CS794–Fall 2022 §19 SPLITTING University of Waterloo

Theorem 19.10: (Strong) non-ergodic convergence of backward-backward (Passty 1979)

Let A and B be maximal monotone with maximal monotone sum T := A + B and F := T
�10 6= ;. ChooseP

t
⌘t =1 and ⌘t ! 0. Suppose either

• one of A and B is strongly monotone, or

• F has nonempty interior.

Then, the (non-ergodic) backward-backward iterate wt ! w1 2 F (see (19.9)).

Proof: The second claim readily follows from Proposition 16.4. For the first claim, assume w.l.o.g. that A is
�-strongly monotone. We strengthen (19.10) into

kJ⌘k

A
wk �w1k22  kwk �w1k22 � kwk � J⌘t

A
wkk22 + 2⌘k hw1 � J⌘k

A
wk;a

⇤i � 2⌘k�kJ⌘k

A
wk �w1k22,

leading (19.11) now to

kwk+1 �w1k22  kwk �w1k22 + ⌘2
k
ka⇤k22 � 2⌘k�kJ⌘k

A
wk �w1k22 =) lim inf kJ⌘k

A
wk �w1k2 = 0, hence

lim inf kwk+1 �w1k2 = lim inf kwk+1 � J⌘k

B
(w1 + ⌘kb

⇤)k2  lim inf kJ⌘k

A
wk �w1 � ⌘kb

⇤k2 = 0.

Since {wt} is quasi-Fejér monotone w.r.t. F = {w1}, it follows that wt ! w1.

Passty, G. B. (1979). “Ergodic convergence to a zero of the sum of monotone operators in Hilbert space”. Journal of
Mathematical Analysis and Applications, vol. 72, no. 2, pp. 383–390.

Definition 19.11: Inversely strong monotonicity, a.k.a., cocoercive

We call an operator T : domT ✓ Rd!Rd inversely �-strongly monotone (a.k.a. �-cocoercive) if

8(u,u⇤) 2 gphT, 8(v,v⇤) 2 gphT, hu� v;u⇤ � v⇤i � �ku⇤ � v⇤k22,

i.e. T
�1 is �-strongly monotone or equivalently �T is firmly nonexpansive and hence T is 1

�
-Lipschitz

continuous. When T = @f for a closed (proper) convex function f , we know from Alert 6.25 that @f is
inversely �-strongly monotone iff @f is 1

�
-Lipschitz continuous.

Exercise 19.12: Strongly monotone + Lipschitz continuity =) inversely strongly monotone

Let T be �-strongly monotone and L-Lipschitz continuous. Prove that T is inversely �

L2 -strongly monotone.
If T = @f for some (closed proper) convex function f , we may improve the factor �

L2 to 1
L
.

Theorem 19.13: Non-ergodic convergence of forward-backward

Let B : Rd
◆ Rd

be maximal monotone and A : domB! Rd
be inversely

1
L
-strongly monotone. Consider

the (non-ergodic) relaxed forward-backward iterate:

wt+1 := (1� �t)wt + �tJ
⌘t

B
(wt � ⌘ta

⇤

t
) + ✏t, where a⇤

t
2 Awt, ⌘t 2 [0, 2

L
], �t � 0.

Assume F := (A+B)�10 6= ; and
P

t
k✏tk2 <1. If �t 2 [0, 2�⌘tL

2], lim inft ⌘t � ⌘ > 0 and
P

t
�t(2�⌘tL

2 ��t) =
1, then wt * w1 2 F and Awt ! Aw1 = T

⇤�10, where T
⇤ := �A�1(�Id) + B

�1
.

Yaoliang Yu 215

https://doi.org/10.1016/0022-247X(79)90234-8

CO673/CS794–Fall 2022 §19 SPLITTING University of Waterloo

Proof: We simply analyze the forward-backward map

F⌘ := J⌘

B
(Id� ⌘A).

If A is inversely 1
L
-strongly monotone, i.e. 1

L
A is firmly nonexpansive, then

Id� ⌘A = Id� ⌘L Id+N

2 = (1� ⌘L

2)Id + ⌘L

2 (�N)

is ⌘L

2 -averaged for any ⌘ 2 [0, 2
L
]. According to Exercise 16.11, F⌘ is 2

4�⌘L
-averaged. As shown in the proof

of Theorem 16.13, kwt � F⌘twtk2 ! 0. Since lim inft ⌘t � ⌘ > 0, we apply Theorem 17.22 to obtain

lim sup
t

⌘kwt � F⌘(wt)k2  lim sup
t

kwt � F⌘tk2 = 0.

Applying Proposition 16.6 and Proposition 16.2 we know the quasi-Fejér monotone sequence wt * w1 2 F.
Since A

�1 is strongly monotone, T⇤�10 = Aw for any w 2 F, see Alert 19.7. Let w̃t = wt � ⌘tAwt:

hF⌘twt�w1,wt�F⌘twti = hJ⌘t

B
w̃t�J⌘t

B
w̃1,wt�J⌘t

B
w̃ti

= hJ⌘t

B
w̃t�J⌘t

B
w̃1, (w̃t�J⌘t

B
w̃t)�(w̃1�J⌘t

B
w̃1)i+ ⌘t hJ⌘t

B
w̃t�J⌘t

B
w̃1,Awt�Aw1i

� ⌘t[hF⌘twt�wt,Awt�Aw1i+ hwt�w1,Awt�Aw1i]
� �⌘tkF⌘twt�wtk2 · Lkwt�w1k2 + ⌘t

L
kAwt�Aw1k22.

Since lim inft ⌘t � ⌘ > 0 and we already know F⌘twt �wt ! 0, it follows Awt ! Aw1.
The primal convergence wt * w1, with �t ⌘ 1, ⌘t ⌘ ⌘, ✏t ⌘ 0 and B = NC , appeared in e.g. Mercier
(1979, pp 157-158) and Gabay (1983, Thm 6.1). The dual convergence Awt ! Aw1 was due to Tseng
(1991) who also considered relaxation and allowed varying step size. Our proof, exploiting the monotonicity
in Theorem 17.22, confirms that the usual argument based on Opial’s Proposition 16.6 does suffice.
Mercier, B. (1979). “Lectures on Topics in Finite Element Solution of Elliptical Problems”. Springer.
Gabay, D. (1983). “Applications of the Method of Multipliers to Variational Inequalities”. In: Augmented Lagrangian

methods: Applications to the numerical solution of boundary-value problems. Vol. 15. 9, pp. 299–331.
Tseng, P. (1991). “Applications of a Splitting Algorithm to Decomposition in Convex Programming and Variational

Inequalities”. SIAM Journal on Control and Optimization, vol. 29, no. 1, pp. 119–138.

Theorem 19.14: Linear convergence of forward-backward (Chen and Rockafellar 1997)

Let B : Rd
◆ Rd

be �b-strongly maximal monotone and A : domB!Rd
be �a-strongly monotone. Consider

the (non-ergodic) forward-backward iterate:

wt+1 := J⌘t

B
(wt � ⌘ta

⇤

t
) + ✏t, where a⇤

t
2 Awt, ⌘t � 0.

Assume Ā := A� �a · Id is L̄-Lipschitz continuous, then

kwt+1 �w1k2  qtkwt �w1k2 + k✏tk2, where w1 2 F and qt :=
p

[(⌘t�a�1)++L̄]2+(1�⌘t�a)2+
1+�b⌘t

. (19.12)

Setting ⌘t ⌘ ⌘? = 1
�a+L̄2/�

, where � := �a + �b, we obtain the optimal q? = 1/
p
1 + 2, where  := �/L̄.

Proof: When B is �b-strongly monotone, we know from Theorem 20.6 that J⌘

B
is 1

1+⌘�b
-Lipschitz continuous.

When A is �a-strongly monotone and Ā is L̄-Lipschitz continuous, then

k(w � ⌘Aw)� (z� ⌘Az)k22 = k(1� ⌘�a)(w � z)� ⌘(Āw � Āz)k22
= (1� ⌘�a)

2kw � zk22 � 2⌘(1� ⌘�a)
⌦
w � z, Āw � Āz

↵
+ ⌘2kĀw � Āzk22

 [(1� ⌘�a)
2 + ⌘2L̄2 + 2⌘L̄(⌘�a � 1)+] · kw � zk22.

Yaoliang Yu 216

http://www.math.tifr.res.in/~publ/ln/tifr63.pdf
https://doi.org/10.1016/S0168-2024(08)70034-1
https://doi.org/10.1137/0329006
https://doi.org/10.1137/0329006

CO673/CS794–Fall 2022 §19 SPLITTING University of Waterloo

Combing the results for the forward and backward maps we obtain the estimate (19.12).
A case analysis as in Chen and Rockafellar (1997, p. 431) justifies the optimal choice for ⌘t and qt.

Following Chen and Rockafellar (1997) we have chosen to “center” the result in terms of the Lipschitz
constant L̄ of the barely monotonic forward map Ā. Doing so reveals something fundamental:

If the step size ⌘? is set accordingly, then the convergence rate q? does not depend on how we
split strong monotonicity between the forward map A and backward map B.

Of course, splitting the sum T = A + B into non-shifted versions of A and B may still lead to drastically
different convergence, through changing the Lipschitz constant L̄ and possibly the easiness of evaluating J⌘

B
.

If A is L-Lipschitz, then

kĀw � Āzk22 = kAw � Azk22 � 2�a hw � z,Aw � Azi+ �2
a
kw � zk22  (L2 � �2

a
)kw � zk22,

leading to the simple estimate

L̄ 
p
L2 � �2

a
, ⌘⇤ = �

L2+�a�b
, q⇤ = 1/

q
1 + �

2

L2��2
a
.

In particular, shifting all strong monotonicity to the forward map A, i.e. � = �a yields

⌘⇤ = �/L2, q⇤ =
p
1� �2/L2 � q?, but it is

• worse than the proximal algorithm wt+1 = J⌘t

A+B
wt, which is the most difficult to implement but enjoys

the best rate 1
1+⌘t�

, see Corollary 18.19;

• worse than the reflector-based Line 4, which is more difficult to implement than the forward step but
enjoys the better rate

p
1� �/L, see Theorem 20.16.

Chen, G. H.-G. and R. T. Rockafellar (1997). “Convergence Rates in Forward–Backward Splitting”. SIAM Journal
on Optimization, vol. 7, no. 2, pp. 421–444.

Remark 19.15: Some refinements

We mention some further improvements on Theorem 19.14:

• Maximality: Chen and Rockafellar (1997) actually showed that T = A+B is maximal monotone under
the assumptions in Theorem 19.14.

• Variable metric: Chen and Rockafellar (1997) considered changing the norm kwk2 to kwkH :=p
hHw,wi for some symmetric positive definite matrix H, and adapting strong monotonicity and

Lipschitz continuity to the norm k · kH (and its dual k · kH�1). Note that the backward step is now
(H + ⌘B)�1 while the forward step is H � ⌘A, where H = @ 1

2k · k
2
H

. Theorem 19.14 still holds after
obvious adjustments. In fact, we may even allow H to change with t.

• Convex function: When A = @f we follow the same refinement in Alert 18.14 to get

qt =

(
1�⌘t�a

1+⌘t�b
, if ⌘t  2

�a+L

⌘tL�1
1+⌘t�b

, if ⌘t � 2
�a+L

, where L := �a + L̄ =) ⌘? ⌘ 2
�a+L

, q? = 1
1+2 ,  := �/L̄.

• Localization: Chen and Rockafellar (1997, Thm 4.1) noted that as long as

1
⌘t

> �a��b
2 + L̄

2 (
L̄

�
_ 1),

where the parameters �a,�b and L̄ are localized w.r.t. a neighborhood around the unique fixed point
w1, then the forward-backward algorithm (with ✏t ⌘ 0) does not leave this neighborhood. A similar
albeit weaker result was already known in e.g. Dem’yanov and Pevnyi (1972, Thm 4.2).

Yaoliang Yu 217

https://doi.org/10.1137/S1052623495290179

CO673/CS794–Fall 2022 §19 SPLITTING University of Waterloo

• Asymmetry: Chen and Rockafellar (1997) pointed out the following change-of-variable for reducing
asymmetric implementations to symmetric ones:

(H + L+ ⌘B)�1(H + L� ⌘A) = (H + ⌘(B+ L/⌘))�1(H � ⌘(A� L/⌘),

where H is symmetric but the linear map L may not.

• Over-relaxation: We have set �t ⌘ 1 in Theorem 19.14 since under-relaxation (i.e. �t < 1) is clearly
not beneficial. However, when B is Lipschitz continuous and strongly monotone, it may be beneficial
to over-relax (i.e. �t > 1), see Alert 18.14.

Chen, G. H.-G. and R. T. Rockafellar (1997). “Convergence Rates in Forward–Backward Splitting”. SIAM Journal
on Optimization, vol. 7, no. 2, pp. 421–444.

Dem’yanov, V. F. and A. B. Pevnyi (1972). “Numerical methods for finding saddle points”. USSR Computational
Mathematics and Mathematical Physics, vol. 12, no. 5, pp. 11–52.

Example 19.16: Application of forward-backward splitting to VI (Tseng 1991)

Let L := {(u,v) : Mu + Nv = b} be an affine subspace and consider the following variational inequality:
find (u,v) 2 (U ⇥ V) \ L such that

8(ū, v̄) 2 (U ⇥ V) \ L, hū� u,Uui+ hv̄ � v,Vvi+ f(ū)� f(u) + g(v̄)� g(v) � 0, (19.13)

where f and g are convex functions, U and V are convex sets, and U and V are monotone maps. Under mild
conditions, using subdifferential calculus we may rewrite (19.13) as: find (u,v) such that

0 2 [S+ T+NL](u,v), where S := U+ @f +NU , T := V + @g +NV .

Since NL = rge[M,N]>, equivalently we may reduce to finding some w such that

M>w 2 Su, N>w 2 Tv, Mu+Nv = b () 0 2 �b+MS
�1M>

| {z }
A

w +NT
�1N>

| {z }
B

w.

We can now apply forward-backward splitting to obtain the following algorithm:
Algorithm: Forward-backward splitting for VI (19.13)
Input: w0

1 for t = 0, 1, . . . do
2 find ut s.t. 8ū 2 U , f(ū)� f(ut) +

⌦
ū� ut,Uut �M>wt

↵
� 0 // u 2 S

�1M>w
3 wt+1/2 wt � ⌘t(Mut � b) // forward step

// compute (Id + ⌘tNT
�1N>)�1wt+1/2 using Sherman-Morrison, see Proposition 17.18

4 find vt s.t. 8v̄ 2 V, g(v̄)� g(vt) +
⌦
v̄ � vt,Vvt �N>(wt+1/2 � ⌘tNvt)

↵
� 0 // backward

step
5 wt+1 wt+1/2 � ⌘tNvt = wt � ⌘t(Mut +Nvt � b)

Assuming M has full column rank and S is strongly monotone, so that A is inversely strongly monotone
and hence convergence (i.e. wt * w1, Mut�b = Awt ! Aw1 and Mut+Nvt�b = (wt�wt+1)/⌘t ! 0)
and linear rate of convergence immediately follow from Theorem 19.13 and Theorem 19.14 (and Theorem 19.3
if we average), respectively. Note that ut ! u1 since Mut converges and M has full column rank. See also
Makler-Scheimberg et al. (1996) for inexact implementations.
Tseng, P. (1991). “Applications of a Splitting Algorithm to Decomposition in Convex Programming and Variational

Inequalities”. SIAM Journal on Control and Optimization, vol. 29, no. 1, pp. 119–138.
Makler-Scheimberg, S., V. H. Nguyen, and J. J. Strodiot (1996). “Family of perturbation methods for variational

inequalities”. Journal of Optimization Theory and Applications, vol. 89, pp. 423–452.

Yaoliang Yu 218

https://doi.org/10.1137/S1052623495290179
https://doi.org/10.1016/0041-5553(72)90002-X
https://doi.org/10.1137/0329006
https://doi.org/10.1137/0329006
https://doi.org/10.1007/BF02192537
https://doi.org/10.1007/BF02192537

CO673/CS794–Fall 2022 §19 SPLITTING University of Waterloo

Example 19.17: Application to separable convex program (Tseng 1991)

Next, we consider the separable convex program:

min
u2U,v2V

f(u) + g(v), s.t. Mu+Nv = b, (19.14)

where f is strongly convex and g is convex. Let f̃ = f + ◆U and g̃ = g + ◆V we obtain the dual problem

�min
w

f̃⇤(M>w) + g̃⇤(N>w)� hb,wi . (19.15)

Specializing the algorithm in Line 5 we obtain:
Algorithm: Forward-backward splitting for separable convex program (19.14)
Input: w0

1 for t = 0, 1, . . . do
2 ut argminu2U f(u)� hMu+Nvt � b,wti // forward step rf̃⇤(M>wt)
3 vt argminv2V g(v)� hMut+Nv�b,wti+ ⌘t

2 kMut +Nv � bk22 // backward step
4 wt+1 wt � ⌘t(Mut +Nvt � b)

Amazingly, the above algorithm is a perfect interpolation between Uzawa’s Algorithm 12.21 (where
quadratic augmentations are not present in both u and v) and ADMM Example 20.17 (where quadratic
augmentations are present in both u and v). Instead, it chooses to only augment the update in v since
the corresponding function g may not be strongly convex. Here, wt converges to a dual solution while ut

converges to (part of) the primal solution (and any limit point of vt consists of the other part of the primal
solution). See Mouallif et al. (1991) for inexact implementations.

We also recognize that the algorithm is simply the proximal gradient Algorithm 4.17 applied to the dual
(19.15), with smooth component f̃⇤(M>w) and nonsmooth component g̃⇤(N>w). Indeed, the forward step
simply computes the gradient rf̃⇤(M>w) while the backward step reduces to

min
w
hw,Mut � bi+ 1

2⌘t
kw �wtk22 + g̃⇤(N>wt) ⌘ min

v
g̃(v) + ⌘t

2 kNvk22 � hwt � ⌘t(Mut � b), Nvi .

With this interpretation we may apply Amijo’s rule (see Remark 2.20) to adapt the step size ⌘t so that

f̃⇤(M>wt+1)  f̃⇤(M>wt) + hwt+1 �wt,Muti+ 1
2⌘t
kwt+1 �wtk22,

where the function value f̃⇤ can already be computed in the forward step.
Tseng, P. (1991). “Applications of a Splitting Algorithm to Decomposition in Convex Programming and Variational

Inequalities”. SIAM Journal on Control and Optimization, vol. 29, no. 1, pp. 119–138.
Mouallif, K., V. H. Nguyen, and J.-J. Strodiot (1991). “A Perturbed Parallel Decomposition Method for a Class of

Nonsmooth Convex Minimization Problems”. SIAM Journal on Control and Optimization, vol. 29, no. 4, pp. 829–
847.

Exercise 19.18: Application to finite sum

Let us consider minimizing a convex function of the finite-sum form:

min
u

f0(u) +
kX

i=1

fi(u),

where f0 is strongly convex and each fi is convex. Applying the product space trick to the latter summation
term (see ??), we arrive at a special case of (19.14):

min
u,v1,...,vk

f0(u) +
kX

i=1

fi(vi), s.t. 8i, vi = u.

Yaoliang Yu 219

https://doi.org/10.1137/0329006
https://doi.org/10.1137/0329006
https://doi.org/10.1137/0329045
https://doi.org/10.1137/0329045

CO673/CS794–Fall 2022 §19 SPLITTING University of Waterloo

Derive a splitting algorithm based on Line 4. Do you recognize the resulting algorithm for the special case
where fi = ◆Ci and f0(u) = ku� u0k2, i.e. projecting u0 to the intersection of convex sets Ci?

Exercise 19.19: Application to affine VI

Consider the (nonlinear) variational inequality:

find w s.t. 8w̄ 2 C, hw̄ �w,Twi � 0, or more succinctly 0 2 (T+NC)w, (19.16)

where T : C ! Rd is continuous and monotone, and C ✓ Rd is closed convex. We linearize T iteratively:

find wt+1 s.t. 0 2 L(w �wt) + Twt| {z }
⇡Tw

+NCw, i.e. wt+1 (L+NC)
�1(L� T)wt, (19.17)

where L : Rd ! Rd is a positive definite (but not necessarily symmetric) linear map (or equivalently a d⇥ d
matrix). Complete the following:

• We may decompose L = Ls + La, where Ls is symmetric positive definite and La is asymmetric.

• Perform change-of-variable z := L1/2
s w and derive from (19.17) that

zt+1 [Id + L�1/2
s

(La +NC)L
�1/2
s

]�1[Id� L�1/2
s

(T� La)L
�1/2
s

]zt.

• Prove that the iterates {wt} are well-defined and derive conditions under which they converge to a
solution of the VI (19.16).

• Suppose T is linear and choose L = �Id �D for any matrix D. Note that a triangular D makes the
backward step extremely efficient. Moreover, the matrix

L�1/2
s

(T� La)L
�1/2
s

= Id + L�1/2
s

(T� L)L�1/2
s

= Id + L�1/2
s

(T+D � �Id)L�1/2
s

is symmetric if T+D is so, in which case prove that wt converges if � is sufficiently large.

• Let T =


G A
�A> H

�
where G and H are symmetric PSD. Set L = �Id �D with D =


�D1 0
2A> �D2

�

or D =


�D1 �2A
0 �D2

�
for some symmetric PSD D1 and D2. Explicate (19.17) under these choices.

• Derive the underlying (affine) VI for and specialize the previous result to the quadratic program:

min
w2W

⌦
w, 1

2Qw + c
↵
, s.t. Aw = b.

• Further specialize the previous result to the projection problem:

min
w2\iCi

kw �w0k2 ⌘ min
wi2Ci

1
2

X

i

kwi �w0k22, s.t. 8i � 2, w1 = wi.

Exercise 19.20: Application to linear complementarity

Consider the linear complementarity problem (LCP): find w such that

Qw + b � 0, w � 0, hw, Qw + bi = 0,

where Q 2 Rd⇥d is positive definite but not necessarily symmetric. Complete the following:

Yaoliang Yu 220

CO673/CS794–Fall 2022 §19 SPLITTING University of Waterloo

• Prove that LCP is equivalent to: find w such that 0 2 Qw + b+NRd
+
w.

• Derive a splitting algorithm based on Line 5 where we split Q = A+B.

• Argue that if A is symmetric and positive semidefinite, then the splitting algorithm converges.

In practice, we aim to find structured (e.g. tri-diagonal) B so that the backward step is easily carried out.

• Apply the result in Exercise 19.19 with L = �Id �D and D = R> � S where R and S are the strict
upper and lower triangular part of Q, respectively.

Example 19.21: Unpacking minimization

To better appreciate the preceding results, let us first consider the special cases where T = @f for some
(closed) convex function f hence

P⌘

f
(w) =


argmin

z

1
2⌘kw � zk22 + f(z)

�
= (Id + ⌘ · @f)�1w.

A solution of VI(C,T) amounts to a (global) minimizer of the constrained minimization problem (3.1):

min
w2C✓Rd

f(w), or equivalently min
w

f(w) + ◆C(w).

In this setting a weak solution is also a solution (under mild conditions on C and dom f), which we assume
exists in the following (otherwise the appropriately constructed iterates will blow up).

• The iterate in Theorem 19.3 amounts to the usual projected (sub)gradient algorithm:

wt+1 = P
C
(wt � ⌘t@f(wt)) = P

C
(Id� ⌘t@f)wt = argmin

w2C

f(wt) + hw �wt,rf(wt)i+ 1
2⌘t
kw �wtk22.

Provided that Ht :=
P

t

k=0 ⌘k ! 1, ⌘k ! 0 and f Lipschitz continuous, convergence of the averaged
sequence w̄t =

P
t

k=0 ⌘kwk/Ht then follows from Theorem 19.3. This result is fully complementary to
Theorem 5.17, which proved convergence in function value under essentially the same assumptions.

• The iterate in Theorem 19.6 amounts to an implicit form of projected (sub)gradient:

wt+1 = P
C
(Id + ⌘t@f)

�1wt = P
C
P⌘t

f
(wt), where P⌘t

f
(wt) = argmin

w2Rd

1
2⌘t
kw �wtk22 + f(w).

Provided that Ht :=
P

t

k=0 ⌘k ! 1 and ⌘k ! 0, convergence of the averaged sequence w̄t =P
t

k=0 ⌘kwk/Ht then follows from Theorem 19.6 but dispenses the Lipschitz assumption!

• The iterate in Theorem 18.17 amounts to the (exact) proximal point Line 3:

wt+1 = (Id + ⌘t@f +NC)
�1wt = P⌘t

f+◆C
(wt) = argmin

w2C

1
2⌘t
kw �wtk22 + f(w),

where T = @f + @◆C = @f + NC . Provided that Ht :=
P

t

k=0 ⌘k ! 1, convergence of the averaged
sequence w̄t =

P
t

k=0 ⌘kwk/Ht then follows from Theorem 19.6 while convergence of wt follows from
Theorem 18.17. Compare also the estimate (18.7) with Theorem 2.17.

Needless to say, among the three algorithms, projected gradient is the easiest while proximal point is the
hardest to implement. In fact, we can use projected gradient to solve the subproblems of the other two
variants, although often this will not yield any improvement.

Yaoliang Yu 221

CO673/CS794–Fall 2022 §19 SPLITTING University of Waterloo

Example 19.22: Unpacking minimax

Let us now consider T = (@xf, @y-f) for some function f that is convex in x and concave in y. We show
below the connection to the minimax problem (12.1), recalled here:

inf
x2X✓Rd

sup
y2Y✓Rd

f(x,y).

In this setting a weak solution of VI(X⇥Y,T) is also a solution (under mild conditions on X⇥Y and dom f),
which we assume exists in the following (otherwise the appropriately constructed iterates will blow up).

• The iterate in Theorem 19.3 amounts to the projected (sub)gradient descent ascent Algorithm 12.22:

xt+1 = P
X
(xt � ⌘t@xf(xt,yt))

yt+1 = P
Y
(yt + ⌘t@yf(xt,yt)).

Or more explicitly,

(xt+1,yt+1) = argmin
x2X

argmax
y2Y

hx�xt; @xf(xt,yt)i+hy�yt; @y-f(xt,yt)i+ 1
2⌘t
kx�xtk22� 1

2⌘t
ky�ytk22,

Provided that Ht :=
P

t

k=0 ⌘k ! 1, ⌘k ! 0 and f Lipschitz continuous (in x and y, respectively),
convergence of the averaged sequence (x̄t, ȳt) =

P
t

k=0 ⌘k(xk,yk)/Ht then follows from Theorem 19.3.
More refined results have already been presented in Remark 19.4.

• The iterate in Theorem 19.6 amounts to an implicit form of projected (sub)GDA:

(x̃t+1, ỹt+1) = argmin
x2Rp

argmax
y2Rd

f(x,y) + 1
2⌘t
kx� xtk22 � 1

2⌘t
ky � ytk22, (19.18)

(xt+1,yt+1) =
�
P
X
(x̃t+1),PY

(ỹt+1)
�
.

Provided that Ht :=
P

t

k=0 ⌘k ! 1 and ⌘k ! 0, convergence of the averaged sequence (x̄t, ȳt) =P
t

k=0 ⌘k(xk,yk)/Ht to a solution then follows from Theorem 19.6.

• The iterate in Theorem 18.9 amounts to the (exact) proximal point Line 3:

(xt+1,yt+1) = argmin
x2X

argmax
y2Y

f(x,y) + 1
2⌘t
kx� xtk22 � 1

2⌘t
ky � ytk22, (19.19)

Provided that Ht :=
P

t

k=0 ⌘k ! 1, convergence of (x̄t, ȳt) =
P

t

k=0 ⌘k(xk,yk)/Ht follows from
Remark 18.15 while if

P
1

k=0 ⌘
2
k
=1, then (xt,yt) also converges to a solution thanks to Theorem 18.9.

We remark that among the three algorithms, GDA is the easiest while proximal point is the hardest to
implement. In fact, we can use GDA to solve the subproblems in both (19.18) and (19.19), a seemingly
simple idea that we will revisit in Remark 18.46.

Yaoliang Yu 222

	Optimization Basics
	Polynomial methods for linear systems
	Gradient Descent
	Projected Gradient
	Proximal Gradient
	Subgradient Algorithms
	Conditional Gradient
	Fictitious Play
	Mirror Descent
	Metric Gradient
	Acceleration
	Smoothing
	Minimax
	n-person Game
	Alternating Minimization
	Fejér-type Algorithms
	Fixed Point Iteration
	Maximal Monotone Maps
	The Proximal Point Algorithm
	Splitting
	Reflectors
	Extragradient
	Stochastic Gradient
	Variance Reduction
	Gradient-free
	Randomized smoothing
	Riemannian Gradient
	Newton's Algorithm
	Gauss-Newton
	Extrapolation
	Bilevel Optimization
	Relative-smoothness

