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22 Stochastic Gradient

Goal

Noisy (sub)gradient, stochastic gradient-descent-ascent, convergence in mean, convergence in high probabil-
ity, effect of averaging

Alert 22.1: Convention

A nice survey for this lecture and the next (and much more beyond) is Bottou et al. (2018).
Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Bottou, L., F. E. Curtis, and J. Nocedal (2018). “Optimization Methods for Large-Scale Machine Learning”. SIAM
Review, vol. 60, no. 2, pp. 223–311.

Definition 22.2: Problem

We continue our discussion of the minimax problem

min
x2X✓Rp

max
y2Y✓Rd

f(x,y),

but we are now restricted to a noisy (sub)gradient map T̂w, such that for any w = (x,y),

T̂w = Tw + "(w), where Tw := (@xf(x,y), @y-f(x,y)) (22.1)

and " = "(w) represents some random noise (e.g. numerical error) at w. For simplicity we assume

" = "(w)
i.i.d.⇠ p(·), and E" ⌘ 0, Ek"k22 =: &2 < 1,

i.e., the noisy (sub)gradient is unbiased and has bounded variance. ?? essentially dealt with the “trivial”
case where & = 0.

We note that our general formulation here also includes the minimization problem:

min
x2X

g(x).

Indeed, we need only set Y = {y0} as a singleton and let f(x,y0) = g(x). Therefore, everything we discuss
below immediately applies to stochastically minimizing a function.

Example 22.3: Where does the noise come from?

The noise in (22.1) may come from a variety of sources:

• measurement error: most physical devices are accurate up to a certain noise level;

• numerical error: any computation we perform on a finite precision computer is subject to truncation,
cancellation, underflow and overflow;

• problem scale: in ML we typically minimize the empirical loss

f(w) =
1

n

nX

i=1

`i(w), @f(w) =
1

n

nX

i=1

@`i(w), (22.2)

where n is on the scale of millions or billions (or even larger). It is thus unrealistic to compute the
average in the (sub)gradient above. Instead, we randomly sample a minibatch I = {i1, . . . , im} of size
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m ⌧ n and compute

@̂f(w) =
1

m

mX

k=1

@`ik(w) = @f(w) + [

"(w)z }| {
@̂f(w)� @f(w)].

• convenience: sometimes our objective function f can be written as an expectation (either by nature
or by reformulation):

f(w) = EF (w, ⇣), hence under mild regularity @f(w) = E@F (w, ⇣),

where computing the expectation exactly is either very costly or impossible. Upon taking a few samples
⇣1, . . . , ⇣m

i.i.d.⇠ ⇣ we may use the empirical average as an approximation:

@̂f(w) =
1

m

mX

i=1

@F (w, ⇣
i
) = @f(w) + [

"(w)z }| {
@̂f(w)� @f(w)].

If we only draw the samples once, we arrive at essentially the empirical risk in (22.2).

• privacy: when the functions `i are user-specific while computation is conducted on a cloud, it is
important to not leak user-specific information through communicating gradients. A typical approach
is to corrupt the gradient with random noise (e.g. Chaudhuri et al. 2011; Bassily et al. 2014; Wang
et al. 2017, 2019) before submitting to a server where aggregation and parameter update are taken
place.

• regularization: adding noise to the input or output is a standard training trick in ML and can be
connected to regularization (e.g. Bishop 1995). Adding noise in the gradient likely has similar
regularizing effects.

Chaudhuri, K., C. Monteleoni, and A. D. Sarwate (2011). “Differentially Private Empirical Risk Minimization”.
Journal of Machine Learning Research, vol. 12, no. 29, pp. 1069–1109.

Bassily, R., A. Smith, and A. Thakurta (2014). “Private Empirical Risk Minimization: Efficient Algorithms and
Tight Error Bounds”. In: Proceedings of the IEEE 55th Annual Symposium on Foundations of Computer Science,
pp. 464–473.

Wang, D., M. Ye, and J. Xu (2017). “Differentially Private Empirical Risk Minimization Revisited: Faster and More
General”. In: Advances in Neural Information Processing Systems, pp. 2722–2731.

Wang, D., C. Chen, and J. Xu (2019). “Differentially Private Empirical Risk Minimization with Non-convex Loss
Functions”. In: Proceedings of the 36th International Conference on Machine Learning, pp. 6526–6535.

Bishop, C. M. (1995). “Training with Noise is Equivalent to Tikhonov Regularization”. Neural Computation, vol. 7,
no. 1, pp. 108–116.

Remark 22.4: Sampling vs. optimization

Ma et al. 2019
Ma, Y.-A., Y. Chen, C. Jin, N. Flammarion, and M. I. Jordan (2019). “Sampling can be faster than optimization”.

Proceedings of the National Academy of Sciences, vol. 116, no. 42, pp. 20881–20885.

Lemma 22.5: Inexact forward-backward splitting

Let C ✓ Rd
be closed convex, w0 2 C and for all t � 0 define

wt+1 := P
C
(wt � ⌘tŵ

⇤

t
), where ŵ⇤

t
= w⇤

t
+ "t, ⌘t � 0, bt,k := �k⌘k/�t, �t :=

tX

k=0

�k⌘k, "̄t :=
tX

k=0

bt,k"k.
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The following estimate holds for any w 2 C:

tX

k=0

hwk�w, bt,kw
⇤

k
i 

�0kw0�wk22 +
tP

k=1
(�k��k�1)kwk�wk22 +

tP
k=0

�kk⌘kŵ⇤

k
k22

2�t

+ hw, "̄ti�
tX

k=0

hwk, bt,k"ki

Proof: For any w 2 K ✓ C:

kwk+1 �wk22 = kP
C
(wk � ⌘kŵ

⇤

k
)� P

C
(w)k22  kwk �w � ⌘kŵ

⇤

k
k22

= kwk �wk22 + k⌘kŵ⇤

k
k22 � 2 hwk �w, ⌘kŵ

⇤

k
i

= kwk �wk22 + k⌘kŵ⇤

k
k22 � 2 hwk �w, ⌘kw

⇤

k
+ ⌘k"ki .

Multiplying both sides by �k/�t, rearranging and summing from k = 0 to k = t:

tX

k=0

hwk �w, bt,kw
⇤

k
i 

P
t

k=0 �k[kwk �wk22 � kwk+1 �wk22 + k⌘kŵ⇤

k
k22]

2�t

�
tX

k=0

hwk �w, bt,k"ki .

Simplifying and rearranging completes the proof.

Theorem 22.6: Stochastic gradient-descent-ascent (Nemirovskii and Judin 1978)

Let f : X⇥ Y ! R be (closed) convex in x and (closed) concave in y, where X ✓ Rp
and Y ✓ Rd

are closed

convex. Starting from w0 := (x0,y0) 2 X⇥ Y, define

(
xt+1 := P

X
(xt � ⌘tx̂⇤

t
),

yt+1 := P
Y
(yt � ⌘tŷ⇤

t
),

where

(
x̂⇤
t
= x⇤

t
+ ⇠

t
, x⇤

t
2 @xf(xt,yt), E[⇠

t
|xt,yt] = 0

ŷ⇤
t
= y⇤

t
+ ⇣

t
, y⇤

t
2 @y-f(xt,yt), E[⇣

t
|xt,yt] = 0

(x̄t, ȳt, ⇠̄t, ⇣̄t
) :=

tX

k=0

bt,k(xk,yk, ⇠k, ⇣k
), where bt,k := �k⌘k/�t, ⌘t, �t � 0, �t :=

tX

k=0

�k⌘k.

Let w = (x,y) (along with similar quantities), the following estimates hold for any compact set K ✓ X⇥Y:

E[f
K
(x̄t)�f

K
(ȳt)] 

E
h
max
w2K

tP
k=0

(�k��k�1)kwk�wk22 +
tP

k=0
�kk⌘kŵ⇤

t
k22
i

2�t

+ E�K("̄t) (22.3)


E
h
max
w2K

tP
k=0

(�k��k�1)kwk�wk22 + %2(K)+
tP

k=0
�k⌘2k[kw⇤

k
k22+(1+�k)&2k ]

i

2�t

, (22.4)

where f
K
(x) := max(x,y)2K f(x,y) and similarly f

K
(y) := min(x,y)2K f(x,y), %(K) := minz maxw2K kz�

wk2 is the radius of K, ��1 := 0, and &2
k
:= E[k⇠

k
k22 + k⇣

k
k22] is the variance.

Proof: We set C = X⇥ Y, w = (x,y) and " = (⇠, ⇣) and apply Lemma 22.5:

max
w2K

tX

k=0

bt,k hwk�w,w⇤

k
i = max

w2K

tX

k=0

bt,k[hxk�x, @xf(xk,yk)i �f(xk,yk)+f(xk,yk)+hyk�y, @y-f(xk,yk)i]

� max
w2K

tX

k=0

bt,k[f(xk,y)�f(x,yk)] � max
w2K

[f(x̄t,y)�f(x, ȳt)] = f
K
(x̄t)�f

K
(ȳt).
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To obtain the first claim (22.3), we need only observe that,

E

tX

k=0

hwk, bt,k"ki =
tX

k=0

E hwk, bt,k"ki =
tX

k=0

E
⇥
hwk, bt,kE("k|wk)i

⇤
= 0,

thanks to the unbiased assumption on the noise " and the law of total expectation.
To obtain the second claim (22.4), we verify that

Ekŵ⇤

k
k22 = Ekw⇤

k
+ "kk22 = Ekw⇤

k
k22 + Ek"kk22 + 2E hw⇤

k
, "ki = Ekw⇤

k
k22 + &2

k
,

using again unbiasedness and law of total expectation. Moreover, fix any z:

E�K("̄t) = E[max
w2K

hw � z, "̄ti+ hz, "̄ti]  max
w2K

kw � zk2 · Ek"̄tk2 + E hz, "̄ti ,

where the last term vanishes due to unbiasedness and the middle term can be further bounded as:

(Ek"̄tk2)2  Ek"̄tk22 =
tX

k=0

b2
t,k
Ek"kk22 + 2

X

i

X

j>i

bt,ibt,j E h"i, "ji| {z }
=0

=
tX

k=0

�2
k
⌘2
k
&2
k
/�2

t
.

Since z was arbitrary, we obtain

E�K("̄t)  %(K) ·

qP
t

k=0 �
2
k
⌘2
k
&2
k

�t


%2(K) +

P
t

k=0 �
2
k
⌘2
k
&2
k

2�t

, (22.5)

which leads immediately to the bound (22.4).
The bound (22.4), with slightly worse constants, appeared first in Nemirovskii and Judin (1978) and later
with more details in Nemirovski et al. (2009).
Nemirovskii, A. S. and D. B. Judin (1978). “Cesari convergence of the gradient method of approximating saddle

points of convex-concave functions”. Soviet Mathematics Doklady, vol. 19, no. 2, pp. 482–486.
Nemirovski, A., A. Juditsky, G. Lan, and A. Shapiro (2009). “Robust Stochastic Approximation Approach to Stochas-

tic Programming”. SIAM Journal on Optimization, vol. 19, no. 4, pp. 1574–1609.

Remark 22.7: Parsing the previous result

Let us first assume X and Y are bounded and f is L-Lipschitz continuous (jointly in x and y). We can
thus take K = C := X⇥ Y and we know a saddle point exists. So, the bound (22.4) simplifies to:

E[f(x̄t)� p?| {z }
primal gap

+ d? � f(ȳt)| {z }
dual gap

] 
E
h tP
k=0

(�k��k�1)+ diam2(C)+%2(C) +
tP

k=0
�k⌘2k[L

2+(1+�k)&2k ]
i

2�t

,

where recall that %(C) = minz maxw2C kz �wk2 is the radius while diam(C) = maxw,z2C kw � zk2 is the
diameter. Obviously, %(C)  diam(C)  2%(C).

• If we set �k ⌘ 1 for k � 0 and assume the noise variance is uniformly bounded, i.e. &k  &, we obtain

E[f(x̄t)� p?| {z }
primal gap

+ d? � f(ȳt)| {z }
dual gap

] 
2 diam2(C) +

P
t

k=0 ⌘
2
k
[L2 + 2&2]

2Ht

, where Ht =
tX

k=0

⌘k.

Thus, the expected primal and dual gaps go to 0 if Ht ! 1 and ⌘t ! 0. Note also that if & ⌘ 0,
then our bound reduces to the one in Remark 19.4, where the constant 2 diam2(C) may be halved (the
looseness came from (22.5)).
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• To maximize the convergence rate, let us set ⌘k = c
p
k+1

and �k = 0 if k < s and 1 otherwise. Thus,

E[f(x̄t)� p? + d? � f(ȳt)] 
2 diam2(C) +

P
t

k=s

c
2

k+1 [L
2 + 2&2]

2
P

t

k=s

c
p
k+1

 2 diam2(C)

2
P

t

k=s

c
p
t+1

+

P
t

k=s

1
p
k+1

c
p
s+1

[L2 + 2&2]

2
P

t

k=s

1
p
k+1

=
diam2(C)

p
t+ 1

(t� s+ 1)c
+

c(L2 + 2&2)

2
p
s+ 1

.

If we optimize c we obtain

E[f(x̄t)� p? + d? � f(ȳt)]  diam(C)
p
2(L2 + 2&2) 4

q
t+1
s+1 · 1

p
t�s+1

.

Thus, with s / t, e.g. s = dt/2e, the expected primal and dual gaps converge to 0 at rate O(1/
p
t).

Remark 22.8: Convergence of SGD

Let us now consider the special case Y = {y0}, i.e. we are only interested in minimizing f(x) := f(x,y0)
w.r.t. x. The stochastic GDA algorithm reduces to the popular stochastic gradient descent (SGD) algorithm
that can be traced back to Robbins and Monro (1951).

Take K = {(x,y0)} with x 2 X arbitrary and assume the noise variance is uniformly bounded by &2.
Then,

f
K
(x̄t) = f(x̄t), f

K
(ȳt) = f(x), %(K) = 0, &2

k
= Ek⇠

k
k22, E�K(⇠̄

t
) = 0 �k ⌘ 1 =)

E[f(x̄t)� f(x)] 
kx0 � xk22 +

P
t

k=0 ⌘
2
k
[L2+&2]

2Ht

,

assuming x0 is non-random (or being conditioned on). Therefore, if Ht ! 1 and ⌘t ! 0, the expected
function value at the averaged iterate x̄t eventually crosses below that of any feasible x 2 X.

As above we can set �k = 0 if k < s ⇡ t/2 and 1 otherwise, so that we obtain an O(1/
p
t) convergence

rate of the expected function value. This rate is optimal.
Robbins, H. and S. Monro (1951). “A Stochastic Approximation Method”. Annals of Mathematical Statistics, vol. 22,

no. 3, pp. 400–407.

Remark 22.9: Lagrangian dual

More generally, if say Y is bounded and f is L-Lipschitz continuous, then according to the minimax Theo-
rem 12.15 strong duality holds. Let us assume there exists a saddle point (x?,y?) so we choose K = {x?}⇥Y

to arrive at:

f
K
(x̄t) = f(x̄t), f

K
(ȳt) = f(x?, ȳt)  p?, %(K) = %(Y), E�K("̄t) = E�Y(⇣̄t

), �k ⌘ 1 =)

Ef(x̄t)� p? 
kx0�x?k22 + 2 diam2(Y) +

P
t

k=0 ⌘
2
k
(L2 + 2&2)

2Ht

.

Thus, the expected primal gap goes to 0 if Ht ! 1 and ⌘t ! 0. Needless to say, we can set �k = 0 if
k < s ⇡ t/2 to derive the now familiar O(1/

p
t) convergence rate.

The above result is particularly applicable to the Lagrangian when Slater’s condition holds (for the primal
problem).
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Remark 22.10: From expectation to high probability

So far, our results are about the expected behaviour, i.e., if we repeat the optimization algorithm many
times, then the averaged result will converge to optimum. In practice, a single run is usually enough (unless
we are extremely unlucky). This is due to the phenomenon known as concentation of measure, i.e. average of
almost i.i.d. random variables is very likely concentrated around their mean. Indeed, our main performance
measure

Mt := max
w2K

tX

k=0

bt,k hwk �w, "ki ,

after a covering argument to union bound the max, we are left with averages of a martingale difference,
which behaves probabilistically as i.i.d. random variables. Thus, with high probability (and moderately
large t), Mt ⇡ 0 hence a single run will be close to the expected performance. Complete details can be found
in Nemirovski et al. (2009).
Nemirovski, A., A. Juditsky, G. Lan, and A. Shapiro (2009). “Robust Stochastic Approximation Approach to Stochas-

tic Programming”. SIAM Journal on Optimization, vol. 19, no. 4, pp. 1574–1609.
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