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20 Reflectors

Goal

Reflectors, Douglas-Rachford, Peaceman-Rachford, primal-dual convergence, convergence rate, ADMM.

Alert 20.1: Convention

We continue our discussion on splitting methods and focus on reflectors.
Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.
We use the ordering RBRA to be consistent with FB splitting.

Definition 20.2: Reflector

Recall that the resolvant for a map T is defined as J⌘

T
= (Id+ ⌘T)�1. Similarly, we define the reflector of T:

R⌘

T
= 2J⌘

T
� Id ✓ (Id� ⌘T)(Id + ⌘T)�1, RT := R1

T
,

where the containment reduces to equality if T is monotone and single-valued (see Exercise 17.8). In other
words, the reflector amounts to performing a backward (i.e. proximal) step (Id+⌘T)�1 followed by a forward
(i.e. gradient) step (Id� ⌘T).

We know from Theorem 17.6 that T is monotone iff its reflector RT is nonexpansive (over its domain),
and T is maximal monotone iff RT is nonexpansive over the entire space. It is clear that an operator R is
nonexpansive (over the entire space) iff J := Id+R

2 is firmly nonexpansive (over the entire space) iff it is a
reflector of some (maximal) monotone map (see Corollary 17.7). Obviously,

w 2 R⌘

T
w () w 2 J⌘

T
w () 0 2 Tw.

When T = NC is the normal cone of a closed convex set C ✓ Rd, the resolvant JT is the familiar
projection onto C while RT is the reflection of the input w.r.t. C (hence explaining the name).

Alert 20.3: Non-commutativity

We remind that in general

(Id� ⌘T)(Id + ⌘T)�1 6= (Id + ⌘T)�1(Id� ⌘T).

For instance, take T = @| · | and w = 1.5, ⌘ = 1. However, when T is maximal monotone, we have

(Id + ⌘T)�1(Id� ⌘T) = (Id + ⌘T)�1(Id� ⌘T)(Id + ⌘T)�1(Id + ⌘T).

Thus, upon an appropriate change-of-variable w (Id + ⌘T)w we reduce the forward-backward map (Id +
⌘T)�1(Id�⌘T) to the backward-forward map (Id�⌘T)(Id+⌘T)�1. Conversely, if z = R⌘

T
w 2 (Id�⌘T)(Id+

⌘T)�1w, then

J⌘

T
z 2 (Id + ⌘T)�1(Id� ⌘T)J⌘

T
w.

Proposition 20.4: Reflection-projection iteration (Bauschke and Kruk 2004)

Let T : Rd ! Rd
be averaged and R : Rd ! Rd

be nonexpansive and idempotent. Suppose F := FixT \
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FixR 6= ;. Then, the iterate

wt+1 := RTwt + ✏t, where

X

t

k✏tk2 <1,

converges to w1 2 F.

Proof: It is clear that {wt} is quasi-Fejér monotone w.r.t. F: For any w 2 F,

kwt+1 �wk2  kTwt �wk2 + k✏tk2  kwt �wk2 + k✏tk2.

Since T is say ↵-averaged, we have

kTwt �wk22 + (↵�1 � 1)kwt � Twtk22  kwt �wk22.

Combining the two inequalities, we know for some constant c (that may depend on w),

(↵�1 � 1)kwt � Twtk22  kwt �wk22 � kwt+1 �wk22 + ck✏tk2,

whence follows that wt � Twt ! 0. Let w1 be a limit point of {wt}. We clearly have w1 2 rgeR = FixR
and w1 2 FixT. Therefore, the entire quasi-Fejér sequence {wt} converges to w1 2 F.
We call an operator R : Rd ! Rd idempotent if R2 := R � R = R. For such an operator R, rgeR = FixR.
For instance, a convex cone K is obtuse (i.e. K

⇤ ✓ K) iff its reflector is idempotent. Obviously, orthogonal
projectors are idempotent.

Bauschke and Kruk (2004) proved this theorem for the case where T =
Q

i
P
Ci

and R is the reflector of
an obtuse cone.

Needless to say, swapping the order to TR is immaterial and we obtain the same convergence. However,
we cannot accommodate two or more idempotent operators: Let R1 and R2 be reflectors w.r.t. the y-axis.
The resulting iterate wt+1 = R1R2wt halts in one iteration but halts at y-axis (i.e. fixed point) only if we
start from there.
Bauschke, H. H. and S. G. Kruk (2004). “Reflection-Projection Method for Convex Feasibility Problems with an

Obtuse Cone”. Journal of Optimization Theory and Applications, vol. 120, no. 3, pp. 503–531.

Exercise 20.5: Idempotent reflector

Prove that

• the reflector RK of a closed convex cone K is idempotent iff K is obtuse.

• if the reflector R
⌘

f
is idempotent for all ⌘ > 0, then f must be the indicator of some closed convex set

C. Does C have to be an obtuse convex cone?

Theorem 20.6: When reflector is contractive (Lions and Mercier 1979)

Let T : Rd!Rd
be �-maximal monotone and L-Lipschitz continuous. Then, its reflector RT is

q
1� 4�

(1+L)2 -

contractive.

Proof: For a �-maximal monotone map T, we verify that

kRTw �RTzk22 = k2(JTw � JTz)� (w � z)k22
= �4 hJTw � JTz; (Id� JT)w � (Id� JT)zi+ kw � zk22 (20.1)
 �4�kJTw � JTzk22 + kw � zk22.
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When T is L-Lipschitz continuous, we have

kw � zk2  kJTw � JTzk2 + k(Id� JT)w � (Id� JT)zk2  (1 + L)kJTw � JTzk2 . (20.2)

Combining the two inequalities completes the proof.

The equality (20.1) gives a more refined picture for any nonexpansion RT (recall that the first term
is nonpositive). The inequality (20.2) “inverts” the (1 + L)-Lipschitz continuity of Id + T. Without L-
Lipschitzness, the reflector RT may not be contractive even when the resolvant JT is, see Exercise 20.8
below.

It is clear that Id+NRT

2 is
q
1� 2�

(1+L)2 -contractive for any nonexpansion N , since

1
2 + 1

2

q
1� 4�

(1+L)2 
q
1� 2�

(1+L)2 .

We know from Theorem 17.24 that JT is 1
1+�

-contractive. Note that it is possible for the reflector to be
more contractive than the resolvant (but not when � � 2)!
Lions, P.-L. and B. Mercier (1979). “Splitting Algorithms for the Sum of Two Nonlinear Operators”. SIAM Journal

on Numerical Analysis, vol. 16, no. 6, pp. 964–979.

Corollary 20.7: Contractive reflector =) strong convexity

Let R@f be the reflector of some convex function f . Then, R@f is L-contractive =) f is (at least)
1�L

1+L
-strongly convex.

Proof: R@f is L-contractive =) P
f

is 1+L

2 -contractive. Apply Theorem 17.24.

Exercise 20.8: Reflector may fail to be contractive even for strongly convex functions

Let f(x) = 4
3 |x|

3/2 for |x|  1. Verify the following:

• rf is not Lipschitz continuous.

• f is 1-strongly convex.

• P
f
(x) = (x+ 2� 2

p
x+ 1) ^ 1 for x � 0 (and symmetric for x  0).

• R@fx = (x+ 4� 4
p
x+ 1) ^ (2� x) for x � 0.

• P
f
(x) is (1� 1

p
2
)-contractive while R@f is not contractive.

Algorithm 20.9: Splitting based on reflectors

For any map A and B we have the following implications:

0 2 (A+ B)z = Az+ Bz () 9w 2 z+ ⌘Az, equivalently z 2 J⌘

A
w s.t. (z+ ⌘Bz) 3 2z�w 2 R⌘

A
w

=) 9w s.t. z 2 J⌘

A
w \ J⌘

B
R⌘

A
w () z 2 J⌘

A
w and 2z�w 2 2J⌘

B
R⌘

A
w �w

=) 9w s.t. w 2 R⌘

B
R⌘

A
w and z 2 J⌘

A
w, (20.3)

whereas all are equivalent when A and B are monotone (so that both J and R are single-valued, resolving
ambiguity). Naturally, we may attempt to apply fixed-point iteration to find w hence z. We remark that
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although the equivalence (20.3) holds as long as A and B are monotone, we need both to be maximal
monotone to guarantee the well-definedness of the iterates.

Following Varga (2009, p. 264) and Eckstein and Bertsekas (1992) we add relaxation and arrive at a
general splitting algorithm based on reflectors:
Algorithm: A general splitting algorithm based on reflectors
Input: w0

1 for t = 0, 1, . . . do
2 choose step size ⌘t � 0 and relaxation size �t 2 [0, 1]
3 wt+1 = (1� �t)wt + �tR

⌘t

B
R⌘t

A
(wt) + ✏t // allow error ✏t

4 return z 2 J⌘

A
w // assuming the for-loop returns w and ⌘t ⌘ ⌘

In particular, we have the following special cases:

• �t ⌘ 1 reduces to the Peaceman-Rachford (PR) splitting algorithm studied initially by Peaceman and
Rachford (1955). See also Kellogg (1969).

• �t ⌘ 1
2 reduces to the Douglas-Rachford (DR) splitting algorithm studied initially by Douglas and

Rachford (1956). DR is exactly Krasnosel’skĭı’s averaging algorithm (see Remark 16.7) applied to PR.

Both PR and DR, in their current forms and generality, are due to Lions and Mercier (1979). Since

kR̂⌘

B
R̂⌘

A
�R⌘

B
R⌘

A
k2  kR̂⌘

B
R̂⌘

A
�R⌘

B
R̂⌘

A
k2 + kR⌘

B
R̂⌘

A
�R⌘

B
R⌘

A
k2  kR̂⌘

B
R̂⌘

A
�R⌘

B
R̂⌘

A
k2 + kR̂⌘

A
�R⌘

A
k2

R⌘

B
R⌘

A
= 2J⌘

B
(2J⌘

A
� Id)� 2J⌘

A
+ Id,

it suffices to evaluate reflectors R⌘

A
and R⌘

B
(or equivalently resolvants J⌘

A
and J⌘

B
) with summable errors.

As already argued in Alert 18.14, locally we would prefer over-relaxation (corresponding to �t 2 [ 12 , 1])
than under-relaxation (corresponding to �t 2 (0, 1

2 )).
Varga, R. S. (2009). “Matrix Iterative Analysis”. 2nd. Springer.
Eckstein, J. and D. P. Bertsekas (1992). “On the Douglas—Rachford splitting method and the proximal point algo-

rithm for maximal monotone operators”. Mathematical Programming, vol. 55, pp. 293–318.
Peaceman, D. W. and H. H. Rachford Jr. (1955). “The Numerical Solution of Parabolic and Elliptic Differential

Equations”. Journal of the Society for Industrial and Applied Mathematics, vol. 3, no. 1, pp. 28–41.
Kellogg, R. B. (1969). “A Nonlinear Alternating Direction Method”. Mathematics of Computation, vol. 23, no. 105,

pp. 23–27.
Douglas Jr., J. and H. H. Rachford Jr. (1956). “On the Numerical Solution of Heat Conduction Problems in Two and

Three Space Variables”. Transactions of the American Mathematical Society, vol. 82, no. 2, pp. 421–439.
Lions, P.-L. and B. Mercier (1979). “Splitting Algorithms for the Sum of Two Nonlinear Operators”. SIAM Journal

on Numerical Analysis, vol. 16, no. 6, pp. 964–979.

Proposition 20.10: Maximality induces closedness (Eckstein and Svaiter 2008)

Let A,B : Rd
◆ Rd

be maximal monotone. Then,

• the map S : Rd ⇥Rd
◆ Rd ⇥Rd, (x,x⇤) 7! (Bx+ x⇤,A�1x⇤ � x) is maximal monotone.

• if (b,b⇤) ( (bt,b⇤
t
) 2 gphB and there exist (at,a⇤t ) 2 gphA such that bt � at ! 0 and b⇤

t
+ a⇤

t
! 0,

then b 2 (A + B)�10, b⇤ 2 [�A�1 � (�Id) + B�1]�10, (at,a⇤t ) * (a,a⇤) = (b,�b⇤) 2 gphA and

(b,b⇤) 2 gphB.

Proof: Clearly, S = B⇥A
�1 +T where T(x,x⇤) = (x⇤,�x) and its maximality follows from Corollary 17.19.

Since (b⇤
t
+ a⇤

t
,at � bt) 2 S(bt,a⇤t ), (bt,a⇤t ) * (b,�b⇤) and (b⇤

t
+ a⇤

t
,at � bt)! (0,0), it follows from

the closedness of gph S that (0,0) 2 S(b,�b⇤) = (Bb� b⇤,A�1(�b⇤)� b).
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The slick proof above also builds on an observation due to Bauschke (2009), which frees us from assuming
A+ B is maximal monotone. See also Alves (2020) and Eckstein and Svaiter (2009).
Eckstein, J. and B. F. Svaiter (2008). “A family of projective splitting methods for the sum of two maximal monotone

operators”. Mathematical Programming, vol. 111, pp. 173–199.
Bauschke, H. H. (2009). “A Note on the Paper by Eckstein and Svaiter on “General Projective Splitting Methods for

Sums of Maximal Monotone Operators””. SIAM Journal on Control and Optimization, vol. 48, no. 4, pp. 2513–
2515.

Alves, M. M. (2020). “Another proof and a generalization of a theorem of H. H. Bauschke on monotone operators”.
Optimization.

Eckstein, J. and B. F. Svaiter (2009). “General Projective Splitting Methods for Sums of Maximal Monotone Oper-
ators”. SIAM Journal on Control and Optimization, vol. 48, no. 2, pp. 787–811.

Exercise 20.11: A primal-dual perspective

Let A,B : Rd
◆ Rd be maximal monotone, T := A+B, and T

⇤ := �B�1 � (�Id)+A
�1. Prove the following:

• T
�10 = J⌘

A
(FixR⌘

B
R⌘

A
) (for any ⌘ > 0).

• T
⇤�10 = ⌘

A(FixR⌘

B
R⌘

A
), where recall that ⌘

A := (Id� J⌘

A
)/⌘.

• T
�10 6= ; () T

⇤�10 6= ; () FixR⌘

B
R⌘

A
6= ;.

• JA�1 = Id� JA hence RA�1 = �RA.

• �B�1� is maximal monotone and J�B�1� = Id + JB � (�Id) hence R�B�1� = RB � (�Id).

• RBRA = R�B�1�RA�1 . In other words, with ⌘ ⌘ 1, the splitting Line 4 applied to the primal (19.1)
and the dual (19.2) yields the same iterates (Gabay 1983, p. 323)!

• More generally, R⌘

B
R⌘

A
= R⌘BR⌘A = R�B�1⌘�1�RA�1⌘�1 = ⌘R⌘

�1

�B�1�
R⌘

�1

A�1⌘�1, since JA�1⌘�1 = ⌘J⌘
�1

A�1⌘�1

hence RA�1⌘�1 = ⌘R⌘
�1

A�1⌘�1. In other words, applying step size ⌘ to the primal (19.1) is in some sense
equivalent to applying step size ⌘�1 to the dual (19.2).

Gabay, D. (1983). “Applications of the Method of Multipliers to Variational Inequalities”. In: Augmented Lagrangian
methods: Applications to the numerical solution of boundary-value problems. Vol. 15. 9, pp. 299–331.

Exercise 20.12: Primal-dual with linear composition

Let A : Rd
◆ Rd,B : Rp

◆ Rp, L : Rd ! Rp a (continuous) linear map, T = A + L>
BL, and T

⇤ =
�LA�1(�L>) + B

�1. Prove the following:

0 2 Ta () 0 2 T
⇤b⇤, where we may choose b⇤ 2 BLa and � L>b⇤ 2 Aa.

If both A and B are maximal monotone, then

• the map S : Rd ⇥Rp
◆ Rd ⇥Rp, (a,b⇤) 7! (Aa+ L>b⇤,B�1b⇤ � La) is maximal monotone.

• if (at,a⇤t ) 2 gphA and (bt,b⇤
t
) 2 gphB such that (at,b⇤

t
) * (a,b⇤), a⇤

t
+L>b⇤

t
! 0 and Lat�bt ! 0,

then a 2 T
�10, b⇤ 2 T

⇤�10, (a,�L>b⇤) 2 gphA and (La,b⇤) 2 gphB.

(Hint: Prove directly or reduce to Exercise 20.11 through the product space trick.)
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Theorem 20.13: Convergence of DR (Svaiter 2011)

Let A,B : Rd
◆ Rd

be maximal monotone and T = A + B. Consider Line 4 with
P

t
�t(1 � �t) = 1,

⌘t ⌘ ⌘ > 0, and
P

t
k✏tk2 <1.

• If T
�10 = (A + B)�10 6= ;, then wt * w1 = R⌘

B
R⌘

A
w1, zt := J⌘

A
wt * J⌘

A
w1 2 T

�10 and

z⇤
t
:= ⌘

Awt * ⌘
Aw1 2 T

⇤�10, where recall that T
⇤ := �B�1 � (�Id) + A

�1
and

⌘
A := (Id� J⌘

A
)/⌘.

• If T
�10 = (A+ B)�10 = ;, then {wt} is unbounded.

Proof: The result on wt readily follows from Theorem 16.13.
To prove the result on zt, let us define

ut := J⌘

B
R⌘

A
wt, u⇤

t
= ⌘

BR⌘

A
wt =

R
⌘
A
wt�J

⌘
B
R

⌘
A
wt

⌘
.

Clearly, (ut,u⇤
t
) 2 gphB, (zt, z⇤t ) 2 gphA, and

2(ut � zt) = 2J⌘

B
R⌘

A
wt � 2J⌘

A
wt = R⌘

B
R⌘

A
wt �wt ! 0,

as shown in the proof of Theorem 16.13. Moreover,

u⇤

t
+ z⇤

t
=

R⌘

A
wt � J⌘

B
R⌘

A
wt +wt � J⌘

A
wt

⌘
=

J⌘

A
wt � J⌘

B
R⌘

A
wt

⌘
=

zt � ut

⌘
! 0.

Clearly, {wt} and hence {zt} are bounded. Consider any subsequence ztk * z and wtk * w1. We have
z⇤
tk

=
wtk

�ztk
⌘

* w1�z
⌘
2 T

⇤�10, z 2 T
�10, and w1�z

⌘
2 Az, thanks to Proposition 20.10. Rearranging we

obtain z = J⌘

A
w1. Since z is arbitrary, we must have zt * J⌘

A
w1 2 T

�10 and hence z⇤
t
* ⌘

Aw1 2 T
⇤�10.

We note that gphB 3 (ut,u⇤
t
) * (J⌘

A
w1,�⌘

Aw1).

Svaiter, B. F. (2011). “On Weak Convergence of the Douglas–Rachford Method”. SIAM Journal on Control and
Optimization, vol. 49, no. 1, pp. 280–287.

Theorem 20.14: Convergence of PR (Lions and Mercier 1979)

Let A,B : Rd
◆ Rd

be maximal monotone and T = A + B. Consider Line 4 with �t ⌘ 1, ⌘t ⌘ ⌘ > 0, andP
t
k✏tk2 <1. Assume A is strictly monotone.

• There exists at most one zero z of T.

• If z = T
�10 = (A + B)�10 exists, then FixR⌘

B
R⌘

A
6= ;, {wt} is quasi-Fejér monotone w.r.t. FixR⌘

B
R⌘

A

and zt := J⌘

A
wt * z.

• If T
�10 = (A+ B)�10 = ;, then {wt} is unbounded.

Proof: The first claim follows from the strict monotonicity of A:

0  hu� v;u⇤ � v⇤i = �hu� v;u⇤ � v⇤i  0, where u⇤ 2 Au,v⇤ 2 Av,u⇤ 2 Bu,v⇤ 2 Bv.

Let w 2 FixR⌘

B
R⌘

A
. Using the definition of Line 4, we have

kwt+1 �wk2  ✏t + kR⌘

B
R⌘

A
wt �R⌘

B
R⌘

A
wk2

 ✏t + kR⌘

A
wt �R⌘

A
wk2

( zt := J⌘

A
wt, z := J⌘

A
w ) = ✏t + k2(zt � z)� (wt �w)k2
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= ✏t +

r
�4⌘

D
zt � z; wt�zt

⌘
� w�z

⌘

E
+ kwt �wk22

( z⇤
t
:= wt�zt

⌘
2 Azt, z⇤ := w�z

⌘
2 Az ) = ✏t +

q
�4⌘ hzt � z; z⇤

t
� z⇤i+ kwt �wk22,

whence {wt} is quasi-Fejér monotone w.r.t. FixR⌘

B
R⌘

A
(see Exercise 16.3). Moreover,

hzt � z; z⇤
t
� z⇤i ! 0.

Since zt and z⇤
t

are bounded and gphA is closed, we may assume (zt, z⇤t ) * (z̄, z̄⇤) 2 gphA. From mono-
tonicity of A we have

lim inf
t

hzt; z⇤t i � lim
t

hz̄; z⇤
t
� z̄⇤i+ hzt; z̄⇤i = hz̄; z̄⇤i , hence

0  hz̄� z; z̄⇤ � z⇤i  lim inf
t

hzt � z; z⇤
t
� z⇤i = 0.

Using strict monotonicity we have z̄ = z, hence follows zt * z, the unique zero of T.
Lastly, if {wt} is bounded, we may restrict the nonexpansion R⌘

B
R⌘

A
to a compact convex set and the

existence of a fixed point would follow from Brouwer’s celebrated fixed point theorem.
The proof above follows the classic idea of using uniqueness to force convergence. Needless to say a similar
result holds if instead B satisfies the assumption.
Lions, P.-L. and B. Mercier (1979). “Splitting Algorithms for the Sum of Two Nonlinear Operators”. SIAM Journal

on Numerical Analysis, vol. 16, no. 6, pp. 964–979.

Alert 20.15: Non-convergence of PR

Consider the rotation in R2:

A = B =


0 �1
1 0

�
, where (A+ B)z = 0 () z = 0.

Since hw,Awi = 0 for all w, we know A is maximal monotone. We have

J⌘

A
=

1

(1 + ⌘)2


1 ⌘
�⌘ 1

�
, R⌘

A
=

1

(1 + ⌘)2


1� ⌘2 2⌘
�2⌘ 1� ⌘2

�
.

Since both J⌘

A
and R⌘

A
are rotations (i.e. det = 1), with �t ⌘ 1 and ✏t ⌘ 0, kztk2 ⌘ kw0k2 hence may not

converge to any point (hence also 0, the unique zero of A + B). Moreover, wt may not converge (to any
point) either.

We verify that A is not strictly monotone and convince yourself that zt and wt do converge if we choose
say �t ⌘ � 2 (0, 1).

Theorem 20.16: Strong convergence of DR and PR

Let B : Rd
◆ Rd

be maximal monotone and A : Rd!Rd
be �-strongly maximal monotone and L-Lipschitz

continuous. Consider Line 4 with ⌘t ⌘ ⌘ > 0, and
P

t
k✏tk2 <1. Then,

kzt+1 � z1k2  kwt+1 �w1k2 
⇣
1� �t + �t

q
1� 4⌘�

(1+⌘L)2

⌘
· kwt �w1k2 + ✏t, where ✏t := k✏tk2,

and recall that zt := J⌘

A
wt.

Proof: Immediate from Theorem 20.6.
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To optimize the bound, we set ⌘ = 1
L

hence

kzt+1 � z1k2  kwt+1 �w1k2 
�
1� �t + �t

p
1� 

�
· kwt �w1k2 + ✏t, where  = �/L.

Obviously, we should also set �t ⌘ 1 so that PR converges fastest in this setting. In fact, we have

kwt+1 �w1k22 = kzt+1 � z1k22 + ⌘2kz⇤
t+1 � z⇤

1
k22 + 2⌘

⌦
zt+1 � z1, z⇤

t+1 � z⇤
1

↵

� kzt+1 � z1k22 + ⌘2kz⇤
t+1 � z⇤

1
k22 + 2⌘�kzt+1 � z1k22

= (1 + 2⌘� � ⌘2)kzt+1 � z1k22 + ⌘2[kzt+1 � z1k22 + kz⇤t+1 � z⇤
1
k22].

Thus, for ⌘ > 1 we favor dual convergence while for ⌘ < 1 we favor primal convergence. When 1+2⌘��⌘2 � 0,
we may apply the Lipschitz bound (20.2) to obtain

kzt+1 � z1k22 + kz⇤t+1 � z⇤
1
k22  1

⌘2

⇣
1� 1+2⌘��⌘

2

(1+⌘L)2

⌘
kwt+1 �w1k22,

so that both primal and dual converges at a linear rate for ⌘ 2 [1,� +
p
1 + �2].

Example 20.17: Unpacking Alternating direction method of multipliers (ADMM)

Consider the generic minimization problem

inf
a

g(La) + h(a), or equivalently inf
a,b

g(b) + h(a), s.t. La = b, (20.4)

and its Fenchel-Rockafellar dual

� inf
µ

h⇤(�L>µ) + g⇤(µ), (20.5)

where g : Rp ! R [ {1} and h : Rd ! R [ {1} are closed proper convex and L : Rd ! Rp is linear.
Introducing the Lagrangian multiplier µ in (20.4) we obtain the Lagrangian:

inf
a,b

sup
µ

g(b) + h(a) + hLa� b;µi = sup
µ

inf
a,b

g(b) + h(a) + hLa� b;µi
| {z }

L(µ)

.

One may then apply Uzawa’s Algorithm 12.21 to maximize the dual function L(µ), which however is often
nonsmooth hence requires diminishing step sizes. Instead, we may consider the augmented Lagrangian,
where the penalty parameter ⌘ need not increase to 1:

sup
µ


inf
a,b

g(b) + h(a) + hLa� b;µi +⌘

2kLa� bk22
�

= sup
µ


sup
⌫

L(⌫)� 1
2⌘k⌫ � µk22

�
, (20.6)

whose inner function is now smooth hence we may apply Uzawa’s Algorithm 12.21 with constant step size
⌘:

µ
t+1  µ

t
+ ⌘(Lat+1 � bt+1), (20.7)

where (at+1,bt+1) minimizes (20.6) (using any sensible algorithm) while fixing µ
t
. As discussed in Exam-

ple 18.42, this is exactly the proximal point algorithm applied to the dual L(µ).
However, solving a and b simultaneously in the augmented Lagrangian (20.6) turns out to be challenging,

after all they are coupled due to the quadratic penalty. Fortunately, we may apply just one step of alternating
minimization to a and b sequentially (Fortin 1975; Gabay and Mercier 1976; Glowinski and Marroco 1975):

at+1 2 argmin
a

h(a) + hLa� bt;µt
i+ ⌘

2kLa� btk22 ⌘ h(a) + ⌘

2kLa� bt + µ
t
/⌘k22

bt+1 = argmin
b

g(b) + hLat+1 � b;µ
t
i+ ⌘

2kLat+1 � bk22 ⌘ g(b) + ⌘

2kLat+1 � b+ µ
t
/⌘k22.
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To understand the above updates, let us apply the Fenchel-Rockafellar duality again:

a⇤
t+1 � ⌘Lat+1 = �⌘bt + µ

t
, where a⇤

t+1 = argmin
a⇤

1
2⌘ka

⇤ + ⌘bt � µ
t
k22 + h⇤(�L>a⇤) (20.8)

b⇤

t+1 + ⌘bt+1 = ⌘Lat+1 + µ
t
, where b⇤

t+1 = argmin
b⇤

1
2⌘kb

⇤ � ⌘Lat+1 � µ
t
k22 + g⇤(b⇤). (20.9)

(These relations also follow from Moreau’s identity, where we remind that the conjugate function of a⇤ 7!
h⇤(�L>a⇤) is b 7! inf{h(�a) : b = La}.) It follows from (20.7) and (20.9) that µ

t
= b⇤

t
.

From the optimality conditions of b⇤
t+1 and at+1 we verify that (see Exercise 17.8):

(b⇤

t+1,bt+1) 2 gph @g⇤ =) b⇤

t+1 = J⌘

@g⇤wt+1, where wt+1 := ⌘bt+1 + b⇤

t+1,

(a⇤
t+1,at+1) 2 gph[@h⇤ � (�L>)] =) a⇤

t+1 = J⌘

�L�@h⇤�(�L>)(�⌘Lat+1 + a⇤
t+1)

(20.8)
= J⌘

�L�@h⇤�(�L>)(�⌘bt + b⇤

t
), since µ

t
= b⇤

t
.

Therefore, we deduce that

wt+1 := ⌘bt+1 + b⇤

t+1
(20.9)
= ⌘Lat+1 + µ

t

(20.8)
= a⇤

t+1 + ⌘bt = J⌘

�L�@h⇤�(�L>)(�⌘bt + b⇤

t
) + ⌘bt

= J⌘

�L�@h⇤�(�L>)(2b
⇤

t
�wt) +wt � b⇤

t
=

Id+R
⌘

�L�@h⇤�(�L>)
R

⌘
@g⇤

2 wt,

which, as recognized by Gabay (1983), is exactly the Douglas-Rachford algorithm applied to the dual problem
(20.5), with the maximal monotone maps @h⇤ and �L�@g⇤ �(�L>) (under mild conditions so that the chain
rule holds for g⇤��L>)! It follows immediately from Theorem 20.13 that the dual variable µ

t
= b⇤

t
= J⌘

@g⇤wt

in (20.7) converges to a solution of the dual problem (20.5) (whose existence we assume).
Fortin, M. (1975). “Minimization of some non-differentiable functionals by the Augmented Lagrangian Method of

Hestenes and Powell”. Applied Mathematics and Optimization, vol. 2, pp. 236–250.
Gabay, D. and B. Mercier (1976). “A dual algorithm for the solution of nonlinear variational problems via finite

element approximation”. Computers & Mathematics with Applications, vol. 2, no. 1, pp. 17–40.
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pénalisation-dualité d’une class de problèmes de Dirichlet non linéaires”. ESAIM: Mathematical Modelling and
Numerical Analysis, vol. 9, no. R2, pp. 41–76.

Gabay, D. (1983). “Applications of the Method of Multipliers to Variational Inequalities”. In: Augmented Lagrangian
methods: Applications to the numerical solution of boundary-value problems. Vol. 15. 9, pp. 299–331.

Remark 20.18: More refinements

We further note in Example 20.17 that

(�L>a⇤
t
,at) 2 gph @h⇤, (b⇤

t
,b) 2 gph @g⇤, bt � Lat =

b⇤
t�b⇤

t�1

⌘
! 0, b⇤

t
* b⇤

1
,

a⇤
t
� b⇤

t
* 0 and Lat * La1. Thus, in our finite dimensional setting, if L has full column rank, at * a1

and applying Exercise 20.12 we know a1 is a solution of the primal problem (20.4) (whose existence we
assume). Obviously, we may also apply PR (Gabay 1983) or the general splitting Line 4 (Eckstein and
Bertsekas 1992) to the dual problem (20.5) and obtain similar convergence results.

In a nutshell, the ADMM algorithm is Douglas-Rachford applied to the dual, where we evaluate the
resolvants through Moreau’s identity:

P⌘

h⇤��L> ! Id� P1/⌘
�Lh

⌘, P⌘

g⇤ ! Id� P1/⌘
g

⌘.

It is clear that computing the resolvants on the right-hand sides up to summable error leads to the resolvants
on the left-hand sides with summable error (Eckstein and Bertsekas 1992). Thus, Theorem 20.13 and
Theorem 20.14 still apply.

(Lions and Mercier 1979)
Gabay, D. (1983). “Applications of the Method of Multipliers to Variational Inequalities”. In: Augmented Lagrangian

methods: Applications to the numerical solution of boundary-value problems. Vol. 15. 9, pp. 299–331.
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Exercise 20.19: Reverse-engineering ADMM

Show that the general splitting algorithm

wt+1 = (1� �t)wt + �tR
⌘

�L�@h⇤�(�L>)R
⌘

@g⇤wt

can be unwrapped into the following “generalized ADMM” updates:

at+1 2 argmin
a

h(a) + hLa� bt;µt
i+ ⌘

2kLa� btk22

ct+1 := 2�tLat+1 + (1� 2�t)bt

bt+1 = argmin
b

g(b) + hLat+1 � b;µ
t
i+ ⌘

2kct+1 � bk22

µ
t+1 = µ

t
+ ⌘(ct+1 � bt+1).

[Hint: Define as before wt+1 = ⌘bt+1 + b⇤
t+1 so that µ

t+1 = b⇤
t+1 = J⌘

@g⇤wt.]
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