
CO673/CS794–Fall 2022 §4 PROXIMAL GRADIENT University of Waterloo

4 Proximal Gradient

Goal

Proximal map, Moreau envelope, composite minimization, proximal gradient algorithm.

Alert 4.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Definition 4.2: Problem

In this lecture we study the following problem:

inf
w2Rd

f(w), where f(w) = `(w) + r(w)

is the sum of a smooth function ` and a possibly non-differentiable function r. This problem is sometimes
called composite minimization. Due to the possible non-differentiability of r (and hence f), we cannot
directly apply gradient descent.

Example 4.3: Lasso (Tibshirani 1996)

We continue our discussion of linear regression in Example 2.3. Suppose we know the optimal solution w is
sparse, i.e., only a few entries in w are nonzero, how do we exploit this information and make our estimation
more efficient? Obviously, if an oracle knew which entries of w are zero, it would simply fix those entries to
0 and reduce the dimensionality of our problem. Without hindsight, Lasso (Tibshirani 1996) is an algorithm
that performs (almost) as well as the mighty oracle, by adding simply an `1-norm regularizer on w:

min
w

1

n
kX>w � yk22

| {z }
`

+�kwk1| {z }
r

,

where � > 0 is some tuning hyperparameter. The `1 norm k · k1 is incorporated to induce sparsity in the
minimizer w, a claim that will become clear once we see the algorithm.

We note that even when the optimal solution w is dense, it might still make sense to “sparsify” it. For
instance, we may have memory or communication restrictions on the bits that can be used to represent w,
which is typical in embedded/mobile system and known as model compression/quantization.
Tibshirani, R. (1996). “Regression Shrinkage and Selection via the Lasso”. Journal of the Royal Statistical Society:

Series B, vol. 58, no. 1, pp. 267–288.

Definition 4.4: Proximal map and Moreau envelope (Moreau 1965)

The proximal map and Moreau envelope of a (closed) function f is defined respectively as:

P⌘
f (z) := argmin

w

1
2⌘kw � zk22 + f(w), M⌘

f (z) := inf
w

1
2⌘kw � zk22 + f(w),

where ⌘ > 0 is a smoothing parameter. We define the proximal threshold

tf :=
1✓

�2 · lim inf
kwk!1

f(w)
kwk2

2

◆

+

, where 1/0 :=1.

Yaoliang Yu 81 –Version 0.21–September 21, 2021–

https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

CO673/CS794–Fall 2022 §4 PROXIMAL GRADIENT University of Waterloo

Then, for all ⌘2]0, tf [, it follows from (a slight generalization of) Theorem 0.33 that the proximal map is
well-defined (i.e. non-empty and in fact compact-valued). In particular, if f is lower bounded by a constant
(which holds frequently in practice), or if f is convex (hence lower bounded by a linear function), then the
proximal map is well-defined for any ⌘ > 0 and reduces to a singleton for the latter case.
Moreau, J. J. (1965). “Proximité et Dualtité dans un Espace Hilbertien”. Bulletin de la Société Mathématique de

France, vol. 93, pp. 273–299.

Exercise 4.5: Moreau envelope preserves minimizer

Prove that

• 8⌘ > 0, M⌘
f f .

• 8⌘ > 0, inf f = inf M⌘
f and argmin f=argminM⌘

f .

• 8w, M⌘
f (w)! f(w) as ⌘ # 0.

(The last one may be a bit difficult.)
Moreover, it can be shown that the Moreau envelope M⌘

f is “smoother” than f (Moreau 1965; Lasry and
Lions 1986; Jourani et al. 2014; Kecis and Thibault 2015). When the pointwise convergence in the last item
is uniform, we can use the Moreau envelope to develop a faster algorithm for certain non-smooth functions,
as will be discussed in a later lecture. Below, the proximal map is our main object of interest.
Moreau, J. J. (1965). “Proximité et Dualtité dans un Espace Hilbertien”. Bulletin de la Société Mathématique de

France, vol. 93, pp. 273–299.
Lasry, J. M. and P. L. Lions (1986). “A remark on regularization in Hilbert spaces”. Israel Journal of Mathematics,

vol. 55, pp. 257–266.
Jourani, A., L. Thibault, and D. Zagrodny (2014). “Differential properties of the Moreau envelope”. Journal of

Functional Analysis, vol. 266, no. 3, pp. 1185–1237.
Kecis, I. and L. Thibault (2015). “Moreau envelopes of s-lower regular functions”. Nonlinear Analysis: Theory, Methods

& Applications, vol. 127, pp. 157–181.

Alert 4.6: Notation

From now on we allow a function f to take value 1 (but not �1). In particular, for f : Rd ! R [{1},
we define its domain

dom f = {w : f(w) <1}.

This simple trick allows us to embed the domain of a function into itself. It also allows us to identify a set
C ✓ Rd as an indicator function

◆C(w) =

(
0, if w 2 C

1, otherwise
.

In particular, we can rewrite a constrained minimization problem as a seemingly unconstrained composite
minimization problem:

inf
w2C

f(w) ⌘ inf
w2Rd

f(w) +◆C(w) .

The reason why we do not allow f to take �1 is because we are interested in minimizing: if a function
takes �1 at some point w, then w is trivially the (global) minimizer and there is nothing to minimize.

Yaoliang Yu 82 –Version 0.21–September 21, 2021–

https://doi.org/10.24033/bsmf.1625
https://doi.org/10.24033/bsmf.1625
https://doi.org/10.1007/BF02765025
http://dx.doi.org/https://doi.org/10.1016/j.jfa.2013.11.008
https://doi.org/10.1016/j.na.2015.06.015

CO673/CS794–Fall 2022 §4 PROXIMAL GRADIENT University of Waterloo

Example 4.7: Euclidean projection as proximal map

With the above notation, it is clear that

PC(w) = P⌘
◆C (w)

for any ⌘ > 0.

Example 4.8: Positive part

Let f(t) = �t+ := �max{t, 0} := �t _ 0 be the positive part (or relu, rectified linear unit, in fancier NN
terminology). It is clear that f is not differentiable but �-Lipschitz continuous (assuming � � 0):

|t+ � s+| � · |t� s|.

Let us compute the proximal map:

P⌘
f (s) = argmin

t

1
2⌘ (s� t)2 + �t+ = argmin

t

(
1
2⌘ (s� t)2 + �t, t � 0
1
2⌘ (s� t)2, t 0

.

We have two possible minimizers t = (s � �⌘)+ and t = s ^ 0 := min{s, 0} with minimum value 1
2⌘ ((�⌘) ^

s)2+�(s��⌘)+ and 1
2⌘ (s+)

2, respectively. Comparing the two minimum values in the two cases and taking
the smaller one:

P⌘
f (s) =

(
s� �⌘, if s � �⌘

s ^ 0, if s �⌘
, with minimum value M⌘

f (s) =

(
�s� ⌘�2

2 , if s � �⌘

1
2⌘ (s+)

2
, if s �⌘

.

Exercise 4.9: L-smoothness and uniform approximation of Moreau’s envelope

Prove the following:

• The Moreau envelope in Example 4.8 is differentiable and 1
⌘ -smooth.

• The following uniform approximation holds:

sup
s2R

|M⌘
f (s)� �(s)+| ⌘·�2

2 ,

where recall that the positive part �s+ is �-Lipschitz continuous.

Example 4.10: Soft-shrinkage

In your assignment you are going to derive the proximal map for the `1 norm, a.k.a. the soft-shrinkage
operator. In the univariate case, the picture looks like the following plot on the left:

Yaoliang Yu 83 –Version 0.21–September 21, 2021–

CO673/CS794–Fall 2022 §4 PROXIMAL GRADIENT University of Waterloo

A striking property we observe is that small inputs to the proximal map (red curve) get truncated to 0,
i.e. gaining sparsity! Interestingly, this sparsity-promoting property of the `1 norm can be attributed to its
nondifferentiability at the origin. In contrast, the proximal map of the squared Euclidean norm (shown in
blue on the right plot) loses this sparsity-inducing property since it is smooth.

Exercise 4.11: If it works for the `2 norm, it should work for any norm?

Do the following:

• Derive the proximal map of the Euclidean norm (without squaring). Does it induce sparsity? You may
want to go over Example 3.9 first.

• Any norm is not differentiable at the origin.

• Unlike the `2 norm case, squaring the `1 norm does not make it differentiable. This is a laughable
mistake that is not uncommon in reality.

Example 4.12: Sparsemax

The celebrated softmax can be derived as the minimizer of the following constrained problem:

softmax(w) := argmin
z2�

hw, zi+ �

X

j

zj log zj

/ exp(�w/�),

where � := {z 2 Rd
+ : 1>z = 1} is the simplex (so that z 2 � is a discrete distribution), and the last

term is the so-called (negative) entropy. The problem of softmax is that its output is always dense due to
exponentiation. If we replace negative entropy with a quadratic function, we obtain

sparsemax(w) := argmin
z2�

hw, zi+ �
2 kzk

2
2

= P�(�w/�).

Adam and Mácha (2020) gave a nice historic recount of an O(d log d) time algorithm for computing sparsemax,
from which it is clear that sparsemax indeed induces sparsity (as the name suggests). Of course, one can
change the negative entropy to a variety of functions, leading to different variants of the softmax, see Correia
et al. (2019) and Martins et al. (2020) and references therein for applications in attention and transformers,
and for applications in optimal transportation (e.g. Muzellec et al. 2017; Blondel et al. 2018; Dessein et al.
2018).
Adam, L. and V. Mácha (2020). “Projections onto the canonical simplex with additional linear inequalities”. Opti-

mization Methods and Software, pp. 1–29.

Yaoliang Yu 84 –Version 0.21–September 21, 2021–

https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://doi.org/10.1080/10556788.2020.1797023

CO673/CS794–Fall 2022 §4 PROXIMAL GRADIENT University of Waterloo

Correia, G. M., V. Niculae, and A. F. T. Martins (2019). “Adaptively Sparse Transformers”. In: Proceedings of the 2019

Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on

Natural Language Processing (EMNLP-IJCNLP), pp. 2174–2184.
Martins, A. F. T., M. Treviso, A. Farinhas, V. Niculae, M. A. T. Figueiredo, and P. M. Q. Aguiar (2020). “Sparse

and Continuous Attention Mechanisms”.
Muzellec, B., R. Nock, G. Patrini, and F. Nielsen (2017). “Tsallis Regularized Optimal Transport and Ecological

Inference”. In: AAAI Conference on Artificial Intelligence.
Blondel, M., V. Seguy, and A. Rolet (2018). “Smooth and Sparse Optimal Transport”. In: Proceedings of the Twenty-

First International Conference on Artificial Intelligence and Statistics, pp. 880–889.
Dessein, A., N. Papadakis, and J.-L. Rouas (2018). “Regularized Optimal Transport and the Rot Mover’s Distance”.

Journal of Machine Learning Research, vol. 19, no. 15, pp. 1–53.

Remark 4.13: More on proximal map

For those who are familiar with convex analysis, the “bible” of Rockafellar and Wets (1998) contains lots of
useful results on the proximal map, some of which were also documented in Yu (2013) and Yu et al. (2015).
We mention some notable further contributions: Penot (1998), Hare and Poliquin (2007), Hiriart-Urruty
and Le (2013), Planiden and Wang (2016), and Planiden and Wang (2019).
Rockafellar, R. T. and R. J.-B. Wets (1998). “Variational Analysis”. Springer.
Yu, Y.-L. (2013). “On Decomposing the Proximal Map”. In: Advances in Neural Information Processing Systems 27

(NIPS).
Yu, Y., X. Zheng, M. Marchetti-Bowick, and E. P. Xing (2015). “Minimizing Nonconvex Non-Separable Functions”.

In: The 17th International Conference on Artificial Intelligence and Statistics (AISTATS).
Penot, J.-P. (1998). “Proximal Mappings”. Journal of Approximation Theory, vol. 94, no. 2, pp. 203–221.
Hare, W. L. and R. A. Poliquin (2007). “Prox-Regularity and Stability of the Proximal Mapping”. Journal of Convex

Analysis, vol. 14, no. 3, pp. 589–6068.
Hiriart-Urruty, J.-B. and H. Y. Le (2013). “From Eckart and Young approximation to Moreau envelopes and vice

versa”. RAIRO: Operations Research, vol. 47, no. 3, pp. 299–310.
Planiden, C. and X. Wang (2016). “Strongly Convex Functions, Moreau Envelopes, and the Generic Nature of Convex

Functions with Strong Minimizers”. SIAM Journal on Optimization, vol. 26, no. 2, pp. 1341–1364.
— (2019). “Proximal Mappings and Moreau Envelopes of Single-Variable Convex Piecewise Cubic Functions and

Multivariable Gauge Functions”. In: Nonsmooth Optimization and Its Applications, pp. 89–130.

Algorithm 4.14: Proximal point algorithm (PPA, Martinet 1970; Rockafellar 1976)

We now present our first algorithm for non-smooth minimization (constrained or not):

Algorithm: Proximal Point Algorithm (PPA)
Input: w0

1 for t = 0, 1, . . . do
2 choose step size ⌘t

3 wt+1 P⌘t

f (wt) = argminw
1

2⌘t
kwt �wk22 + f(w) // proximal step

We will not present any convergence property of PPA for now, except pointing out that:

• PPA is not practical in its current form: we aim to minimize a function f and PPA blows it up by
minimizing a sequence of functions that are simply f regularized by a quadratic.

• PPA can handle nonsmooth, nonconvex functions and allow very relaxed choices of the step size.

• PPA is an extremely important theoretical tool. Many of our later algorithms can be interpreted as
various approximations of PPA.

• PPA is a backward form of gradient descent:

wt+1 = wt � ⌘trf(wt+1).

Yaoliang Yu 85 –Version 0.21–September 21, 2021–

https://www.aclweb.org/anthology/D19-1223
https://arxiv.org/abs/2006.07214
https://arxiv.org/abs/2006.07214
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14584
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14584
http://proceedings.mlr.press/v84/blondel18a.html
http://jmlr.org/papers/v19/17-361.html
https://link.springer.com/book/10.1007/978-3-642-02431-3
https://cs.uwaterloo.ca/~y328yu/mypapers/nips13b.pdf
https://cs.uwaterloo.ca/~y328yu/mypapers/aistats15_long.pdf
http://dx.doi.org/https://doi.org/10.1006/jath.1998.3201
http://www.heldermann-verlag.de/jca/jca14/jca0614_b.pdf
https://doi.org/10.1051/ro/2013040
https://doi.org/10.1051/ro/2013040
https://doi.org/10.1137/15M1035550
https://doi.org/10.1137/15M1035550
https://doi.org/10.1007/978-3-030-11370-4_5
https://doi.org/10.1007/978-3-030-11370-4_5

CO673/CS794–Fall 2022 §4 PROXIMAL GRADIENT University of Waterloo

Martinet, B. (1970). “Régularisation d’Inéquations Variationnelles par Approximations Successives”. Revue Française

d’Informatique et de Recherche Opérationnelle, Série Rouge, vol. 4, no. 3, pp. 154–158.
Rockafellar, R. T. (1976). “Monotone Operators and the Proximal Point Algorithm”. SIAM Journal on Control and

Optimization, vol. 14, no. 5, pp. 877–898.

Remark 4.15: Time flows backwards

In the gradient descent Algorithm 2.4, we climb down from w0 to a stationary point w⇤:

w0 ! w1 ! · · ·! wt ! wt+1 ! · · ·! w⇤, where of course wt+1 = wt � ⌘trf(wt).

In contrast, PPA aims to find w̃t+1 so that if time flows backwards, we would climb up to w̃t hence all the
way back to w0 through gradient ascent:

w0 w̃1 · · · w̃t w̃t+1 · · · w⇤, where w̃t = w̃t+1 + ⌘trf(w̃t+1).

This interpretation reveals the difficulty in PPA: without hindsight, we need to carefully construct {w̃t} so
that if time reverses, we obtain a sequence generated by gradient ascent.

Exercise 4.16: Tenet

Let z = w�⌘rf(w) be the gradient descent update, and z̃ = P⌘̃
f (w) be the PPA update, i.e. w = z̃+⌘̃rf(z̃).

Prove that, in general, no matter what ⌘̃ we choose (to correspond to ⌘), we may not match z = z̃. [Hint: a
quadratic f may suffice.]

In other words, the two paths below

w0

w1 · · · wt wt+1 · · ·
w⇤

w̃1 · · · w̃t w̃t+1 · · ·

do not overlap.

Algorithm 4.17: Proximal gradient (PG, Bruck 1977; Fukushima and Mine 1981)

Algorithm: Proximal Gradient (PG) for composite minimization
Input: w0 2 dom f

1 for t = 0, 1, . . . do
2 choose step size ⌘t

3 zt wt � ⌘tr`(wt) // gradient step w.r.t. `

4 wt+1 P⌘t
r (zt) = argminw

1
2⌘t
kzt �wk22 + r(w) // proximal step w.r.t. r

In a nutshell, the algorithm consists of two steps:

• In the first step, we ignore the (possibly) nonsmooth function r and perform (forward) gradient descent
w.r.t. `.

• In the second step, we ignore the smooth function ` and perform the proximal map w.r.t. r (i.e.
backward gradient update).

For the above reason, PG is also known as the forward-backward splitting algorithm.
Obviously, the efficiency of PG largely depends on how fast we can compute the proximal map P⌘

r(w),
which is itself a minimization problem. The following special cases are obvious:

• r ⌘ 0: we then recover the gradient descent algorithm.

Yaoliang Yu 86 –Version 0.21–September 21, 2021–

http://www.numdam.org/item/M2AN_1970__4_3_154_0/
https://doi.org/10.1137/0314056
https://en.wikipedia.org/wiki/Tenet_(film)

CO673/CS794–Fall 2022 §4 PROXIMAL GRADIENT University of Waterloo

• r = ◆C : we then recover the projected gradient algorithm.

• ` ⌘ 0: we then recover the proximal point algorithm.

• We may also interpret PG as an approximation of PPA, where we replace the smooth function ` by
its linearization:

wt+1 = argmin
w

`(wt) + hw �wt,r`(wt)i+ 1
2⌘t
kw �wtk22 + r(w). (4.1)

Bruck, R. E. (1977). “On the weak convergence of an ergodic iteration for the solution of variational inequalities
for monotone operators in Hilbert space”. Journal of Mathematical Analysis and Applications, vol. 61, no. 1,
pp. 159–164.

Fukushima, M. and H. Mine (1981). “A Generalized Proximal Point Algorithm for Certain Non-Convex Minimization
Problems”. International Journal of Systems Science, vol. 12, no. 8, pp. 989–1000.

Definition 4.18: Bregman divergence (Bregman 1967)

A differentiable convex function f : Rd ! R induces a Bregman divergence:

Df (z;w) = f(z)� f(w)� hz�w,rf(w)i� 0,

where the inequality follows from convexity (see Theorem 0.29). In general, Bregman divergences are not
symmetric, i.e. Df (z;w) 6= Df (w; z).

Bregman, L. M. (1967). “The Relaxation Method of Finding the Common Point of Convex Sets and Its Application
to the Solution of Problems in Convex Programming”. USSR Computational Mathematics and Mathematical

Physics, vol. 7, no. 3, pp. 200–217. [English translation in Zh. Vȳchisl. Mat. mat. Fiz. vol. 7, no. 3, pp. 620–631,
1967].

Example 4.19: Bregman divergence of Bregman divergence

Let f(w) = 1
2kw �w0k22 for any w0. Then, we easily verify that Df (z;w) = 1

2kz �wk22, i.e. the squared
Euclidean distance, which is the only symmetric Bregman divergence (an observation attributed to A. N.
Iusem by Bauschke and Borwein (2001)).

More generally, if h is continuously differentiable, and f(w) = Dh(w;w0), then

Df (z;w) = Dh(z;w0)�Dh(w;w0)� hz�w,rh(w)�rh(w0)i = Dh(z;w).

Bauschke, H. H. and J. M. Borwein (2001). “Joint and Separate Convexity of the Bregman Distance”. In: Inherently

Parallel Algorithms in Feasibility and Optimization and their Applications. Vol. 8, pp. 23–36.

Proposition 4.20: Composite optimality (Tseng 2008)

Let ` : Rd ! R be differentiable convex and r : Rd ! R [{1} be convex. Then,

w? 2 argmin
w

`(w) + r(w) () 8w, `(w) + r(w) � `(w?) + r(w?) +D`(w;w?).

Proof: (=: By convexity of ` we know the Bregman divergence D`(w;w?) � 0, hence w? is clearly a (global)
minimizer.

=): Since w? is a minimizer, we have 0 2 @(` + r)(w?) = r`(w?) + @r(w?) where the second equality

Yaoliang Yu 87 –Version 0.21–September 21, 2021–

https://doi.org/10.1016/0022-247X(77)90152-4
https://doi.org/10.1016/0022-247X(77)90152-4
https://doi.org/10.1080/00207728108963798
https://doi.org/10.1080/00207728108963798
https://doi.org/10.1016/0041-5553(67)90040-7
https://doi.org/10.1016/0041-5553(67)90040-7
https://doi.org/10.1016/S1570-579X(01)80004-5

CO673/CS794–Fall 2022 §4 PROXIMAL GRADIENT University of Waterloo

follows from convexity and continuous differentiability. Using convexity of r we have

r(w) � r(w?) + hw �w?, @r(w?)i .

Therefore,

`(w) + r(w) � `(w?) + r(w?) + `(w)� `(w?) + hw �w?,�r`(w?)i
� `(w?) + r(w?) +D`(w;w?).

Tseng, P. (2008). “On Accelerated Proximal Gradient Methods for Convex-Concave Optimization”.

Theorem 4.21: Convergence of PG in function value (Beck and Teboulle 2009; Tseng 2008)

Let ` : Rd ! R be convex and L = L[1]2 -smooth, r : R! R [{1} be closed and convex, and ⌘t is chosen so
that (4.2) below holds. Then, for all w and t � 1, the sequence {wt} generated by Algorithm 4.17 satisfies:

f(wt) f(w) +
kw �w0k22

2t⌘̄t
, where ⌘̄t :=

1

t

t�1X

s=0

⌘s.

Proof: We learned the following slick proof from Tseng (2008).
From the definition of wt+1 in (4.1) and Proposition 4.20 we know for any w:

f(wt+1) = `(wt+1) + r(wt+1) `(wt) + hwt+1 �wt,r`(wt)i+ 1
2⌘t
kwt+1 �wtk22 + r(wt+1) (4.2)

 `(wt) + hw �wt,r`(wt)i+ 1
2⌘t
kw �wtk22 + r(w)� 1

2⌘t
kw �wt+1k22

 `(w) + r(w) + 1
2⌘t
kw �wtk22 � 1

2⌘t
kw �wt+1k22,

where the last inequality is due to the convexity of `. Take w = wt we see f(wt+1) f(wt), i.e., the
algorithm is descending. Summing from t = 0 to t = T � 1:

T ⌘̄T · [f(wT)� f(w)]
T�1X

t=0

⌘t[f(wt+1)� f(w)] 1

2
kw �w0k22, where ⌘̄T :=

1

T

T�1X

t=0

⌘t,

Dividing both sides by T ⌘̄T completes the proof.

If there exists a minimizer w?, then we have

f(wt)� f?
Lkw? �w0k22

2t

where we have chosen ⌘t ⌘ 1/L to minimize the bound. So the function value converges to the global
minimum (thanks to convexity) at the rate of O(1/t). As before, the dependence on L and w0 makes
intuitive sense. Again, the rate of convergence does not depend on d, the dimension!

The L-smoothness condition is used only to make sure inequality (4.2) is not vacuous. If we do not know
L in advance, we can apply Amijo’s backtracking as before (see Remark 2.20) until (4.2) is satisfied. Note
that the term r(wt+1) is cancelled from both sides in Equation (4.2).

The open-loop step size in Remark 3.18 also applies in verbatim here.
Beck, A. and M. Teboulle (2009). “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems”.

SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202.
Tseng, P. (2008). “On Accelerated Proximal Gradient Methods for Convex-Concave Optimization”.

Yaoliang Yu 88 –Version 0.21–September 21, 2021–

https://doi.org/10.1137/080716542

CO673/CS794–Fall 2022 §4 PROXIMAL GRADIENT University of Waterloo

Remark 4.22: Convergence of iterates

It can be proved using fixed point theorems that the iterates wt also converge (provided that a minimizer
exists), see e.g. Tseng (2000), Daubechies et al. (2004), and Combettes and Wajs (2005) and the excellent
book of Bauschke and Combettes (2017) for much more. Moreover, wt converges (to a stationary point)
even when f is nonconvex, provided that it is “definable,” see e.g. Absil et al. (2005), Attouch and Bolte
(2009), Attouch et al. (2013), and Bolte et al. (2014).
Tseng, P. (2000). “A Modified Forward-Backward Splitting Method for Maximal Monotone Mappings”. SIAM Journal

on Control and Optimization, vol. 38, no. 2, pp. 431–446.
Daubechies, I., M. Defrise, and C. De Mol (2004). “An iterative thresholding algorithm for linear inverse problems

with a sparsity constraint”. Communications on Pure and Applied Mathematics, vol. 57, no. 11, pp. 1413–1457.
Combettes, P. L. and V. R. Wajs (2005). “Signal Recovery by Proximal Forward-Backward Splitting”. Multiscale

Modeling and Simulation, vol. 4, no. 4, pp. 1168–1200.
Bauschke, H. H. and P. L. Combettes (2017). “Convex Analysis and Monotone Operator Theory in Hilbert Spaces”.

2nd. Springer.
Absil, P., R. Mahony, and B. Andrews (2005). “Convergence of the Iterates of Descent Methods for Analytic Cost

Functions”. SIAM Journal on Optimization, vol. 16, no. 2, pp. 531–547.
Attouch, H. and J. Bolte (2009). “On the convergence of the proximal algorithm for nonsmooth functions involving

analytic features”. Mathematical Programming, vol. 116, no. 1, pp. 5–16.
Attouch, H., J. Bolte, and B. F. Svaiter (2013). “Convergence of descent methods for semi-algebraic and tame prob-

lems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods”. Mathematical

Programming, vol. 137, no. 1, pp. 91–129.
Bolte, J., S. Sabach, and M. Teboulle (2014). “Proximal alternating linearized minimization for nonconvex and

nonsmooth problems”. Mathematical Programming, Series A, vol. 146, pp. 459–494.

Example 4.23: Elastic net (Zou and Hastie 2005)

Suppose we have two duplicate features x1 = x2, corresponding to weights w1 and w2. It is not difficult to see
that if w? is an optimal solution for Lasso (see Example 4.3), then any w1 and w2 with w1+w2 = w?,1+w?,2

and |w1|+ |w2| = |w1 + w2| will remain optimal. On the other hand, the elastic net

min
w

1
nkX

>w � yk22 + �kwk1 + �
2 kwk

2
2

will select both features and give them even weights. Here we have two choices:

• Set ` = 1
nkX

>w � yk22 +
�
2 kwk

2
2 and r(w) = �kwk1.

• Set ` = 1
nkX

>w � yk22 and r(w) = �kwk1 + �
2 kwk

2
2.

The former has a bigger L-smoothness parameter (a difference of �) while the latter requires computing a
more complicated proximal map. Fortunately, it can be shown from brute-force computation that

P⌘

�k·k1+
�
2 k·k2

2

(w) = P⌘
�
2 k·k2

2

⇣
P⌘
�k·k1

(w)
⌘
.

A general sufficient condition, along with some illustrating examples, was derived by Yu (2013) for the
decomposition to hold:

P⌘
f+g = P⌘

f � P
⌘
g .

Zou, H. and T. Hastie (2005). “Regularization and variable selection via the elastic net”. Journal of the Royal

Statistical Society, Series B, vol. 67, pp. 301–320.
Yu, Y.-L. (2013). “On Decomposing the Proximal Map”. In: Advances in Neural Information Processing Systems 27

(NIPS).

Yaoliang Yu 89 –Version 0.21–September 21, 2021–

https://doi.org/10.1137/S0363012998338806
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1137/050626090
https://link.springer.com/book/10.1007/978-3-319-48311-5
https://doi.org/10.1137/040605266
https://doi.org/10.1137/040605266
https://doi.org/10.1007/s10107-007-0133-5
https://doi.org/10.1007/s10107-007-0133-5
https://doi.org/10.1007/s10107-011-0484-9
https://doi.org/10.1007/s10107-011-0484-9
https://doi.org/10.1007/s10107-013-0701-9
https://doi.org/10.1007/s10107-013-0701-9
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://cs.uwaterloo.ca/~y328yu/mypapers/nips13b.pdf

CO673/CS794–Fall 2022 §4 PROXIMAL GRADIENT University of Waterloo

Alert 4.24: Devil is in the details

The proximal gradient Algorithm 4.17 allows us to deal with non-smooth functions (and potentially use
bigger step size by pushing functions to r, as in Example 4.23). However, we remind that this is built on
the premise that the proximal map of r can be computed cheaply, which is itself a non-smooth minimization
problem! There has been a lot of work on how to compute the proximal map of various functions in ML,
even to this day, see for example Beck and Hallak (2018) and Latorre et al. (2020).
Beck, A. and N. Hallak (2018). “Proximal Mapping for Symmetric Penalty and Sparsity”. SIAM Journal on Opti-

mization, vol. 28, no. 1, pp. 496–527.
Latorre, F., P. Rolland, N. Hallak, and V. Cevher (2020). “Efficient Proximal Mapping of the 1-path-norm of Shallow

Networks”. In: ICML.

Yaoliang Yu 90 –Version 0.21–September 21, 2021–

https://doi.org/10.1137/17M1116544
https://arxiv.org/abs/2007.01003
https://arxiv.org/abs/2007.01003

	Projected Gradient
	Proximal Gradient
	Subgradient Algorithms
	Bilevel Optimization

