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28 Gauss-Newton

Goal

Composite minimization, Gauss-Newton, nonlinear least squares, Levenberg-Marquardt regularization, prox-
linear

Alert 28.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Definition 28.2: Composite minimization

We are interested in solving the composite minimization problem:

min
w

f(w), where f(w) := φ
(
s(w)

)
, (28.1)

s is a smooth (vector-valued) function, and φ is a (possibly nonsmooth) merit function (that measures the
goodness of s(w)).

Algorithm 28.3: Gauss-Newton

Gauss-Newton is a popular iterative algorithm for solving the composite problem (28.1). In details, given
wt, we linearize the inner function s and proceed to minimize the outer function φ:

wt+1 = argmin
w

φ
(
s(wt) + s′(wt)(w −wt)

)
. (28.2)

However, it may happen that f(wt+1) > f(wt), since our linearization only holds locally around wt while
there is no guarantee that wt+1 will remain close to wt.

This algorithm is attributed to Gauss due to the least-squares Example 28.4, and it is also attributed to
Newton because the mapping s is often the gradient of some function so s′ is the Hessian (see Remark 28.12).

Example 28.4: Nonlinear least squares through a sequence of linear least squares

Often we need to find a solution to some nonlinear equation, i.e. s(w) = 0. Operationally, it is preferred to
solve the nonlinear least-squares reformulation:

min
w

1
2∥s(w)∥22, where φ = 1

2∥ · ∥
2
2. (28.3)

While directly solving the above problem may be challenging, we can reduce it to a sequence of linear least
squares problems:

wt+1 = argmin
w

1
2∥s(wt) + s′(wt)(w −wt)∥22.

However, we note that the above approach typically worsens the condition number of our problem: Even
when s is linear, the least-squares reformulation squares the condition number!

Taking square root we arrive at an equivalent reformulation:

min
w
∥s(w)∥2, where φ = ∥ · ∥2. (28.4)

However, we remind that an ϵ-minimizer of the smooth problem (28.3) is merely a
√
ϵ-minimizer of the

nonsmooth problem (28.4)! There is simply no free squaring.
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Algorithm 28.5: Prox-linear (Levenberg 1944; Marquardt 1963)

A natural idea, due to Levenberg (1944) and rediscovered by Marquardt (1963), is to add regularization as
in proximal methods:

wt+1 = argmin
w

φ
(
s(wt) + s′(wt)(w −wt)

)︸ ︷︷ ︸
f̃t(w)=f̃(w;wt)

+ 1
2ηt
∥w −wt∥22, i.e., wt+1 = Pηt

f̃t
(wt) (28.5)

(We could also turn the implicit regularization into an explicit constraint, resulting in the so-called trust
region methods. In practice, regularization is often preferred since it does not introduce extra constraints.)

When the outer function φ is convex, the regularized problem (28.5) is strongly convex, while the original
function f = φ ◦ s may not even be convex. Moreover, it follows from Theorem 17.22 that the increment
∥wt+1−wt∥2 is (continuous) increasing w.r.t. ηt while ∥wt+1−wt∥2/ηt is (continuous) decreasing w.r.t. ηt.

Levenberg, K. (1944). “A method for the solution of certain non-linear problems in least squares”. Quarterly of Applied
Mathematics, vol. 2, no. 2, pp. 164–168.

Marquardt, D. W. (1963). “An Algorithm for Least-Squares Estimation of Nonlinear Parameters”. Journal of the
Society for Industrial and Applied Mathematics, vol. 11, no. 2, pp. 431–441.

Remark 28.6: Making sense of prox-linear

As pointed out by Levenberg (1944), for sufficiently small ηt, wt+1 will remain close to wt so that decreasing
the surrogate function f̃ leads to decrease in the original function f as well. Indeed,

df(wt+1)

dηt
= f ′(wt+1)

dwt+1

dηt
= f ′(wt+1)[−(Id + ηtf̃

′′
t (wt+1))

−1f̃ ′
t(wt+1)], (28.6)

where we differentiated the optimality condition of wt+1 w.r.t. ηt in the last step:

ηtf̃
′
t(wt+1) +wt+1 −wt = 0. (28.7)

Noting that wt+1 → wt if ηt ↓ 0, under mild continuity assumptions (e.g. φ and s are sufficiently smooth or
convex), we have

df(wt+1)

dηt
|ηt=0

= −∥f ′(wt)∥22.

Thus, provided that ηt is sufficiently small and wt is not already stationary, the prox-linear update (28.5)
strictly decreases the original function f !

Let us also examine the fixed point of the prox-linear update (28.5): If wt+1 = wt = w, then clearly w

is a stationary point of f̃t. Equating the derivative of f̃t at w to zero, we obtain 0 ∈ ∂f(w), i.e. any fixed
point w, if it exists at all, is indeed a stationary point of the original function!
Levenberg, K. (1944). “A method for the solution of certain non-linear problems in least squares”. Quarterly of Applied

Mathematics, vol. 2, no. 2, pp. 164–168.

Exercise 28.7: The power of composition

• Let s̃(w) = (s(w),w) and φ̃(z,w) = φ(z) + r(w). Show that

φ̃(s̃(w)) = φ(s(w)) + r(w), (28.8)

and the Gauss-Newton update (28.2) for the left-hand side of (28.8) reduces to:

wt+1 = argmin
w

φ
(
s(wt) + s′(wt)(w −wt)

)
+ r(w),
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which was studied by Salzo and Villa (2012) for minimizing the right-hand side of (28.8) with φ = 1
2∥·∥

2
2,

in which case the update for wt+1 reduces to a proximal step w.r.t. r (under the metric induced by
s′(wt)

⊤s′(wt)).

• Find s and φ so that the Gauss-Newton update (28.2) for φ ◦ s reduces to the generalized conditional
gradient update for ℓ+ r.

• Find s and φ so that the prox-linear update (28.5) for φ ◦ s reduces to the gradient update for ℓ+ r.

• Find s and φ so that the prox-linear update (28.5) for φ ◦ s reduces to the proximal gradient update
for ℓ+ r, with a forward step for ℓ and a backward step for r.

The above special cases also indicate corresponding lower bounds on the convergence rates of Gauss-Newton
and prox-linear for certain class of functions.
Salzo, S. and S. Villa (2012). “Convergence analysis of a proximal Gauss-Newton method”. Computational Optimiza-

tion and Applications, vol. 53, pp. 557–589.

Remark 28.8: How to tune the step size ηt

It is clear that there is some trade-off in choosing the step size ηt: the larger it is the more we move away
from the current iterate and hence more likely to invalidate the linear approximation, while the smaller it is
the less we move away from the current iterate and hence more iterations are likely needed.

The following rules are typical for setting the step size ηt:

• Cauchy’s rule, where we find ηt to minimize f(wt+1), or we simply set the derivative in (28.6) to 0.
Needless to say, the resulting problem is very complicated to solve.

• Levenberg’s rule, where we linearize f(wt+1) (as a function of η) and recall that wt+1 = wt if ηt = 0:

f(wt+1) ≈ f(wt) +
df(wt+1)

dηt
|ηt=0

ηt = f(wt)− ηt∥f ′(wt)∥22.

Equating the left-hand side to 0 we can solve

ηt =
f(wt)

∥f ′(wt)∥22
,

which is essentially a Newton step at η = 0 for the nonlinear equation f(w) = 0.

• Amijo’s backtracking, where we find the largest ηt so that f(wt+1) ≤ f(wt). In case ηt grows exceed-
ingly large, Marquardt (1963) also proposed a damping factor:

w̃t+1 = wt − λt(wt −wt+1) = (1− λt)wt + λtwt+1,

where we fix ηt (and hence wt+1) and backtrack λt so that f(w̃t+1) ≤ f(wt).

Marquardt, D. W. (1963). “An Algorithm for Least-Squares Estimation of Nonlinear Parameters”. Journal of the
Society for Industrial and Applied Mathematics, vol. 11, no. 2, pp. 431–441.

Alert 28.9: Affine equivariance

Let us consider a change-of-variable w = Az for some invertible linear map A and see how the Gauss-Newton
update changes:

wt+1 = argmin
w

φ
(
s(wt) + s′(wt)(w −wt)

)
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zt+1 = argmin
z

φ
(
s(Azt) + s′(Azt)A(z− zt)

)
.

Clearly, wt+1 = Azt+1 for all t if w0 = Az0, i.e. the Gauss-Newton update is affine equivariant.
The prox-linear update, on the other hand, is not affine equivariant. However, if we adapt the metric

properly, we can restore affine equivariance:

wt+1 = argmin
w

φ
(
s(wt) + s′(wt)(w −wt)

)
+ 1

2ηt
∥s′(wt)(w −wt)∥22

zt+1 = argmin
z

φ
(
s(Azt) + s′(Azt)A(z− zt)

)
+ 1

2ηt
∥s′(Azt)A(z− zt)∥22.

If we are only interested in equivariance w.r.t. a diagonal linear map A, then we can simply use diag(s′(wt))
to reweigh the norm, which was already mentioned by Levenberg (1944).
Levenberg, K. (1944). “A method for the solution of certain non-linear problems in least squares”. Quarterly of Applied

Mathematics, vol. 2, no. 2, pp. 164–168.

Remark 28.10: Connection to gradient descent

The prox-linear update (28.5) is closely related to the gradient update, as pointed out by Marquardt (1963).
Indeed, let us examine the (normalized) correlation between the prox-linear increment and the gradient:

⟨wt −wt+1, f
′(wt)⟩

∥wt −wt+1∥2 · ∥f ′(wt)∥2
. (28.9)

Applying the optimality condition (28.7) for wt+1 and dropping (nonnegative) factors that do not depend
on ηt, we arrive at the relevant quantity

c(ηt) :=
⟨wt −wt+1, f

′(wt)⟩
∥wt −wt+1∥2

=

〈
wt −wt+1, f̃

′
t(wt)− f̃ ′

t(wt+1)
〉

ηt∥f̃ ′
t(wt+1)∥2

+ ∥f̃ ′
t(wt+1)∥2,

which is nonnegative if φ and hence f̃t is convex. Taking derivative w.r.t. ηt:

ċ(ηt) ∝
〈
−ẇt+1∥wt+1 −wt∥22 + (wt −wt+1) ⟨ẇt+1,wt −wt+1⟩ , f ′(wt)

〉
∝

〈
f̃ ′
t(wt+1), f̃

′
t(wt+1)

〉
·
〈
Af̃ ′

t(wt+1), f̃
′
t(wt)

〉
−
〈
f̃ ′
t(wt+1), f̃

′
t(wt)

〉
·
〈
Af̃ ′

t(wt+1), f̃
′
t(wt+1)

〉
,

where A :=
(
Id + ηtf̃

′′
t (wt+1)

)−1. If we take φ = 1
2∥ · ∥

2
2, then we can verify that

f̃ ′
t(wt+1) = Af̃ ′

t(wt) =: z =⇒ ċ(ηt) ∝ ∥z∥42 −
〈
A−1z, z

〉
⟨Az, z⟩ ≤ 0. (28.10)

In other words, the (normalized) correlation (28.9) between the prox-linear increment and the gradient is
nonnegative and decreasing w.r.t. ηt. In particular, when η ↓ 0, c(η) → ∥f ′(wt)∥2 and the normalized
prox-linear update reduces to the gradient update. Needless to say, when η ↑ ∞, prox-linear reduces to
Gauss-Newton. Thus, the step size ηt in prox-linear offers an interpolation between gradient descent and
Gauss-Newton.
Marquardt, D. W. (1963). “An Algorithm for Least-Squares Estimation of Nonlinear Parameters”. Journal of the

Society for Industrial and Applied Mathematics, vol. 11, no. 2, pp. 431–441.

Exercise 28.11: Cauchy-Schwarz

Prove the first equality and the last inequality in (28.10).
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Remark 28.12: Connection to Newton’s update

Consider the nonlinear equation f ′(w) = 0, and its least-squares reformulation:

min
w

1
2∥f

′(w)∥22.

Applying the prox-linear Algorithm 28.5 we obtain:

wt+1 = argmin
w

1
2∥f

′(wt) + f ′′(wt)(w −wt)∥22 + 1
2ηt
∥w −wt∥22

= wt −
(

1
ηt
Id + [f ′′(wt)]

2
)−1

f ′′(wt)f
′(wt)

= wt −
(

1
ηt
[f ′′(wt)]

−1 + f ′′(wt)
)−1

f ′(wt).

If we (only) change the regularization to ∥w∥2f ′′
t
:= ⟨f ′′(wt)w,w⟩, then we obtain the familiar update

wt+1 = wt −
(

1
ηt
Id + f ′′(wt)

)−1
f ′(wt).

Both updates reduce to the Newton update when ηt →∞, while for a finite ηt they make Newton’s update
more stable (e.g. when the Hessian f ′′ is close to singular).

Theorem 28.13: Sublinear convergence rate of prox-linear (Nesterov 2007)

TBD ■

Nesterov, Y. (2007). “Modified Gauss-Newton scheme with worst case guarantees for global performance”. Optimiza-
tion Methods and Software, vol. 22, no. 3, pp. 469–483.

Theorem 28.14: Linear convergence rate of prox-linear (Drusvyatskiy and Lewis 2018)

TBD ■
See also Lewis and Wright (2016).

Drusvyatskiy, D. and A. S. Lewis (2018). “Error Bounds, Quadratic Growth, and Linear Convergence of Proximal
Methods”. Mathematics of Operations Research, vol. 43, no. 3, pp. 919–948.

Lewis, A. S. and S. J. Wright (2016). “A proximal method for composite minimization”. Mathematical Programming,
vol. 158, pp. 501–546.

Algorithm 28.15: Stochastic and variance reduced prox-linear

When the function φ ◦ s can be written as an expectation:

φ ◦ s(w) := Eφ ◦ s(w, ξ),

we may apply the same idea as in stochastic gradient (Drusvyatskiy and Paquette 2019). If the expectation
is over a discrete distribution, then we may further reduce the variance (Zhang and Xiao 2021).
Drusvyatskiy, D. and C. Paquette (2019). “Efficiency of minimizing compositions of convex functions and smooth

maps”. Mathematical Programming, vol. 178, pp. 503–558.
Zhang, J. and L. Xiao (2021). “Stochastic variance-reduced prox-linear algorithms for nonconvex composite optimiza-

tion”. Mathematical Programming.
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Algorithm 28.16: Quadratic Gauss-Newton (Bolte et al. 2020)

Instead of linearizing the inner function, we could also apply a quadratic approximation directly:

wt+1 = argmin
w

φ
(
s(wt) + s′(wt)(w −wt) +

1
2ηt
∥w −wt∥2

)
,

where the norm can incorporate a linear map (say, to induce different scaling on different components).
Bolte, J., Z. Chen, and E. Pauwels (2020). “The multiproximal linearization method for convex composite problems”.

Mathematical Programming, vol. 182, pp. 1–36.
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