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3 Projected Gradient

Goal

White-box attack, projection, convergence of projected gradient, convergence rate of function value under
convexity.

Alert 3.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.
We remind that ⟨·, ·⟩ is the inner product defined in Lecture 0, and ∥w∥2 :=

√
⟨w,w⟩.

Definition 3.2: Problem

In this lecture we consider the constrained smooth minimization problem

f⋆ = inf
w∈C

f(w), (3.1)

where f : Rd → R, as before, is continuously differentiable and now w is constrained in a closed set C. We
will consider both convex and nonconvex f , and convex and nonconvex C.

Example 3.3: White-box attack

Let f(x;w) ∈ Rc be an image classifier, where 0 ≤ x ≤ 1 is an input image, w are the weights of the
classifier, and c is the number of classes. Here fk(x;w) ∈ R represents the relative confidence our classifier
has for class k ∈ {1, . . . , c}. In a white-box attack, we assume complete access to the classifier and aim to
construct a perturbed image x+ δ such that

argmax
k

fk(x+ δ;w) ̸= y(x) =: y.

Of course, we are interested in small perturbations ∥δ∥ ≤ ϵ that are within the perturbation budget ϵ > 0,
so that x+ δ should have been predicted with the same label as x according to say a human observer. Such
(minimally) perturbed images are dubbed adversarial examples by Szegedy et al. (2014).

We can formulate the above white-box attack as the constrained minimization problem:

min
δ∈C

fy(x+ δ;w), where C = {δ : ∥δ∥ ≤ ϵ,0 ≤ δ + x ≤ 1}. (3.2)

We remind that both (x, y) and w are given. Assuming f is smooth, (3.2) falls into our main problem (3.1)
of this lecture.
Szegedy, C., W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus (2014). “Intriguing properties

of neural networks”. In: International Conference on Learning Representations (ICLR).

Theorem 3.4: An algorithm for univariate convex functions

For any univariate convex function f and convex interval C = [a, b], we have

PC

(
argmin
w∈R

f(w)

)
⊆ argmin

w∈C
f(w),

where PC(t) = P[a,b](t) := min{b,max{t, a}} is the projection of t onto the convex interval C = [a, b].
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Proof: Exercise.

Alert 3.5: Does it work on high dimensions?

The immediate question we have is to what extent can we generalize Theorem 3.4?

• Does it still hold if C is not an interval (i.e. convex)?

• Does it still hold if f is not convex (or more generally unimodal, i.e. decreasing up to some point and
then increasing)?

• Does it still hold on high dimensions, even when both f and C are convex?

The answer is no for all of the above! To repeat, in general:

PC

(
argmin
w∈Rd

f(w)

)
̸⊆ argmin

w∈C
f(w),

with one notable exception, namely when

argmin
w∈Rd

f(w) ⊆ C.

Alert 3.6: What if I never leave my cubical?

Consider the following natural alternative where we only move the iterates within the constraint set C:

w̃ ∈ argmin
wη∈C

f(wη), where wη := w − η · ∇f(w),

which can even be iterated (w← w̃). Computing w̃ already poses some challenge since we still need to solve
a univariate constrained minimization problem, especially when the constraint set C is complicated.

Somewhat surprisingly, a more disturbing issue of this seemingly natural approach is that it can easily
get trapped at points with no apparent meaning. Consider the following counterexample:

min
w1+w2=1,w≥0

1

2
(w2

1 + w2
2).

Clearly, w⋆ = ( 12 ,
1
2 ) is the only sensible (global) minimizer. However, with w = (1, 0) we have wη = (1−η, 0).

Thus, w̃ = w = (1, 0), i.e. we are stuck at a point that has no apparent optimality.
It turns out that it is important to leave the constraint set (e.g. one’s comfort zone ,) first and then get

projected back in order to make progress, at least for gradient descent. This idea, unnatural at first glance,
turns out to be quite intuitive, as we will see momentarily. Barzilai and Borwein (1988) took a similar idea
to an even more surprising extent.
Barzilai, J. and J. M. Borwein (1988). “Two-Point Step Size Gradient Methods”. IMA Journal of Numerical Analysis,

vol. 8, no. 1, pp. 141–148.

Definition 3.7: (Euclidean) projection to a closed set

Let C ⊆ Rd be a closed set. We define the (Euclidean) projection of a point w ∈ Rd to C as:

PC(w) := argmin
z∈C

∥z−w∥2,

i.e., points in C that are closest to the given point w. Projection is obviously non-empty (assuming of course
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C ̸= ∅): Choose any z0 ∈ C. Then,

argmin
z∈C

∥z−w∥2 = argmin
z∈C∩B(w;∥w−z0∥2)

∥z−w∥2,

where B(w; r) is the ball with center w and radius r. Existence of a minimizer of the latter problem, hence
also the former, now immediately follows from Theorem 0.33.

The following two cases are geometrically obvious:

• PC(w) = w iff w lies in C.

• PC(w) ∈ ∂C if w ̸∈ C.

The projection is always unique (i.e. singleton) iff C is convex (Bunt 1934; Motzkin 1935). To this day, the
only if part remains a long open problem when the space is infinite dimensional.
Bunt, L. N. H. (1934). “Bijdrage tot de theorie de convexe puntverzamelingen”. PhD thesis. University of Groningen.
Motzkin, T. S. (1935). “Sur quelques propriétés caractéristiques des ensembles convexes”. Atti della Reale Accademia

Nazionale dei Lincei, vol. 21, no. 6, pp. 562–567.

Example 3.8: Projection onto the cube

Let us consider the following projection:

argmin
a≤δ≤b

∥δ − γ∥2 = argmin
a≤δ≤b

∥δ − γ∥22.

The key observation we make here is that the above problem is separable, namely that we can solve each
entry in δ separately. This allows us to reduce to the univariate problem:

argmin
a≤δ≤b

|δ − γ|2.

Using Theorem 3.4, we then have

δ⋆ = (γ ∨ a) ∧ b, where a ∨ b := max{a, b} and a ∧ b := min{a, b}.

If we choose the norm ∥ · ∥ = ∥ · ∥∞ in Example 3.3 (the so-called ℓ∞ attack), projecting onto the
constraint set C there can be reduced to our projection here.

Example 3.9: Projection onto the Euclidean ball

Consider projecting a point w onto the unit Euclidean ball:

argmin
∥z∥2≤1

∥w − z∥22.

This problem is not separable because of the constraint. Nevertheless, we can solve this problem using a
change of variables:

argmin
0≤r≤1

min
∥z̄∥2=1

∥w − r · z̄∥22 = −2r ⟨w, z̄⟩+ r2 + ∥w∥22.

The problem is separable now since z̄ does not depend on r. Using the Cauchy-Schwarz inequality (see
Definition 0.10) we know z̄ = w/∥w∥2. Plugging in we then solve for r:

argmin
r∈[0,1]

−2r∥w∥2 + r2.

Using Theorem 3.4 we know r⋆ = ∥w∥2 ∧ 1, yielding finally

w⋆ = ( 1
∥w∥2

∧ 1) ·w.
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It can be proved that the Euclidean ball is the only convex set whose projection is simply a scaling of the
input (Yu 2013).
Yu, Y.-L. (2013). “On Decomposing the Proximal Map”. In: Advances in Neural Information Processing Systems 27

(NIPS).

Exercise 3.10: Projection onto the nonnegative orthant

Let C = Rd
+ be the nonnegative orthant. Find the formula for PC(w). (Exercise 0.35 may be handy.)

When is PC(w) unique (i.e. a singleton)?

Exercise 3.11: Projection onto the discrete cube

Let C = {±1}d be the discrete cube. Find the formula for PC(w). (Exercise 0.35 may be handy.)
When is PC(w) unique (i.e. a singleton)?

Theorem 3.12: Optimality condition of Euclidean projection (Cheney and Goldstein 1959)

Let C ⊆ Rd be closed. Then, C ∋ w̄ ∈ PC(w) iff

∀z ∈ C, 1
2∥w − z∥22 ≥ 1

2∥w − w̄∥22. (3.3)

If C is also convex, then C ∋ w̄ = PC(w) iff

∀z ∈ C, ⟨z− w̄,w − w̄⟩ ≤ 0. (3.4)

Proof: The first claim (3.3) is simply the definition. To prove the second claim, take any z ∈ C we know
λz+ (1− λ)w̄ ∈ C, hence by (3.3):

1
2∥w − w̄∥22 ≤ 1

2∥w − λz− (1− λ)w̄∥22 ⇐⇒ 0 ≤ 1
2λ

2∥z− w̄∥22 − λ ⟨w − w̄, z− w̄⟩
⇐⇒ ⟨w − w̄, z− w̄⟩ ≤ 1

2λ∥z− w̄∥22.

Since λ ∈ [0, 1] is arbitrary, letting λ→ 0 completes our proof.
Geometrically, (3.4) means we have an obtuse angle (at w̄), or equivalently

1
2∥z−w∥22 ≥ 1

2∥w̄ −w∥22 + 1
2∥z− w̄∥22. (3.5)

Cheney, E. W. and A. A. Goldstein (1959). “Newton’s Method for Convex Programming and Tchebycheff Approxi-
mation”. Numerische Mathematik, vol. 1, pp. 253–268.
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Remark 3.13: Projected gradient as minimizing quadratic upper bound, again

We are now ready to naturally extend gradient descent to the constrained setting, using projections. Recall
from (2.19) the quadratic upper bound:

inf
w∈C

f(w) ≤ min
w∈C

f(wt) + ⟨w −wt,∇f(wt)⟩+
1

2ηt
∥w −wt∥22,

where we have added the constraint set C on both sides. A moment’s thought (by completing the square
Euclidean norm) confirms that the solution to the right-hand side is exactly

PC(wt − ηt∇f(wt)) =: wt+1. (3.6)

By definition wt ∈ C for all t and f(wt) monotonically decreases if ηt ≤ 1

L
[1]
2

(so that the quadratic upper

bound holds in the first place).

Definition 3.14: Stationary condition for constrained minimization

The iteration in (3.6) motivates us to define the following stationary condition for our constrained minimiza-
tion problem (3.1):

∀η ∈ [0, 1

L
[1]
2

], w∗ = PC(w∗ − η∇f(w∗)). (3.7)

Clearly, condition (3.7) is necessary (otherwise the iteration (3.6) would strictly decrease f further).
Using (3.3), we can rewrite the stationary condition on w∗ as:

∀w ∈ C, 1
2∥w −w∗ + η∇f(w∗)∥22 ≥ 1

2∥w∗ −w∗ + η∇f(w∗)∥22 ⇐⇒ 1
2∥w −w∗∥22 + η ⟨w −w∗,∇f(w∗)⟩ ≥ 0

if η > 0 is arbitrary or C is convex ⇐⇒ ⟨w −w∗,∇f(w∗)⟩ ≥ 0.

We have in fact proved the following equivalence when w∗ is in a convex set C:

∀w ∈ C, ⟨w −w∗,∇f(w∗)⟩ ≥ 0 ⇐⇒ ∃η > 0, w∗ = PC(w∗ − η∇f(w∗))

⇐⇒ ∀η ≥ 0, w∗ = PC(w∗ − η∇f(w∗)).

When f is also convex, using (0.4) we know this necessary condition is also sufficient.
Needless to say, when C = Rd, we recover Fermat’s condition (see Theorem 0.38) for unconstrained

minimization.

Algorithm 3.15: Projected gradient descent (Goldstein 1964; Levitin and Polyak 1966)

Algorithm: Projected gradient descent for constrained smooth minimization
Input: w0 ∈ C

1 for t = 0, 1, . . . do
2 compute gradient ∇f(wt)
3 choose step size ηt > 0
4 wt+1 = wt − ηt · ∇f(wt) // update
5 wt+1 ← PC(wt+1) // projecting back to the constraint

Compare to the gradient descent Algorithm 2.4, we merely added a projection step in each iteration. It
is clear that projected gradient is a strict generalization, and reduces to gradient descent when C = Rd.
Goldstein, A. A. (1964). “Convex programming in Hilbert space”. Bulletin of the American Mathematical Society,

vol. 70, no. 5, pp. 709–710.
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Levitin, E. S. and B. T. Polyak (1966). “Constrained Minimization Methods”. USSR Computational Mathematics
and Mathematical Physics, vol. 6, no. 5, pp. 1–50. [English translation in Zh. Vȳchisl. Mat. mat. Fiz. vol. 6, no.
5, pp. 787–823, 1965].

Theorem 3.16: Convergence of projected gradient for L-smooth functions

Let f : Rd → R be L = L
[1]
2 -smooth (w.r.t. ∥ ·∥2) and bounded from below (i.e. f⋆ > −∞). Let C be convex.

If the step size ηt ∈ [α, 2
L − β] for some α, β > 0, then the sequence {wt} ⊆ C generated by Algorithm 2.4

satisfies ∥wt+1 −wt∥2 → 0. Moreover,

min
0≤t≤T−1

∥∥∥∥wt+1 −wt

ηt

∥∥∥∥
2

≤

√
f(w0)− f⋆
αβLT/2

. (3.8)

Proof: As before, using L-smoothness:

f(wt+1) ≤ f(wt) + ⟨wt+1 −wt,∇f(wt)⟩+ L
2∥wt+1 −wt∥22 ≤ f(wt) + (L2 −

1
ηt
)∥wt+1 −wt∥22, (3.9)

where the inequality

⟨wt+1 −wt,∇f(wt)⟩+ 1
ηt
∥wt+1 −wt∥22 ≤ 0 ⇐⇒ ⟨wt −wt+1,wt − ηt∇f(wt)−wt+1⟩ ≤ 0

follows from (3.4), since wt+1 is the projection of wt − ηt∇f(wt).
Therefore, if ηt ∈ [α, 2

L − β] and wt+1 − wt ̸= 0, we strictly decrease the function value. Rearranging
(3.9) we have ∥∥∥∥wt+1 −wt

ηt

∥∥∥∥2
2

≤ f(wt)− f(wt+1)

ηt(1− ηtL
2 )

≤ f(wt)− f(wt+1)

αβL/2
.

Summing from t = 0 to t = T − 1:

T−1∑
t=0

∥∥∥∥wt+1 −wt

ηt

∥∥∥∥2
2

≤ f(w0)− f(wT )

αβL/2
≤ f(w0)− f⋆

αβL/2
.

Therefore, the sequence ∥wt+1 −wt∥2 is square summable hence wt+1 −wt → 0 and the bound (3.8) holds
(recall that the sum of T numbers is at least T times the smallest number).

As before, choosing α = β = 1
L optimizes the bound:

min
0≤t≤T−1

L · ∥wt+1 −wt∥2 ≤
√

2L[f(w0)− f⋆]

T
.

The observations in Remark 2.20 continue to apply. In particular, we can use Armijo’s backtracking line
search to avoid estimating L directly: we find the smallest k ∈ N such that

f
(
w(k)

)
≤ f(w) +

〈
w(k) −w,∇f(w)

〉
+ 1

2η(k) ∥w(k) −w∥22,

where w(k) := PC

(
w − η(k)∇f(w)

)
and η(k) := η

2k
.
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Theorem 3.17: Convergence rate of projected gradient in terms of function value

Let f : Rd → R be convex and L = L
[1]
2 -smooth, C ⊆ Rd be closed convex, and ηt is chosen so that (3.10)

below holds, then for all w ∈ C and t ≥ 1, the sequence {wt} ⊆ C generated by Algorithm 3.15 satisfy:

f(wt) ≤ f(w) +
∥w −w0∥22

2tη̄t
, where η̄t :=

1

t

t−1∑
s=0

ηs,

Proof: As before, using L-smoothness we have for all w ∈ C:

f(wt+1) ≤ f(wt) + ⟨wt+1 −wt,∇f(wt)⟩+ 1
2ηt
∥wt+1 −wt∥22 (3.10)

≤ f(wt) + ⟨w −wt,∇f(wt)⟩+ 1
2ηt
∥w −wt∥22 − 1

2ηt
∥w −wt+1∥22

≤ f(w) + 1
2ηt
∥w −wt∥22 − 1

2ηt
∥w −wt+1∥22,

where the second inequality follows from wt+1 being the projection to the convex set C (see (3.5)) and the
last inequality is due to the convexity of f (see Theorem 0.29). Take w = wt we see that

f(wt+1) ≤ f(wt),

i.e., the algorithm is descending. Summing from t = 0 to t = T − 1:

T η̄T · [f(wT )− f(w)] ≤
T−1∑
t=0

ηt[f(wt+1)− f(w)] ≤ 1

2
∥w −w0∥22, where η̄T :=

1

T

T−1∑
t=0

ηt.

(To derive the left inequality, apply f(wt+1 ≥ f(wT ).) Dividing both sides by T η̄T completes the proof.

If there exists a minimizer w⋆, then we have

f(wt)− f⋆ ≤
L∥w⋆ −w0∥22

2t
,

where we have chosen ηt ≡ 1/L to minimize the bound. So the function value converges to the global
minimum (thanks to convexity) at the rate of O(1/t). As before, the dependence on L and w0 makes
intuitive sense. Again, the rate of convergence does not depend on d, the dimension!

It can be proved using fixed point theorems that the iterate wt also converges (provided that a minimizer
exists). Moreover, wt converges (to a stationary point) even when f is nonconvex, provided that it is
“definable” (whatever that means ).

Remark 3.18: Open-loop step size

Our proof in Theorem 3.17 actually revealed that the projected gradient Algorithm 3.15 converges to the
minimum function value if the step size ηt satisfies the following conditions:

ηt → 0 and
∑
t

ηt =∞,

where the first condition is needed so that ηt ≤ 1
L eventually (no matter what L actually is, as long as it is

finite), i.e. (3.10) holds. Such step sizes are called open-loop, meaning that it does not depend on wt and
hence can be decided beforehand. We will meet this step size again shortly, and then repeatedly.

Needless to say, step sizes that do depend on the iterates wt, such as Amijo’s rule, are called closed-loop,

i.e. forming a closed loop

wt ηt

t← t+1 .
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Alert 3.19: Devil is in the details

The projected gradient Algorithm 3.15 is an elegant way to deal with constraints. However, we remind that
projection, even onto a convex set, is itself a constrained minimization problem! For complicated constraints,
computing its projection is already very challenging, let alone that we need to do it in every iteration of the
projected gradient algorithm. Thus, projected gradient is applicable only when projection to the constraint
set is relatively cheap or even in closed-form, as shown in some of the examples.
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