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15 Fejér-type Algorithms

Goal

Fejér’s theorem and sequence, reducing optimization to feasibility, alternating projection, Dykstra’s algo-
rithm

Alert 15.1: Convention

See Bauschke and Borwein (1996) for a nice survey on projection algorithms and Escalante and Raydan
(2011) for an enjoyable short book on alternating projections. Combettes and Vũ (2013) extended Fejér
monotonicity to variable metrics whilte Bauschke et al. (2003) extended to Bregman divergences.

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Bauschke, H. H. and J. M. Borwein (1996). “On Projection Algorithms for Solving Convex Feasibility Problems”.
SIAM Review, vol. 38, no. 3, pp. 367–426.

Escalante, R. and M. Raydan (2011). “Alternating Projection Methods”. SIAM.
Combettes, P. L. and B. C. Vũ (2013). “Variable metric quasi-Fejér monotonicity”. Nonlinear Analysis: Theory,

Methods & Applications, vol. 78, no. 384, pp. 17–31.
Bauschke, H. H., J. M. Borwein, and P. L. Combettes (2003). “Bregman Monotone Optimization Algorithms”. SIAM

Journal on Control and Optimization, vol. 42, no. 2, pp. 596–636.

Definition 15.2: Problem

In this lecture we aim to solve the following problem:

inf
w2Rd

f(w)

s.t. w 2
\

i2I

Ci,

where each Ci ✓ Rd is closed and convex, and the function f : Rd ! R [ {1} is convex. We assume each
set Ci is simple, in the sense that its projector Pi = PCi can be easily computed. However, projecting to
the intersection C is usually much harder.

Example 15.3: Perceptron and SVM revisited

Recall the perceptron problem:

min
w2Rd

f(w) ⌘ 0

s.t. w 2
n\

i=1

Ci,

where Ci := {w : hyixi,wi � 1}. Similarly, we may rewrite the hard-margin SVM problem as:

min
w2Rd

1
2kwk

2
2

s.t. w 2
n\

i=1

Ci.

We note that the projector PCi is available in closed-form:

PCi(z) :=


argmin
w2Ci

kw � zk2
�
= z+

(1� hyixi, zi)+
kxik22

yixi.
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However, projecting onto the intersection set C is not easy. In fact, the entire hard-margin SVM problem is
“just” projecting the origin to the intersection set C.

Example 15.4: Linear and quadratic programming

We can reduce the canonical linear program

min
x�0,Ax=b

hx, ci

into a feasibility problem, through duality:

x � 0, Ax = b

A>y  c

c>x = b>y.

In other words, minimizing a linear function over a polyhedron is nothing but solving a linear inequality
system! Projecting onto each of the above linear constraints can be done similarly as in Example 15.3.

Similarly, for the canonical quadratic program:

min
x�0,Ax=b

1
2 hx, Qxi+ hx, ci ,

where for simplicity Q � 0 is (symmetric) positive definite. Using duality we may derive the following
system:

x � 0, Ax = b

Qx�A>y + c � 0

hx, Qx+ ci � hb,yi  0, (15.1)

where the last nonlinear quadratic inequality (15.1) can be rewritten as an infinite (uncountable) intersection
of closed halfspaces (indexed by z; recall Theorem 0.22):

8z, hx, z+ ci � 1
2

⌦
z, Q�1z

↵
� hb,yi  0.

One may continue to rewrite QCQP, SOCP, and SDP as a similar feasibility problem with infinitely
many linear constraints. In fact, for SOCP (and QCQP and QP) it is possible to significantly reduce the
number of linear constraints if an approximate solution is sought, which is now routinely used in dealing
with nonlinear integer programs.
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Example 15.5: Sudoku (Bailey et al. 2008) – A nonconvex example

2 3 9 7
1

4 7 2 8
5 2 9

1 8 7
4 3

6 7 1
7

9 3 2 6 5
See also Elser et al. (2007) and Erlich et al. (2009).

Bailey, R. A., P. J. Cameron, and R. Connelly (2008). “Sudoku, Gerechte Designs, Resolutions, Affine Space, Spreads,
Reguli, and Hamming Codes”. The American Mathematical Monthly, vol. 115, no. 5, pp. 383–404.

Elser, V., I. Rankenburg, and P. Thibault (2007). “Searching with iterated maps”. Proceedings of the National Academy
of Sciences of the USA, vol. 104, no. 2, pp. 418–423.

Erlich, Y., K. Chang, A. Gordon, R. Ronen, O. Navon, M. Rooks, and G. J. Hannon (2009). “DNA Sudoku—harnessing
high-throughput sequencing for multiplexed specimen analysis”. Genome Research, vol. 19, no. 7, pp. 1243–1253.

Theorem 15.6: Fejér’s characterization of the closed convex hull (Fejér 1922)

Let A ✓ Rd. Then, w 62 convA iff there exists z 2 Rd such that for all a 2 A (hence all a 2 convA) we have
kw � ak2 > kz� ak2.

Proof: If w 62 convA, then we can find a hyperplane H that separates w from convA (in particular, w 62 H).
Let z = P

H
(w) be the orthogonal projection of w onto H. For any point a 2 convA, the triangle azw is

obtuse at the point z, thus kw � ak2 > kz� ak2.
Conversely, let w 2 convA and suppose there exists such a point z with kz � ak2 < kw � ak2 for all

a 2 A. Consider the line segment wz and its orthogonal hyperplane H that passes through the middle point
o = (w + z)/2. We claim that any a 2 A lies on the same side of the half-space H as z, for otherwise the
line segment za intersects H at some s: kw� ak2  kw� sk2 + ks� ak2 = kz� sk2 + ks� ak2 = kz� ak2,
contradiction. But, w is in the interior of the opposite half-space, contradicting w 2 convA.
The proof crucially relies on the fact that the norm k · k2 is induced by an inner product (so that we can
talk about orthogonal projections meaningfully).
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Fejér, L. (1922). “Über die Lage der Nullstellen von Polynomen, die aus Minimumforderungen gewisser Art entsprin-
gen”. Mathematische Annalen, vol. 85, no. 1, pp. 41–48.

Remark 15.7: Significance

Fejér’s result is algorithmically significant because it can be used to solve the convex feasibility problem:

find w 2 C,

where the closed (and convex) set C ✓ Rd represents the solutions set that we are seeking. Indeed, starting
from an arbitrary point w0, if it is in C then we are done; if not then according to Fejér’s Theorem 15.6
there exists some w1 such that kw1 � wk < kw0 � wk for all w 2 C. Of course, this idea by itself is not
quite an algorithm yet:

• We need to be able to certify if w0 2 C, which may be trivial when the set C is defined by explicit
inequalities, such as C = {w : g(w)  0}.

• If w0 62 C, we need to be able to explicitly and efficiently find w1.

• We also need sufficient decrease so that dist(wt, C)! 0.

• We may also want to prove the convergence (rate) of the whole sequence wt.

Definition 15.8: Fejér monotone sequence

We say that a sequence {wt} is Fejér monotone w.r.t. a closed and convex set C if

8t, 8w 2 C, kwt+1 �wk2  kwt �wk2.
Immediate consequences include (more can be found in e.g. Bauschke and Borwein (1996)):

• {wt} is bounded (hence have limit points);

• distC(wt) = dist(wt, C) := minw2C kwt �wk2 monotonically decreases;

• {wt} has at most one limit point in C hence if all limit points are in C, then wt actually converges.
Indeed, for the last claim, note that for any limit point w 2 C, we know kwt�wk22 hence 1

2kwtk22�hwt,wi
converges. Thus, for limit points w, z 2 C we know hwt,w � zi ! hw,w � zi = hz,w � zi, i.e. w = z.
Bauschke, H. H. and J. M. Borwein (1996). “On Projection Algorithms for Solving Convex Feasibility Problems”.

SIAM Review, vol. 38, no. 3, pp. 367–426.
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Algorithm 15.9: Method of Alternating Projection (e.g. Bregman 1965)

Now let C = \i2ICi 6= ;. Suppose w0 62 C (otherwise we are done). Then there exists some Ci 63 w0. Apply
the constructive part of Fejér’s Theorem 15.6 by letting

w1 = PCi(w0),

we immediately have

8w 2 Ci ◆ C, kw �w1k2 < kw �w0k2.

Iterating the above idea leads to the method of alternating projections:
Algorithm: Method of alternating projections
Input: w0

1 for t = 0, 1, . . . do
2 choose set Cit // see Remark 15.10 for choices
3 wt+1  (1� ⌘t)wt + ⌘tPCit

(wt) // ⌘t 2 [0, 2]

This algorithm has a long history, see Agmon (1954) and Motzkin and Schoenberg (1954) for early
analysis when each Ci is a halfspace. See also Goffin (1980, 1982), Mandel (1984), Spingarn (1985, 1987),
and Garcoä-Palomares (1993).

Clearly, we have for any w 2 C:

kwt+1 �wk22 = kwt �w � ⌘t(wt � PCit
(wt))k22

= kwt �wk22 + (⌘2
t
� 2⌘t)kwt � PCit

(wt)k22 + 2⌘t
⌦
w � PCit

(wt),wt � PCit
(wt)

↵

(Theorem 3.12)  kwt �wk22 + (⌘2
t
� 2⌘t)kwt � PCit

(wt)k22 (15.2)
( ⌘t 2 [0, 2] )  kwt �wk22,

i.e. the generated sequence is Fejér monotone, hence explaining the restriction ⌘t 2 [0, 2].
Bregman, L. M. (1965). “The method of successive projection for finding a common point of convex sets”. Soviet

Mathematics Doklady, vol. 162, no. 3, pp. 688–692.
Agmon, S. (1954). “The Relaxation Method for Linear Inequalities”. Canadian Journal of Mathematics, vol. 6,

pp. 382–392.
Motzkin, T. S. and I. J. Schoenberg (1954). “The Relaxation Method for Linear Inequalities”. Canadian Journal of

Mathematics, vol. 6, pp. 393–404.
Goffin, J. L. (1980). “The relaxation method for solving systems of linear inequalities”. Mathematis of Operations

Research, vol. 5, no. 3, pp. 388–414.
— (1982). “On the non-polynomiality of the relaxation method for systems of linear inequalities”. Mathematical

Programming, vol. 22, pp. 93–103.
Mandel, J. (1984). “Convergence of the cyclical relaxation method for linear inequalities”. Mathematical Programming,

vol. 30, pp. 218–228.
Spingarn, J. E. (1985). “A primal-dual projection method for solving systems of linear inequalities”. Linear Algebra

and its Applications, vol. 65, pp. 45–62.
— (1987). “A projection method for least-squares solutions to overdetermined systems of linear inequalities”. Linear

Algebra and its Applications, vol. 86, pp. 211–236.
Garcoä-Palomares, U. (1993). “Parallel Projected Aggregation Methods for Solving the Convex Feasibility Problem”.

SIAM Journal on Optimization, vol. 3, no. 4, pp. 882–900.

Remark 15.10: Update order

The following choices for the update order are often used:

• Cyclic: when |I| <1, we simply set it = t mod |I|, i.e., project to each set Ci cyclically.

• Almost cyclic: 9B � |I|, so that for all t, I ✓ {it, it+1, . . . , it+B�1}, i.e. each set is chosen at least once
every B iterations.
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• Greedy: we can instead choose the furthest set:

it = argmax
i2I

dist(wt, Ci),

where ties are broken arbitrarily. In fact, a multiplicative approximation suffices. This choice is
particularly useful when the index set |I| =1.

• Random: when |I| <1 choose it 2 I randomly.

• Permutation: in each epoch, randomly permute the sets and then go cyclic.

• Infinite often: make sure each i 2 I is chosen infinitely often (which is clearly necessary).

Theorem 15.11: Convergence of alternating projections (Bregman 1965; Gubin et al. 1967)

Let C = \i2ICi 6= ; where each Ci is closed and convex and |I| < 1. If 0 < ↵  ⌘t  2 � � < 2 for some
↵,� > 0, then with the cyclic update order we have

wt ! w? 2 C.

Proof: We only prove the case for ⌘t ⌘ 1.
Let zk,i = wk|I|+i. Consider any converging subsequence of wt. Since |I| < 1, we may assume w.l.o.g.

the subsequence is contained in zk,1 and has a limit point w?. Clearly w? 2 C1 since zk,1 2 C1 and C1 is
closed. From (15.2) we know for any w 2 C:

kzk,1 � zk,2k2  kzk,1 �wk22 � kzk,2 �wk22 ! 0.

Thus, w?  zk,2 2 C2. Continuing the same argument we conclude w? 2 \iCi = C. Since any limit point
of the Fejér monotone sequence {wt} is in C we know wt ! w? 2 C.

Bregman, L. M. (1965). “The method of successive projection for finding a common point of convex sets”. Soviet
Mathematics Doklady, vol. 162, no. 3, pp. 688–692.

Gubin, L. G., B. T. Polyak, and E. V. Raik (1967). “The Method of Projections for Finding the Common Point
of Convex Sets”. USSR Computational Mathematics and Mathematical Physics, vol. 7, no. 6, pp. 1–24. [English
translation of paper in Zh. Vȳchisl. Mat. mat. Fiz. vol. 7, no. 6, pp. 1211–1228, 1967].

Algorithm 15.12: Alternating Bregman Projection (e.g. Bregman 1966)

Instead of the Euclidean projection, let us now consider the Bregman projection

PC(z) = PC,h(z) = argmin
w2C

Dh(w, z),

where h : Rd ! R [ {1} is a Legendre function (see Definition 8.7).
Algorithm: Alternating Bregman projection
Input: w0, domh ◆ C

1 for t = 0, 1, . . . do
2 choose set Cit // see Remark 15.10 for choices
3 wt+1  (1� ⌘t)wt + ⌘tPCit

(wt) // ⌘t 2 [0, 2]

Convergence for ⌘t ⌘ 1 was shown in Bregman (1966).
Bregman, L. M. (1966). “A relaxation method of finding a common point of convex sets and its application to problems

of optimization”. Soviet Mathematics Doklady, vol. 171, no. 5, pp. 1578–1581.
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Remark 15.13: A primal-dual view (Bregman 1967)

So far, the alternating projection algorithms allow us to converge to an arbitrary point in C. Quite remark-
ably, Bregman (1967) observed that a primal-dual modification actually allows us to solve:

min
w2Rd

f(w)

s.t. Aw  b,

where f is a Legendre function (see Definition 8.7) and we define Ci := {w : hw,aii  bi}, i = 1, . . . , n,. The
idea is to introduce the KKT set

K = {(w,u) 2 dom f ⇥Rn

+ : rf(w) +A>u = 0}

and maintain (wt,ut) 2 K explicitly. Indeed, we start with w0 2 argmin f so that rf(w0) = 0 =: u0. Upon
choosing Ci, we conduct one of the following updates:

• If hwt,aii > bi, we compute

wt+1  PCi,f (wt) := argmin
w2Ci

Df (w,wt), i.e.,

9ut+1,i � ut,i s.t.

(
rf(wt+1) + ut+1,iai = rf(wt) + ut,iai
hwt+1,aii = bi

.

• If hwt,aii = bi, or hwt,aii < bi with ut,i = 0, then continue.

• If hwt,aii < bi with ut,i > 0, we compute

wt+1  argmin
w2Ci

f(w)� hw,rf(wt) + ut,iaii , i.e.,

9ut+1,i 2 [0, ut,i] s.t.

(
rf(wt+1) + ut+1,iai = rf(wt) + ut,iai
ut+1,i(hwt+1,aii � bi) = 0

.

It is clear that in all cases we maintain (wt,ut) 2 K if we start so. In a later lecture we will see how these
updates can be derived naturally.
Bregman, L. M. (1967). “The Relaxation Method of Finding the Common Point of Convex Sets and Its Application

to the Solution of Problems in Convex Programming”. USSR Computational Mathematics and Mathematical
Physics, vol. 7, no. 3, pp. 200–217. [English translation in Zh. Vȳchisl. Mat. mat. Fiz. vol. 7, no. 3, pp. 620–631,
1967].

Algorithm 15.14: Dykstra’s algorithm (Dykstra 1983)

We now present a beautiful algorithm for solving:

min
w

f(w)

s.t. w 2 C 6= ;, C := \i2ICi,

where f is Legendre and each Ci is closed and convex. We have seen an algorithm in Remark 15.13 for the
case where each Ci is a half-space. On the other hand, the case with f = q (quadratic) but general Ci was
dealt with by Dykstra (1983) and later rediscovered by Han (1988, 1989) and Gaffke and Mathar (1989).
We present a unification due to Bregman et al. (1999).

The idea is extremely simple: we simply linearize each convex set Ci by including it in a supporting
half-space and then apply Remark 15.13.
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Algorithm: Dykstra’s algorithm
Input: w0 = argmin f , ai = 0, bi = 0 for all i 2 I

1 for t = 0, 1, . . . do
2 choose set Cit // see Remark 15.10 for choices
3 wt+1  argmin

w2Cit

f(w)� hw,rf(wt) + aiti // Bregman projection

4 ait  ait +rf(wt)�rf(wt+1)
5 bit  hait,t+1,wt+1i // needed only for proof

Indeed, from the optimality condition of wt+1 we obtain:

8w 2 Cit , hrf(wt+1)�rf(wt)� ait ,w �wt+1i � 0, i.e. hait,t+1,wi  bit ,

and hence the convex set Cit is contained in the half-space Hit := {w : hait ,wi  bit}.
Dykstra, R. L. (1983). “An Algorithm for Restricted Least Squares Regression”. Journal of the American Statistical

Association, vol. 78, no. 384, pp. 837–842.
Han, S.-P. (1988). “A successive projection method”. Mathematical Programming, pp. 1–14.
— (1989). “A Decomposition Method and Its Application to Convex Programming”. Mathematics of Operations

Research, no. 2, pp. 237–248.
Gaffke, N. and R. Mathar (1989). “A cyclic projection algorithm via duality”. Metrika, vol. 36, pp. 29–54.
Bregman, L. M., Y. Censor, and S. Reich (1999). “Dykstra’s Algorithm as the Nonlinear Extension of Bregman’s

Optimization Method”. Journal of Convex Analysis, vol. 6, no. 2, pp. 319–333.

Exercise 15.15: Entropy-regularized optimal transport

Let p 2 �m and q 2 �n be two probability vectors, and we seek a joint coupling (distribution) ⇧ 2 Rm⇥n

+

with p and q as marginals such that the transportation cost is minimized:

min
⇧2Rm⇥n

+

hC,⇧i

s.t. ⇧1 = p, ⇧>1 = q.

While the (discrete) optimal transport problem above can be solved using linear program, we gain a much
more scalable algorithm if we add a small entropy regularization:

min
⇧2Rm⇥n

+

hC,⇧i+ �
X

ij

⇡ij log ⇡ij

s.t. ⇧1 = p, ⇧>1 = q.

W.l.o.g. we may assume ⇧0 / exp(�C/�) � 0 and 1>⇧01 = 1. Prove that we have the equivalent problem:

min
⇧2Rm⇥n

+

KL(⇧k⇧0) (15.3)

s.t. ⇧1 = p, ⇧>1 = q.

Can you adapt Dykstra’s Algorithm 15.14 to solve (15.3)?
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