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8 Mirror Descent

Goal

Mismatch between input and gradient spaces, exponentiated gradient, mirror descent, Legendre function.

Alert 8.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Definition 8.2: Problem

In this lecture we are interested in the constrained minimization problem:

inf
w2C✓V

f(w),

where f is a convex function that may or may not be smooth. To recall our current theoretical results:

• When f is L[1]-smooth, we obtained the convergence rate L[1]kw0�wk2
2

2t for the function value in Theo-
rem 4.21.

• When f is L[0]-Lipschitz continuous, we obtained the convergence rate L[0]kw0�wk2p
t

for the (minimum)
function value in Theorem 5.17.

The Lipschitz constants and the diameter kw0 �wk2 both depend on the norm, but there is no reason to
believe that the Euclidean norm we used is the best choice. Can we strike a better balance?

Example 8.3: Separable function over simplex

Consider the following simple problem:

min
w2�

dX

j=1

fj(wj),

where the objective function f :=
P

j fj is separable in terms of the variables w = (w1, . . . , wd) but the
simplex constraint � = {w 2 Rd

+ : 1>w = 1} couples everything. Let us suppose each univariate component
function fj : R! R is 1-Lipschitz continuous. Then, the sum f : Rd ! R is

p
d-Lipschitz continuous w.r.t.

the Euclidean norm, since

krfk22 =
X

j

(rfj)2  d.

The diameter kw0 �wk2 
p
2. Thus, applying Theorem 5.17 we obtain a convergence rate of

q
2d
t .

Note however that if we choose the norm on w to be `1, then

krfk1 = max
j

|rfj |  1

while kw0 � wk1  2. Can we achieve the convergence rate 2p
t

by changing the norm? The difference is
huge: a factor of square root of the dimension!
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Alert 8.4: What makes incremental update possible?

So far, we have seen updates of the following (additive) incremental form:

w w � ⌘ · g,

which is so natural that we sometimes forget what makes it even mathematically possible:

• the scalar multiplication of the step size ⌘ to g;

• the negation �;

• and the addition of w with �⌘ · g.

These operations are possible because we have a linear vector space structure in our universe, in particular
w and g are from the same vector space.

We now make an important distinction: the gradient rf(w) does not come from the same space as w!
To be precise, if w 2 V, then the Frechet derivative f 0(w) lives in the dual space V⇤, i.e., all continuous
linear functionals on V. To restore sanity, we need a way to pull things back and forth:

J : V! V⇤, J�1 : V⇤ ! V.

When we equip the underlying vector space with the Euclidean norm k · k2, we may take J = J⇤ = Id, which
is the approach we have been taking. In this and the next lecture, we go beyond.

Example 8.5: Exponentiated gradient for online prediction (Kivinen and Warmuth 1997)

Consider forecasting a real quantity y 2 R (e.g. temperature of the day). We consult n experts, each of whom
provides a prediction xi, collectively as x 2 Rn. We then form our own opinion by averaging ŷ = hw,xi,
w 2 �, and suffer the least squares loss ` = (y � ŷ)2. Imagine repeating this game for t = 1, . . . , T rounds.
What is our average regret compared to the best expert in hindsight?

1

T

TX

t=1

(yt � ŷt)
2 � min

w2�

1

T

TX

t=1

(yt � hw,xti)2, where ŷt = hwt,xti .

Surprisingly, Kivinen and Warmuth (1997) showed that the exponentiated gradient (EG) algorithm

w̃t+1 = wt � exp(�⌘`0(ŷt � yt)xt)

wt+1 =
w̃t+1

h1, w̃t+1i
,

achieves diminishing average regret on the order of O
✓q

lnn
T

◆
, provided that kxtk1  1 and yt 2 [0, 1] for

all t. To appreciate the significance of this bound, let us note that:

• there is no assumption on how the sequence {(xt, yt) : t = 1, . . . , T} is generated! In fact, this sequence
can even be adversarial.

• setting w = ei we immediately see that EG performs asymptotically (i.e. when T ! 1) no worse
than the best expert in hindsight !

• the dependence on the number of experts is only logarithmic! This means we can consult a huge
number of experts without deteriorating the bound noticeably.

In contrast, gradient descent achieves a seemingly better bound O(1/
p
T ), but with the assumption kxtk2  1

(and a larger pool kwk2  1). In the worst case, kxtk2 
p
nkxtk1, leading to the bound O(

p
n/T ), which

is much worse.
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Let us equip J(w) = lnw (component-wise). Then, we may interpret EG as:

ln w̃t+1 = lnwt � ⌘`0(ŷt � yt)xt,

i.e. the usual gradient descent in the (dual) log space.
Kivinen, J. and M. K. Warmuth (1997). “Exponentiated Gradient versus Gradient Descent for Linear Predictors”.

Information and Computation, vol. 132, no. 1, pp. 1–63.

Remark 8.6: Two choices

We now have two choices to address the mismatch between w 2 V and rf(w) 2 V⇤, through a mirror (or
duality) map J : V! V⇤ with inverse J�1 : V⇤ ! V (hence also the name mirror descent).

• We do our update in the gradient space V⇤ and pull the update back to the input space V:

wt+1 = J�1(J(wt)� ⌘t ·rf(wt)). (8.1)

Introducing w⇤
t := J(wt), we can rewrite the above as:

w⇤
t+1 = w⇤

t � ⌘t ·rf(J�1(w⇤
t )).

• We pull the gradient back to the input space V and do the update directly there:

wt+1 = wt � ⌘t · J�1(rf(wt)).

We discuss the first approach here and the second one in the next lecture.

Definition 8.7: Legendre function

We call a continuous convex function h Legendre if

• its domain has nonempty interior, i.e., int(domh) 6= ;;

• h is differentiable on int(domh);

• krh(w)k ! 1 as w! @ domh;

• h is strictly convex on int(domh).

Recall that h⇤ is the Fenchel conjugate of h (see Definition 0.28). It is known that, see e.g. (Bauschke and
Borwein 1997),

rh : int(domh)! int(domh⇤), w 7! rh(w)

is a topological isomorphism, i.e. with continuous inverse (rh)�1 = rh⇤. In other words, we could let
J = rh.

Below, we will choose a norm k · k and a Legendre function h that is 1-strongly convex w.r.t. k · k, i.e.

Dh(w, z) := h(w)� h(z)� hw � z;rh(z)i � 1
2kw � zk2.

Bauschke, H. H. and J. M. Borwein (1997). “Legendre Functions and the Method of Random Bregman Projections”.
Journal of Convex Analysis, vol. 4, no. 1, pp. 27–67.
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Example 8.8: (Squared) Euclidean distance is Legendre

Let h(w) = 1
2kwk

2
2. Verify that h is Legendre and its induced Bregman divergence Dh(w, z) = 1

2kw � zk22
is the (square) Euclidean distance. We also have J(w) = rh(w) = w and of course J�1 = J. This is the
choice we have been (implicitly) holding.

Exercise 8.9: KL and Pinsker

Consider the KL function H(t) = t ln t� t : R+ ! R, where 0 ln 0 := 0. Verify the following:

• it is indeed Legendre;

• H 0(t) = ln t;

• H⇤(s) = supt st�H(t) = exp(s);

• H 0 : R++ ! R is continuous and with an continuous inverse;

• define h(w) =
P

j wj lnwj �wj . We claim that h, when restricted to the simplex, is 1-strongly convex
w.r.t. the `1 norm. Indeed, we need only verify (see Proposition 6.22):

⌦
z;r2h(w)z

↵
=

X

j

z2j /wj ·
X

k

wk � (
X

j

|zj |)2 = kzk21.

The resulting Bregman divergence Dh is known as the KL divergence:

8w, z � 0, KL(w, z) =
X

j

wj ln
wj

zj
� wj + zj ,

whereas the inequality:

8w, z 2 �, KL(w, z) � 1
2kw � zk21

is known as Pinsker’s inequality in information theory.

Algorithm 8.10: Mirror descent (MD) (Nemirovski and Yudin 1979)

We now discuss mirror descent using Bregman divergences (see Definition 4.18), an interpretation due to
Beck and Teboulle (2003). We define the next iterate as:

wt+1 = argmin
w2C

f(wt) + hw �wt;rf(wt)i+ 1
⌘t
Dh(w,wt) � f(wt) + hw �wt;rf(wt)i+ 1

2⌘t
kw �wtk2

= argmin
w2C

Dh(w, zt+1), where rh(zt+1) = rh(wt)� ⌘t ·rf(wt),

i.e. the last step projects zt+1 = (rh)�1(rh(wt)� ⌘t ·rf(wt)) to the constraint set C using the Bregman
divergence Dh (instead of the Euclidean projection). It is clear that the gradient rh serves as the mapping
J, and the equivalence to (8.1) is apparent (when C = V).
Algorithm: Mirror descent for constrained minimization
Input: w0 2 C, Legendre function h

1 for t = 0, 1, . . . do

2 compute (sub)gradient rf(wt)
3 choose step size ⌘t > 0
4 rh(zt+1) = rh(wt)� ⌘t ·rf(wt) // update in the gradient space
5 wt+1  argmin

w2C
Dh(w, zt+1) // projecting back to the constraint
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If f is L[1]-smooth, then we may choose the step size ⌘t as in projected gradient Algorithm 3.15 while if
f is L[0]-Lipschitz continuous, then we may choose the step size as in the subgradient Algorithm 5.14.
Nemirovski, A. and D. B. Yudin (1979). “Efficient methods for solving large-scale convex programming problems”.

Ekonomika i matematicheskie metody, vol. 15, no. 1, pp. 133–152.
Beck, A. and M. Teboulle (2003). “Mirror descent and nonlinear projected subgradient methods for convex optimiza-

tion”. Operations Research Letters, vol. 31, no. 3, pp. 167–175.

Example 8.11: EG belongs to MD

Let C = � and h be the KL function defined in Exercise 8.9. We now compute the Bregman projection:

argmin
w2�

KL(w, z) =
X

j

wj log
wj

zj
� wj + zj =

X

j

wj log
wj

zj/ h1, zi
� log h1, zi � 1 + h1, zi ⌘ KL(w, z

h1,zi ),

leading clearly to w+ = z/ h1, zi. We have already verified that rh(w) = lnw while (rh)�1(g) = exp(g)
(all component-wise). Thus, the mirror descent step reduces to:

zt+1 = (rh)�1(rh(wt)� ⌘t ·rf(wt)) = wt � exp(�⌘trf(wt))

wt+1 = zt+1

h1,zt+1i ,

which is exactly EG.
The key here is to choose a Legendre function h that matches the “geometry” (i.e. norm) of the constraint

set C. Needless to say, there are now infinite possibilities!

Theorem 8.12: Convergence of mirror descent for smooth function

Let f : Rd ! R be convex and L = L[1]-smooth (w.r.t. some norm k · k), C ✓ Rd be closed convex, and
⌘t is chosen so that (8.2) below holds, then for all w 2 C and t � 1, the sequence {wt} ✓ C generated by
Algorithm 8.10 satisfy:

f(wt)  f(w) +
D(w,w0)

t⌘̄t
, where ⌘̄t :=

1

t

t�1X

s=0

⌘s,

where D(w,w0) = Dh(w,w0) � 1
2kw �w0k2 for some 1-strongly convex Legendre function h.

Proof: The proof is literally the same as that of projected gradient. Indeed, using L-smoothness we have for
all w 2 C:

f(wt+1)  f(wt) + hwt+1 �wt;rf(wt)i+ 1
⌘t
D(wt+1,wt) (8.2)

 f(wt) + hw �wt;rf(wt)i+ 1
⌘t
D(w,wt)� 1

⌘t
D(w,wt+1)

 f(w) + 1
⌘t
D(w,wt)� 1

⌘t
D(w,wt+1),

where the second inequality follows from wt+1 being the Bregman projection to the convex set C, see
Proposition 4.20 and Example 4.19, and the last inequality is due to the convexity of f . Take w = wt we
see that

f(wt+1)  f(wt),

i.e., the algorithm is descending. Summing from t = 0 to t = T � 1:

T ⌘̄T · [f(wT )� f(w)] 
T�1X

t=0

⌘t[f(wt+1)� f(w)]  D(w,w0), where ⌘̄T :=
1

T

T�1X

t=0

⌘t,
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Dividing both sides by T ⌘̄T completes the proof.
If there exists a minimizer w?, then we have

f(wt)� f? 
LD(w?,w0)

t

where we have chosen ⌘t ⌘ 1/L to minimize the bound. So the function value converges to the global
minimum (thanks to convexity) at the rate of O(1/t). As before, the dependence on L and w0 makes
intuitive sense. Again, the rate of convergence does not depend on d, the dimension!

Theorem 8.13: Convergence of mirror descent for nonsmooth function

Let C ✓ Rd be a closed convex set and f : C ! R be an L = L[0]-Lipschitz continuous convex function
(w.r.t. some norm k · k). Start with w0 2 C, for any w 2 C, the sequence generated by Algorithm 8.10
satisfies:

min
0tT�1

f(wt)� f(w) 
T�1X

t=0

⌘tPT�1
s=0 ⌘s

(f(wt)� f(w)) 
2D(w,w0) + L2

PT�1
t=0 ⌘2t

2
PT�1

s=0 ⌘s
,

where D(w,w0) = Dh(w,w0) � 1
2kw �w0k2 for some 1-strongly convex Legendre function h.

Proof: As in the previous proof, since wt+1 is the Bregman projection, we have

hw;rf(wt)i+ 1
⌘t
D(w,wt) � hwt+1;rf(wt)i+ 1

⌘t
D(wt+1,wt) +

1
⌘t
D(w,wt+1)

hw �wt;rf(wt)i+ 1
⌘t
D(w,wt) � hwt+1 �wt;rf(wt)i+ 1

⌘t
D(wt+1,wt) +

1
⌘t
D(w,wt+1)

f(w)� f(wt) +
1
⌘t
D(w,wt) � �kwt+1 �wtk · krf(wt)k� + 1

2⌘t
kwt+1 �wtk2 + 1

⌘t
D(w,wt+1)

f(w)� f(wt) +
1
⌘t
D(w,wt) � ⌘tkrf(wt)k2�/2 + 1

⌘t
D(w,wt+1).

Telescoping we obtain

D(w,wT )  D(w,w0) +
T�1X

t=0

⌘2t krf(wt)k2�/2 +
T�1X

t=0

⌘tPT�1
s=0 ⌘s

(f(w)� f(wt)) ·
T�1X

s=0

⌘s.

Thus,

min
0tT�1

f(wt)� f(w) 
T�1X

t=0

⌘tPT�1
s=0 ⌘s

(f(wt)� f(w)) 
2D(w,w0) + L2

PT�1
t=0 ⌘2t

2
PT�1

s=0 ⌘s
,

as claimed.

The bound on the right-hand side vanishes iff
P

t ⌘t !1 and ⌘t ! 0.
If we fix a tolerance ✏ > 0 beforehand, then setting ⌘t = c/L2 · ✏ for some constant c 2]0, 2[ leads to:

min
0tT�1

f(wt)� f(w)  ✏,

as long as T � 2L2D(w,w0)
c(2�c) · 1

✏2 . The same claim holds for w̄T :=
PT�1

t=0
⌘tPT�1

s=0 ⌘s
wt.
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Remark 8.14: Composite setting

Duchi and Singer (2009) and Duchi et al. (2010) extended MD to the composite setting where f = ` + r
consists of a smooth component ` and a nonsmooth component r, while Duchi et al. (2012) also discussed
the stochastic setting.
Duchi, J. C. and Y. Singer (2009). “Efficient Online and Batch Learning Using Forward Backward Splitting”. Journal

of Machine Learning Research, vol. 10, pp. 2899–2934.
Duchi, J. C., S. Shalev-Shwartz, Y. Singer, and A. Tewari (2010). “Composite Objective Mirror Descent”. In: Pro-

ceedings of the 23rd Annual Conference on Learning Theory.
Duchi, J. C., A. Agarwal, M. Johansson, and M. I. Jordan (2012). “Ergodic Mirror Descent”. SIAM Journal on

Optimization, vol. 22, no. 4, pp. 1549–1578.

Remark 8.15: Connection to exponential family and natural gradient

Raskutti and Mukherjee (2015) showed that mirror descent is exactly the natural gradient algorithm on
a dual Riemannian manifold, which is expected given the gradient space update interpretation of mirror
descent. Kunstner et al. (2021) also connected mirror descent with EM for exponential families.
Raskutti, G. and S. Mukherjee (2015). “The Information Geometry of Mirror Descent”. IEEE Transactions on In-

formation Theory, vol. 61, no. 3, pp. 1451–1457.
Kunstner, F., R. Kumar, and M. Schmidt (2021). “Homeomorphic-Invariance of EM: Non-Asymptotic Convergence in

KL Divergence for Exponential Families via Mirror Descent”. In: Proceedings of The 24th International Conference

on Artificial Intelligence and Statistics, pp. 3295–3303.
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