
CO673/CS794–Fall 2022 §1 POLYNOMIAL METHODS FOR LINEAR SYSTEMS University of Waterloo

1 Polynomial methods for linear systems

Goal

Linear system, quadratic minimization, Richardson extrapolation, Chebyshev polynomial, Polayk’s heavy-
ball momentum, conjugate gradient

Alert 1.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
Nice reviews of our interest here include Forsythe (1953), Hadjidimos (1987), Saad and Vorst (2000), and

Davis et al. (2016).
This note is likely to be updated again soon.

Forsythe, G. E. (1953). “Solving linear algebraic equations can be interesting”. Bulletin of the American Mathematical
Society, vol. 59, no. 4, pp. 299–329.

Hadjidimos, A. (1987). “A survey of the iterative methods for the solution of linear systems by extrapolation, relax-
ation and other techniques”. Journal of Computational and Applied Mathematics, vol. 20, pp. 37–51.

Saad, Y. and H. A. van der Vorst (2000). “Iterative solution of linear systems in the 20th century”. Journal of
Computational and Applied Mathematics, vol. 123, no. 1–2, pp. 1–33.

Davis, T. A., S. Rajamanickam, and W. M. Sid-Lakhdar (2016). “A survey of direct methods for sparse linear systems”.
Acta Numerica, vol. 25, no. 3, pp. 383–566.

History 1.2: George Forsythe and computer science, and Waterloo

George Forsythe first coined the term “computer science” back in the 60s, and founded the first CS division
and then department (at Stanford). See here for a brief biography; see Herriot (1972) and Knuth (1972) for
his contributions in forming the CS discipline; and see Householder (1973) for a full list of his publications,
of which we only mention the non-technical but nonetheless educational ones: Forsythe (1953), Forsythe
(1959), Forsythe (1968), and Forsythe (1970).

Two of Forsythe’s PhD students (at Stanford), J. Alan George and Michael Malcolm (who appears to
be his last student), joined Waterloo CS in the 70s. One of Michael Malcolm’s PhD students (at Waterloo),
David R. Cheriton, later joined Stanford CS and managed to put his name on our school .
Herriot, J. G. (1972). “In memory of George E. Forsythe”. Communications of the ACM, vol. 15, no. 8, pp. 719–720.
Knuth, D. E. (1972). “George Forsythe and the development of computer science”. Communications of the ACM,

vol. 15, no. 8, pp. 721–726.
Householder, A. S. (1973). “George E. Forsythe (January 8, 1917 – April 9, 1972)”. SIAM Journal on Numerical

Analysis, vol. 10, no. 2, pp. viii–xi.
Forsythe, G. E. (1953). “A Numerical Analyst’s Fifteen-Foot Shelf”. Mathematical Tables and Other Aids to Compu-

tation, vol. 7, no. 44, pp. 221–228.
— (1959). “The Role of Numerical Analysis in an Undergraduate Program”. The American Mathematical Monthly,

vol. 66, no. 8, pp. 651–662.
— (1968). “What to Do Till the Computer Scientist Comes”. The American Mathematical Monthly, vol. 75, no. 5,

pp. 454–462.
— (1970). “Pitfalls in Computation, or why a Math Book isn’t Enough”. The American Mathematical Monthly,

vol. 77, no. 9, pp. 931–956.

Definition 1.3: Linear system and quadratic minimization

Our main problem in this lecture is to solve a linear system

Aw = b, (1.1)
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and the related quadratic minimization problem:

min
w

1
2 ⟨Aw,w⟩ − ⟨w,b⟩ .

We assume the matrix A is not available to us directly. Instead, we are allowed to compute the matrix-vector
products Aw and A⊤z for any w and z. We will see that, rather surprisingly, there is an optimal algorithm
for this problem!

Alert 1.4: Reducing to (symmetric) positive definite A

The linear system Aw = b is clearly equivalent to the optimization problem

min
w
∥Aw − b∥22. (1.2)

In fact, the optimization problem (1.2), a.k.a. least-squares linear regression, continues to make sense even
for an inconsistent linear system (i.e. when no solution exists). Taking derivative and setting to zero we
obtain

A⊤Aw = A⊤b, (1.3)

which amounts to multiplying A⊤ on both sides of (1.1). Pleasantly, the matrix A⊤A is symmetric positive
semidefinite, and in fact positive definite if the columns of A are linearly independent (or we add small
regularization λ∥w∥22 in (1.2)).

Therefore, we may assume w.l.o.g. that the matrix A in our linear system (1.1) is symmetric and positive
definite, in notation, A ∈ Sd++. Note that it is generally not recommended to reduce to the normal equation
(1.3), since the matrix multiplication A⊤A is expensive and may result in great loss of precision. However, it
is not a concern for us here: recall that we can only perform matrix-vector products, and (A⊤A)w = A⊤(Aw)
can be computed through exactly 1 matrix-vector multiplication with A and 1 with A⊤. We never need to
form A⊤A explicitly.

Exercise 1.5: Convex quadratic minimization and positive definite linear system

Let A ∈ Sd++ be (symmetric) positive definite. Prove that the linear system

Aw = b

is equivalent to the convex quadratic minimization problem

min
w

1
2 ⟨w, Aw⟩ − ⟨w,b⟩ . (1.4)

Algorithm 1.6: Richardson extrapolation (Richardson 1911)

Algorithm: Richardson’s first-order extrapolation for linear systems
Input: w0 ∈ Rd, A ∈ Rd×d, b ∈ Rd

1 for t = 0, 1, . . . do
2 gt ← Awt − b // compute the “gradient”
3 wt+1 ← wt − ηtgt // ηt is the step size

The “gradient” gt := Awt − b measures how much the current iterate wt is away from satisfying our
linear system, and Richardson’s algorithm simply corrects wt by subtracting some multiple (by the step size
ηt) of the residual. As we will see in the next lecture, Richardson’s algorithm (for the linear system (1.1))
exactly coincides with the gradient descent algorithm (for the quadratic minimization problem (1.4)).
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Richardson, L. F. (1911). “The approximate arithmetical solution by finite differences of physical problems involving
differential equations, with an application to the stresses in a masonry dam”. Philosophical Transactions of the
Royal Society of London. Series A, vol. 210, pp. 307–357.

History 1.7: Lewis Richardson

Richardson made fundamental contributions to weather forecasting (in an era when computers refer to actual
human beings), see his classic book “Weather Prediction by Numerical Process.” In another book “Statistics
of Deadly Quarrels,” Richardson presented data and brought statistical analysis to (human) conflicts and
wars. Our presentation of the now-called Richardson extrapolation is only the tip of the iceberg: more
effective higher order versions exist, see the very enjoyable expository article Richardson (1925) and the
more forcible notion of deferred limit in Richardson and Gaunt (1927).
Richardson, L. F. (1925). “How to Solve Differential Equations Approximately by Arithmetic”. The Mathematical

Gazette, vol. 12, no. 177, pp. 415–421.
Richardson, L. F. and J. A. Gaunt (1927). “The deferred approach to the limit”. Philosophical Transactions of the

Royal Society of London. Series A, vol. 226, pp. 299–361.

Theorem 1.8: Convergence of linear iteration process

The linear iteration process

wt+1 = Gwt + c (1.5)

is convergent for any w0 and c iff ρ(G)< 1, where

ρ(G) = max{|λ| : λ is an eigenvalue of G}

is the spectral radius of G.

Proof: Well-known; see for instance here.

We remark that Gt → 0 as t → ∞ iff ρ(G) < 1, and ρ(G) ≤ ∥G∥sp (the spectral norm, i.e., largest
singular value of G). Expanding the iteration (1.5) we can identify the limit:

wt+1 =

t∑
τ=0

Gτc+Gt+1w0 →
∞∑
τ=0

Gτc = (I −G)−1c.

Remark 1.9: Convergence rate of Richardson’s algorithm

Let ηt ≡ η, we can identify

G = I − ηA, c = ηb

in Theorem 1.8, and hence Richardson’s iterate

wt → (I −G)−1c = (ηA)−1ηb = A−1b =: w⋆,

implying its correctness. Moreover,

∥wt+1 −w⋆∥2 = ∥(I − ηA)(wt −w⋆)∥2 ≤ ∥I − ηA∥sp · ∥wt −w⋆∥2.

Assuming A is symmetric and its eigenvalues lie in the interval [σ, L], we can find an “optimal” step size
by minimizing the upper bound on the right-hand side:

min
η≥0

∥I − ηA∥sp = min
η≥0

max{|1− ησ|, |1− ηL|} =⇒ η∗ = 2
σ+L ,
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which then yields

∥wt+1 −w⋆∥2
∥wt −w⋆∥2

≤ L− σ

L+ σ
=

κ− 1

κ+ 1
, (1.6)

where κ := L/σ is the condition number of A. Thus, the residual norm ∥wt − w⋆∥2 decreases to 0 at
geometric progression, a.k.a. a linear rate of convergence.

Obviously, the larger κ is, i.e. the more ill-conditioned A is, the slower Richardson’s algorithm is. We
note that the “optimal” step size η∗ relies on our knowledge of L and σ.

Can we do better?

Exercise 1.10: Dynamic step size

If we allow the step size ηt to change from step to step, then we obtain

wt+1 −w⋆ = (I − ηtA)(wt −w⋆) = · · · =
t∏

τ=0

(I − ητA) · (w0 −w⋆).

Can you find conditions on {ηt} so that the right-hand side goes to 0?
It is tempting to repeat the analysis in Remark 1.9 by solving

min
η0,...,ηt

∥∥∥∥∥
t∏

τ=0

(I − ητA)

∥∥∥∥∥
sp

.

But we run into two immediate difficulties: (1) there does not appear to exist a closed-form solution; (2) we
have to fix the number of iterations t in advance because a different t may result in different “optimal” step
sizes. Nevertheless, Young (1954) found a sequence of ηt that is close to optimal.
Young, D. (1954). “Iterative Methods for Solving Partial Difference Equations of Elliptic Type”. Transactions of the

American Mathematical Society, vol. 76, no. 1, pp. 92–111.

Definition 1.11: Polynomials for matrices

Given a polynomial of degree k defined for a real scalar λ:

Pk(λ) = p0 + p1λ+ p2λ
2 + · · ·+ pkλ

k =

k∑
l=0

plλ
l,

we may extend it to all (real) symmetric matrices A ∈ Sd: Let {(uj , λj)}dj=1 be the eigenvectors and
eigenvalues of A (with uj ’s orthogonal and λj ’s real), then

Pk(A) :=

d∑
j=1

Pk(λj)uju
⊤
j ,

where recall that A =
∑d

j=1 λjuju
⊤
j . In other words, when applying a polynomial to a symmetric matrix,

we simply apply it to the eigenvalues while keeping the eigenvectors.
Using polynomials to approximate, we may extend the above result to any analytic function f (such as

exp, log, sin, etc.), which is known as the spectral theorem. It is also possible to extend to asymmetric
square matrices through the Jordan normal form.
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Alert 1.12: Bigger problems can be easier

Let us re-examine Richardson’s iterate with dynamic step size, through the residual

gt+1 := Awt+1 − b = A[wt − ηt(Awt − b)]− b = (I − ηtA)gt =

t∏
τ=0

(I − ητA)︸ ︷︷ ︸
Pt+1(A)

·g0,

where Pt+1 is a polynomial with degree at most t+ 1 and Pt+1(0) = 1. As mentioned above, solving

min
η0,...,ηt

∥Pt+1(A)∥sp

analytically might not be easy. So, let us forget about the explicit form of Pt+1, and aim to solve a bigger
problem: let us consider all polynomials Pt+1 with Pt+1(0) = 1 and all positive definite matrices A with
eigenvalues lying in [σ, L], which leads us to the minimax problem

f⋆ := min
P∈Pt+1

∥P∥∞, where ∥P∥∞ := max
λ∈[σ,L]

|P(λ)|, (1.7)

where Pt+1 denotes the set of polynomials of degree at most t+ 1 and P(0) = 1.

Alert 1.13: Understanding minimax

Let us think of a polynomial P as an algorithm and a matrix A as a problem instance. Then, we are
interested in finding an algorithm P that can solve a class A of problem instances in an “optimal” way.
Importantly, the algorithm P may know the problem class A but have to make up its mind before seeing
the particulars of any problem instance A, which it aims to solve. Having been deprived of this knowledge,
the algorithm P is thus forced to hedge against the “worst” problem instance A from the class A, leading
to the minimax formulation:

min
P

max
A∈A

∥P(A)∥sp.

On the other hand, if we fix the problem instance A first and allow the algorithm P to peek at it, we will
have instead

max
A∈A

min
P
∥P(A)∥sp,

which is usually trivial since the algorithm can just “cheat.”

Exercise 1.14: More general than Richardson

Let us consider the more general iterate

wt+1 = wt −
t∑

τ=0

ητ,tgτ (recall that gt := Awt − b), or equivalently wt+1 = w0 −
t∑

τ=0

βτ,tgτ . (1.8)

Prove that again

gt+1 = Pt+1(A)g0

for some polynomial Pt+1 with Pt+1(0) = 1.
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Definition 1.15: Chebyshev polynomial Z code

We recall that the Chebyshev polynomial is defined recursively as:

T0(λ) = 1, T1(λ) = λ, Tk+1(λ) = 2λ ·Tk(λ)−Tk−1(λ),

or directly as:

Tk(λ) =


cos(k · arccosλ), if |λ| ≤ 1

cosh(k · arccoshλ) = 1
2

[
(λ−

√
λ2 − 1)k + (λ+

√
λ2 − 1)k

]
, if λ > 1

(−1)k cosh
(
k · arccosh(−λ)

)
, if λ < −1

.

It can be verified recursively that Tk is indeed a polynomial of degree k. In particular, for |λ| ≤ 1 (and
k ≥ 1), we have

|Tk(λ)| ≤ 1, with equality attained iff λ = cos l
kπ, where l = 0, 1, . . . , k.

Exercise 1.16: Cosine and Cosh

Recall that the analytic continuation of cosine is

cos(z) =
eiz + e−iz

2
= cosh(iz).

Prove that

cos(k · arccos z) = cosh(k · arccosh z).

Alert 1.17: Crazy polynomials Z code

Let us see what happens if we merely extend the range from [−1, 1] (in Definition 1.15) to [−1.1, 1.1]:
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Theorem 1.18: Minimaximality of the Chebyshev polynomial (Markoff 1916)

Let λ0 ̸∈ [−1, 1]. Then, the normalized Chebyshev polynomial N (λ) = Nk(λ) := Tk(λ)/Tk(λ0) is the
unique solution of the minimax problem:

f⋆ := min
P∈Pk(λ0)

f(P), where f(P) = ∥P∥∞ := max
λ∈[−1,1]

|P(λ)|, (1.9)

where Pk(λ0) denotes the set of polynomials of degree at most k and P(λ0) = 1 for some λ0 (some
normalization, such as the proceeding one, is necessary to eliminate the trivial zero polynomial).

Proof: Suppose to the contrary we have another polynomial P with f(P) ≤ f(N ). Then, choose {λi : i =
1, . . . , k + 1} (see Definition 1.15) such that

|N (λi)| = f(N ) ≥ f(P) ≥ |P(λi)|.

Since N alternates sign on {λi}, we know N −P alternates sign on {λi} as well (including the possibility
to vanish). Applying the intermediate value theorem we know N −P has (at least) k zeros on [−1, 1]. But
we also have N (λ0) −P(λ0) = 1 − 1 = 0, forcing N = P thanks to the fundamental theorem of algebra
(recall that N −P is a polynomial of degree at most k).

Note that since λ0 ̸∈ [−1, 1], Tk(λ0) ̸= 0 hence N is well-defined. We emphasize that from our proof it
is clear that the (normalized) Chebyshev polynomial may no longer be optimal or be the unique minimizer
when λ0 ∈ [−1, 1] or under different constraints or normalization (Fischer and Freund 1990; Fischer and
Freund 1991). For example, take λ0 = 1, k = 2 and consider P(λ) = 1− 1

4 (λ− λ0)
k.

Markoff, W. (1916). “Über Polynome, die in einem gegebenen Intervalle möglichst wenig von Null abweichen”. Math-
ematische Annalen, vol. 77. translated by J. Grossmann from the original in 1892, pp. 213–258.

Fischer, B. and R. Freund (1990). “On the constrained Chebyshev approximation problem on ellipses”. Journal of
Approximation Theory, vol. 62, no. 3, pp. 297–315.

— (1991). “Chebyshev polynomials are not always optimal”. Journal of Approximation Theory, vol. 65, no. 3, pp. 261–
272.
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History 1.19: Markov brothers

Vladimir Markov and his older brother Andrey Markov both studied under Pafnuty Chebyshev. The above
result is obtained by Vladimir Markov at a very young age while Markov’s inequality and the Markov chain
(process) are due to Andrey Markov. Vladimir Markov died of tuberculosis at the age of 25, which had
nothing to do with the tiger’s vengeance!

Remark 1.20: Understanding the minimaximality

We identify a polynomial P ∈ Pk(λ0) with its coefficients p ∈ Rk+1 such that

P(λ) :=

k∑
j=0

pj+1λ
j = ⟨p,λ⟩ , where λ := (1, λ, λ2, . . . , λk) ∈ Rk+1 and ⟨p,λ0⟩ = 1.

Thus, we reformulate (1.9) equivalently in the familiar Euclidean space Rk+1:

f⋆ := min
p∈Rk+1,⟨p,λ0⟩=1

f(p), where f(p) := max
λ∈[−1,1]

| ⟨p,λ⟩ |, (1.10)

which clearly is convex (in p) and admits a minimizer. Surprisingly, we can find the unique minimizer of
(1.10) hence also (1.9) analytically.

We apply the usual subdifferential optimality condition to the convex problem (1.10): p solves (1.10)

iff 0 ∈ ∂f(p) + λ⊥
0 , where ∂f(p) = conv{sign(⟨p,λ⟩) · λ : f(p) = | ⟨p,λ⟩ |, λ ∈ [−1, 1]},

i.e., there exist n ∈ N, −1 ≤ λ1 < λ2 < · · · < λn ≤ 1, αi > 0 such that (w.l.o.g. we omit the possible
alternative case with −λ0 replacing λ0):

n∑
i=1

αiσiλi = λ0, where σi := sign(⟨p,λi⟩) ∈ {±1} (for otherwise P ≡ 0 and P(λ0) = 0 ̸= 1) ,

or in explicit matrix form 
1 1 · · · 1
λ1 λ2 · · · λn

λ2
1 λ2

2 · · · λ2
n

...
...

. . .
...

λk
1 λk

2 · · · λk
n


︸ ︷︷ ︸

A


α1σ1

α2σ2

...
αnσn

 =


1
λ0

λ2
0
...
λk
0

 .

If n ≤ k + 1, the Vandermonde matrix A is non-singular. Thus, for n ≤ k, the only possibility is n = 1 and
λ1 = λ0 (recall that we take αi > 0). If n = k + 1 (and assuming k ≥ 1 w.l.o.g.), then λ0 ̸= λi for all i.
Applying Cramer’s rule we have

αiσi =

det


1 · · · 1 1 1 · · · 1
λ1 · · · λi−1 λ0 λi+1 · · · λk+1

λ2
1 · · · λ2

i−1 λ2
0 λ2

i+1 · · · λ2
k+1

...
. . .

...
...

...
. . .

...
λk
1 · · · λk

i−1 λk
0 λk

i+1 · · · λk
k+1



det


1 · · · 1 1 1 · · · 1
λ1 · · · λi−1 λi λi+1 · · · λd+1

λ2
1 · · · λ2

i−1 λ2
i λ2

i+1 · · · λ2
d+1

...
. . .

...
...

...
. . .

...
λk
1 · · · λk

i−1 λk
i λk

i+1 · · · λk
k+1



=
∏
j ̸=i

λ0 − λj

λi − λj
=

∏
j

(λ0 − λj) ·
λ0 − λi∏

j ̸=i(λi − λj)
.
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Let λr < λ0 < λr+1. It follows that

σi+1 =

{
−σi, i ̸= r

σi, i = r
,

which is known as equi-oscillation (i.e., the sign oscillates up to λr and from λr+1, with the exception at
{λr, λr+1} which sandwiches λ0).

We may now consider the special case when λ0 ̸∈ [−1, 1], which rules out n = 1 and the existence of
r. Thus, for any P ∈ Pk(λ0) to attain the minimum value f⋆ in (1.9), there must exist −1 ≤ λ1 < · · · <
λk+1 ≤ 1 such that

∀i, sign(P(λi+1)) = − sign(P(λi)), |P(λi)| = max
λ∈[−1,1]

|P(λ)|, and P(λ0) = 1. (1.11)

It is clear that the normalized Chebyshev polynomial C satisfies the necessary condition (1.11).

Exercise 1.21: Other normalizations

Can you apply a similar argument to find the minimizer of the following problem:

min
p∈Rk+1,pk+1=1

f(p), where f(p) = max
λ∈[−1,1]

| ⟨p,λ⟩ |, λ = (1, λ, λ2, . . . , λk).

(Such polynomials are called monic, i.e. with leading coefficient 1.)
How about the seemingly similar problem:

min
p∈Rk+1,p1=1

f(p), where f(p) = max
λ∈[−1,1]

| ⟨p,λ⟩ |, λ = (1, λ, λ2, . . . , λk).

(Such polynomials have trailing coefficient 1, i.e. p1 = P(0) = 1.)

Exercise 1.22: Translation and scaling

We leave the following key results as exercises.

• Based on Theorem 1.18, prove that the unique solution for (1.7), where λ ∈ [σ, L] and P(0) = 1, is

Ct+1(λ) =
Tt+1(S (λ))

Tt+1(S (0))
, where S (λ) :=

2λ

L− σ
− L+ σ

L− σ
.

(Observe that 0 ̸∈ [σ, L] and hence S (0) = − L+σ
L−σ ̸∈ [−1, 1].)

• Prove that, recursively,

C0(λ) = 1, C1(λ) =
S (λ)
S (0) , Ct+1(λ) =

S (λ)
S (0) · γt · Ct(λ)− (γt − 1) · Ct−1(λ), where

γt := 2S (0)
Tt(S (0))

Tt+1(S (0))
=

4S 2(0)

4S 2(0)− γt−1
, γ0 = 2.

• Prove that with γ0 = 2 ≤ 2
(

κ+1
κ−1

)2

, we have

γt ↓ γ := 2(κ+1)
(
√
κ+1)2

.

We note that the nonlinear equation γ = 4S 2(0)
4S 2(0)−γ has two fixed points:

γ < 2 < 2
(
κ+1
κ−1

)2
< γ := 2(κ+1)

(
√
κ−1)2

.
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Algorithm 1.23: Chebyshev method (e.g. Flanders and Shortley 1950)

Let us now apply the (normalized) Chebyshev polynomial in Exercise 1.22 to the gradient:

gt+1 = Ct+1(A)g0 =⇒ gt+1 = S (A)
S (0) · γtgt − (γt − 1) · gt−1 = gt − 2γt

L+σAgt + (γt − 1)(gt − gt−1)

(ηt :=
2

L+σ , cf. (1.6)) =⇒ gt+1 = gt − γtηtAgt + (γt − 1)(gt − gt−1)

(recall gt = Awt − b) =⇒ �Awt+1 −�b =�Awt −�b− γtηt�Agt + (γt − 1)(�Awt −�Awt−1)

=⇒ wt+1 = wt − γtηt(Awt − b)︸ ︷︷ ︸
Richardson/gradient

+ (γt − 1)︸ ︷︷ ︸
≥0

(wt −wt−1)︸ ︷︷ ︸
momentum

= wt + (γt − 1)(wt −wt−1)︸ ︷︷ ︸
extrapolation

− γtηt(Awt − b)︸ ︷︷ ︸
Richardson/gradient

=

extrapolation︷ ︸︸ ︷
γt [wt − ηt(Awt − b)]︸ ︷︷ ︸

Richardson/gradient

+ (1− γt)wt−1 .

Algorithm: Chebyshev method for linear systems
Input: w0 ∈ Rd, A ∈ Sd++ with spectrum in [σ, L], b ∈ Rd, γ0 = 2, κ = L/σ

1 g0 ← Aw0 − b

2 w1 ← w0 − η0g0 // e.g. ηt ≡ 2
L+σ

3 for t = 1, 2, . . . do
4 gt ← Awt − b // gradient

5 γt ← 4(κ+1)2

4(κ+1)2−(κ−1)2γt−1
// γt is the momentum size

6 wt+1 ← wt− γt · ηtgt + (γt − 1) (wt −wt−1) // e.g. ηt ≡ 2
L+σ is the step size

Some immediate remarks are in order:

• The first two steps (line 1-2) are simply a Richardson (gradient) step. In fact, if we set γt ≡ 1 we reduce
to the Richardson Algorithm 1.6, even with the “optimal” constant step size we derived in Remark 1.9!

• On the other hand, if we set γt to its limit γ (see Exercise 1.22), we obtain Polyak’s heavy-ball
momentum (Polyak 1964):

wt+1 ← wt− 4
(
√
L+

√
σ)2

gt +
√
L−

√
σ√

L+
√
σ
(wt −wt−1). (1.12)

• The Chebyshev Algorithm 1.23 is minimax-optimal among all algorithms whose gradients satisfy

∀t, gt = Pt(A)g0 for a sequence of polynomials {Pt}t, Pt(0) ≡ 1,

in particular, all algorithms of the form (1.8), which includes the Richardson Algorithm 1.6 with any
pre-determined step size {ηt}t (meaning ηt cannot depend on A)!

• The Chebyshev algorithm relies crucially on knowing both σ and L, i.e. an interval that contains the
spectrum of A. When our estimates of σ and L are off, especially when we over-estimate σ, Chebyshev’s
algorithm could quickly become inferior.

• We have employed the most straightforward, albeit not necessarily the most numerically stable (see
Alert 1.17), recursion in the Chebyshev algorithm. For other equivalent implementations, see Gutknecht
and Röllin (2002).

Flanders, D. A. and G. Shortley (1950). “Numerical determination of fundamental modes”. Journal of Applied Physics,
vol. 21, no. 12, pp. 1326–1332.

Polyak, B. T. (1964). “Some methods of speeding up the convergence of iteration methods”. USSR Computational
Mathematics and Mathematical Physics, vol. 4, no. 5, pp. 791–803.

Gutknecht, M. H. and S. Röllin (2002). “The Chebyshev iteration revisited”. Parallel Computing, vol. 28, no. 2,
pp. 263–283.
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Theorem 1.24: Convergence rate of the Chebyshev method

The iterates of the Chebyshev Algorithm 1.23 enjoy the following linear rate of convergence:

∥wt −w⋆∥2 ≤
[
cosh ln

(√
κ+1√
κ−1

)t
]−1

· ∥w0 −w⋆∥2 ≤ 2
(√

κ−1√
κ+1

)t

· ∥w0 −w⋆∥2 .

Proof: Since Awt −Aw⋆ = Awt − b = gt = Ct(A)g0 = Ct(A)(Aw0 −Aw⋆), multiplying A−1 we obtain

∥wt −w⋆∥2 ≤ ∥Ct(A)∥sp · ∥w0 −w⋆∥2
≤ 1

cosh(t·arccosh κ+1
κ−1 )

· ∥w0 −w⋆∥2.

The proof is complete after verifying that arccosh κ+1
κ−1 = ln

√
κ+1√
κ−1

.

The bound here is a significant improvement of that for Richardson’s algorithm equipped with “optimal”
constant step size (cf. (1.6)): we reduce the dependence on the condition number κ to its square root

√
κ

(and at the same time lose a minor factor of 2). To see the effect more clearly, let us examine how many
iterations are required in order to achieve ∥wt −w⋆∥2 ≤ ϵ:

• For Richardson’s algorithm:(
κ−1
κ+1

)t

∥w0 −w⋆∥2 ≤ ϵ =⇒ t ≤ ln ∥w0−w⋆∥2

ϵ / ln κ+1
κ−1 ≤

κ+1
2 ln ∥w0−w⋆∥2

ϵ .

(We used the fact that ln(κ− 1) ≤ ln(κ+ 1)− 2
κ+1 .)

• For Chebyshev’s algorithm, similarly:

2
(√

κ−1√
κ+1

)t

∥w0 −w⋆∥2 ≤ ϵ =⇒ t ≤
√
κ+1
2 ln ∥w0−w⋆∥2

ϵ/2 .

Exercise 1.25: Linear rate of convergence for Polyak’s momentum

Use a similar argument as in Theorem 1.24 to derive the convergence rate of Polyak’s algorithm (1.12).

Remark 1.26: Can we still do better?

The answer is No and Yes:

• A sequence of works in Nemirovski and Polyak (1984a), Nemirovski and Polyak (1984b), Nemirovski
(1991), and Nemirovski (1992) proved that no algorithm can uniformly improve the Chebyshev algo-
rithm, even for those not in the form of (1.8)! This is a very surprising result, as it rejects the necessity
to keep track of the entire history of the algorithm: keeping only the last iterate as in Richardson’s
algorithm is suboptimal while combining the last 3 iterates, even in any complicated nonlinear way, is
not advantageous; linearly combining the last 2 iterates suffices! (Not 1, not 3, but 2!)

• The optimality of Chebyshev’s algorithm relies on two crucial assumptions: (a) the algorithm is non-
adaptive, meaning that it cannot adapt its behavior based on the information collected on A; (b) the
algorithm needs to know σ and L. Both assumptions may not be reasonable, and this is where we may
still improve the Chebyshev algorithm.

Nemirovski, A. S. and B. T. Polyak (1984a). “Iterative methods for solving linear ill-posed problems under precise
information I”. Engineering Cybernetics: Soviet Journal of Computer and Systems Science, vol. 22, no. 3, pp. 1–
11.
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Nemirovski, A. S. and B. T. Polyak (1984b). “Iterative methods for solving linear ill-posed problems under precise
information II”. Engineering Cybernetics: Soviet Journal of Computer and Systems Science, vol. 22, no. 4, pp. 50–
56.

Nemirovski, A. S. (1991). “On optimality of Krylov’s information when solving linear operator equations”. Journal
of Complexity, vol. 7, no. 2, pp. 121–130.

— (1992). “Information-based complexity of linear operator equations”. Journal of Complexity, vol. 8, no. 2, pp. 153–
175.

Algorithm 1.27: Conjugate gradient (e.g. Lanczos 1952; Hestenes and Stiefel 1952)

Algorithm: Conjugate gradient for linear systems
Input: w0 ∈ Rd, A ∈ Sd++, b ∈ Rd, γ0 = 1

1 g0 ← Aw0 − b
2 η0 ← ∥g0∥22/∥g0∥2A // ∥g∥2A := ⟨Ag,g⟩
3 w1 ← w0 − η0g0

4 for t = 1, 2, . . . do
5 gt ← Awt − b // gradient
6 ηt ← ∥gt∥22/∥gt∥2A // step size

7 γt ← ηt−1∥gt−1∥2
2γt−1

ηt−1∥gt−1∥2
2γt−1−ηt∥gt∥2

2
// γt is the momentum size

8 wt+1 ← wt− γt · ηtgt + (γt − 1) (wt −wt−1)

We note that the step size ηt is locally optimal:

ηt = argmin
η>0

1
2 ⟨A(wt − ηgt),wt − ηgt⟩ − ⟨wt − ηgt,b⟩ .

The striking similarity between the conjugate gradient and the Chebyshev Algorithm 1.23 is apparent!
However, conjugate gradient requires no a priori knowledge of A, and it can be shown that it terminates
after at most d iterations (barring numerical errors)!

Lanczos, C. (1952). “Solution of systems of linear equations by minimized iterations”. Journal of Research of the
National Institute of Standards and Technology, vol. 49, no. 1, pp. 33–53.

Hestenes, M. R. and E. Stiefel (1952). “Methods of Conjugate Gradients for Solving Linear Systems”. Journal of
Research of the National Institute of Standards and Technology, vol. 49, no. 6, pp. 409–436.

History 1.28: Alexei Nikolaevich Krylov

See here for a short biography of Alexei Nikolaevich Krylov, and here for the original Russian paper that
introduced the Krylov subspace.

Example 1.29: Comparison Z code
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• Cheby and Polyak oscillate, i.e. they are not descending algorithms, despite of the overall descending
trend. In a later lecture we’ll see how to iron them.

• Richardson, with a suitable step size, is always descending. It can even be faster in the initial stage,
or even entirely for certain instances.

• Oh boy, that conjugate gradient is fast!

Do the above experiments contradict with the minimax-optimality of the Chebyshev algorithm? Shouldn’t
it be the “best”?

Exercise 1.30: Finite termination of the Chebyshev algorithm?

Since conjugate gradient always terminates after (at most) d iterations and the Chebyshev algorithm is
minimax-optimal, does it follow that the Chebyshev algorithm must also terminate after (at most) d itera-
tions?

Yaoliang Yu 14 –Version 0.13–Sep 25, 2021–


	Polynomial methods for linear systems
	Bilevel Optimization



