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21 Extragradient

Goal

Extragradient, convergence and convergence rate, line search, single gradient/projection variants, forward-
backward-forward

Alert 21.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Definition 21.2: Problem

In this lecture we continue studying algorithms for solving a smooth variational inequality (VI):

find w⇤ 2 C such that 8w 2 C, hw �w⇤,Twi � hw �w⇤,Tw⇤i � 0,

where T : C ✓ Rd ! Rd is Lipschitz continuous (not strongly) monotone.
We remind that with T = (@xf, @y-f) and C = X⇥ Y we may reduce the minimax problem

min
x2X

max
y2Y

f(x,y) = max
y2Y

min
x2X

f(x,y)

to the VI above (at least when a saddle point exists and f is convex in x and concave in y).

Algorithm 21.3: Extragradient (EG, Korpelevich 1976)

We have proved in Theorem 19.14 that GDA converges linearly if T is L-Lipschitz continuous and �-strongly
monotone. The latter assumption can be removed by regularization, as discussed in Remark 18.46 and
Alert 19.5. Below we present yet another ingenious algorithm that removes the strongly monotone assump-
tion and converges provably faster.
Algorithm: Extragradient for finding a zero of T = A+ B

Input: w0 2 domA ✓ domB

1 for t = 0, 1, 2, . . . do
2 choose step size ⌘t > 0
3 w̃t = J⌘t

A
(wt � ⌘tBwt) // peek

4 wt+1 = J⌘t

A
(wt � ⌘tBw̃t) // update with peeked information

Korpelevich, G. M. (1976). “The extragradient method for finding saddle points and other problems”. Ekonomika i
matematicheskie metody, vol. 12, no. 4, pp. 747–756.

Theorem 21.4: Convergence of vanilla extra-gradient (EG)

Let B : Rd
◆ Rd

be L-Lipschitz and monotone, A : Rd
◆ Rd

be maximal monotone with domA ✓ domB,

and the sum T := A+B be maximal monotone. Set ⌘t 2 [0, 1/L]. Then, the following estimate holds for the

extra-gradient Line 4:

8(w,w⇤) 2 gphT,a⇤ 2 Aw, hz̃t �w,w⇤i 
tX

k=0

at,k hw̃k �w,Bw̃k + a⇤i  kw0 �wk22
2Ht

, where

Yaoliang Yu 233

https://cs.uwaterloo.ca/~y328yu/classics/Korpelevich76.pdf


CO673/CS794–Fall 2022 §21 EXTRAGRADIENT University of Waterloo

z̃t :=
Xt

k=0
at,kw̃k, at,k := ⌘k/Ht, Ht :=

Xt

k=0
⌘k.

• If Ht !1, then either F := T
�10 = ; and kz̃tk ! 1, or z̃t ! z1 2 F.

• If 0 < lim inft ⌘t  lim sup
t
⌘t < 1/L and assume F 6= ;, then wt � w̃t ! 0 and w̃t ! w1 2 F.

Proof: The proof is similar to Theorem 19.3. Fix any (w,w⇤) 2 gphT and a⇤ 2 Aw. We apply firm
nonexpansiveness of J⌘t

A
(see Exercise 16.9) to wt+1 and to w̃t:

kwt+1 �wk22 = kJ⌘t

A
[wt � ⌘tBw̃t]� J⌘t

A
(w + ⌘ta

⇤)k22
 kwt �w � ⌘t(Bw̃t + a⇤)k22 � kwt �wt+1 � ⌘t(Bw̃t+a⇤)k22
= kwt �wk22 � kwt �wt+1k22 + 2⌘t hw �wt+1,Bw̃t+a⇤i ,

kw̃t �wk22  kwt �wk22 � kwt � w̃tk22 + 2⌘t hw � w̃t,Bwt+a⇤i . (21.1)

We set w = wt+1 in (21.1) and add to the previous inequality:

kwt+1�wk22  kwt�wk22 � kw̃t�wt+1k22 � kwt�w̃tk22 + 2⌘t[hw̃t�wt+1,Bw̃t�Bwti+ hw�w̃t,Bw̃t+a⇤i]
 kwt�wk22�kw̃t�wt+1k22�kwt�w̃tk22+2⌘t[kw̃t�wt+1k2 ·kBwt�Bw̃tk2+hw�w̃t,Bw̃t+a⇤i]

(B L-Lipschitz)  kwt�wk22�kw̃t�wt+1k22�kwt�w̃tk22 + 2⌘t[kw̃t�wt+1k2 · Lkwt�w̃tk2+ hw�w̃t,Bw̃t+a⇤i]
 kwt�wk22 �(1� ⌘tL)(kw̃t �wt+1k22 + kwt � w̃tk22) +2⌘t hw�w̃t,Bw̃t+a⇤i (21.2)

(B monotone)  kwt�wk22 �(1� ⌘tL)(kw̃t �wt+1k22 + kwt � w̃tk22) +2⌘t hw�w̃t,w
⇤i. (21.3)

Since ⌘tL  1 the middle term is negative. Divide both sides of (21.3) by Ht :=
P

t

k=0 ⌘k and sum from
k = 0 to k = t:

8(w,w⇤) 2 domT, hz̃t �w,w⇤i 
tX

k=0

at,k hw̃k �w,Bw̃k + a⇤i  kw0 �wk22
2Ht

.

When Ht !1, it follows from the maximal monotonicity of T that any limit point of z̃t is a zero. Therefore,
either z̃t blows up or there exists w? 2 F, whose existence we assume from now on. Continuing from (21.3)
where we set w = w? (so that we may choose w⇤ = 0), it follows that {wt} is Fejér monotone w.r.t. F. We
can thus verify Proposition 16.2 as in Theorem 19.3 to conclude that z̃t converges to some z1 2 F.

If lim sup
t
⌘t < 1/L, it follows from (21.3) (with w = w?) that

kw̃t �wt+1k22 + kwt � w̃tk22 ! 0 hence also kwt �wt+1k2 ! 0. (21.4)

We need only prove any limit point of the Fejér sequence {wt}, or equivalently {w̃t}, is a zero. Indeed, from
(21.3) we have:

0 hwt+1 �w �wt +w,wt+1 �w +wt �wi = kwt+1 �wk22 � kwt �wk22  2⌘t hw � w̃t,w
⇤i .

Since lim inft ⌘t > 0, passing to the limit completes the proof.

The proof here is patterned after Theorem 19.3. When F 6= ;, we only need the following weaker
monotonicity property of B (to derive (21.4)):

8w? 2 F, 8(w,b⇤) 2 gphB, hw �w?,b
⇤i � 0,

and we just apply continuity of B in (21.2) to conclude that any limit point of w̃t is a zero.
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Remark 21.5: Comparison

Thus, for a Lipschitz continuous monotone operator B, we have managed to weaken the condition on ⌘t and
proved convergence of the direct sequence wt without averaging! Setting ⌘t ⌘ ⌘ yields O(1/t) rate of con-
vergence (for the averaged sequence z̃t), which is significantly faster than the Õ(1/

p
t) rate in Theorem 19.3

(with ⌘t = 1/(
p
t ln1+✏ t) for any ✏ > 0). On the other hand, Golowich et al. (2020) recently proved that

the direct sequence wt converges at O(1/
p
t) rate, which is tight and significantly worse than the averaged

sequence!
Golowich, N., S. Pattathil, C. Daskalakis, and A. Ozdaglar (2020). “Last Iterate is Slower than Averaged Iterate

in Smooth Convex-Concave Saddle Point Problems”. In: Proceedings of Thirty Third Conference on Learning
Theory, pp. 1758–1784.

Remark 21.6: Line search (Khobotov 1987)

Inspecting the proof of Theorem 21.4 for where the L-Lipschitz continuity of B is used, we realize that we
can and perhaps should perform the following line search (particularly when L is not known in advance):

⌘t = min

⇢
⌘̄, �

kwt � w̃tk2
kBwt � Bw̃tk2

�
, where � 2 (0, 1)

and ⌘̄ is a rough estimate of 1/L. Note however that w̃t itself depends on ⌘t, so we resort to line search in
the spirit of Amijo:

1 ⌘t  2⌘̄
2 w⇤

t
 Bwt

3 repeat
4 ⌘t  ⌘t/2
5 w̃t  J⌘t

A
(wt � ⌘tw⇤

t
)

6 until ⌘t  � kwt�w̃tk2

kw⇤
t�Bw̃tk2

It is clear from our proof of Theorem 21.4 that the sequence {wt} remains to be Fejér monotone w.r.t.
the solution set hence {wt} and also {w̃t} are bounded. Thus, we only need B to be locally Lipschitz
continuous, from which we immediately deduce that ⌘t � ⌘ > 0 hence Theorem 21.4 continues to hold and
line search runs for at most 1 + ln(⌘̄/⌘) iterations.
Khobotov, E. N. (1987). “Modification of the extra-gradient method for solving variational inequalities and certain

optimization problems”. USSR Computational Mathematics and Mathematical Physics, vol. 27, no. 5, pp. 120–
127.

Remark 21.7: When not to use EG

Needless to say, we could apply the EG Line 4 to minimize any (smooth, convex) function. However, there is
no advantage in doing so, since we get essentially the same convergence rate as gradient descent (GD) while
doubling per-step cost and suffering a smaller step size (recall in EG ⌘t 2 (0, 1/L) while in GD ⌘t 2 (0, 2/L)).

Similarly, there is no advantage of applying EG to finding a fixed point of a nonexpansion T. Although
the naive iteration w  T(w) may not converge, Krasnosel’skĭi’s method (Krasnosel’skĭı 1955; Schaefer
1957)

w [(1� ⌘)Id + ⌘T]w, i.e. the gradient algorithm w w � ⌘(Id� T)w,

converges for any ⌘ 2 (0, 1) while EG can only allow ⌘ 2 (0, 1
2 ) (since Id� T is 2-Lipschitz continuous).

Krasnosel’skĭı, M. A. (1955). “Two remarks on the method of successive approximations”. Uspekhi Mat. Nauk, vol. 10,
no. 1, pp. 123–127.

Schaefer, H. (1957). “Über die Methode sukzessiver Approximationen”. Jahresbericht der Deutschen Mathematiker-
Vereinigung, vol. 59, no. 1, pp. 131–140.
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Example 21.8: Lagrangian for minimax

Consider the following minimax problem:

min
x2X,g(x)0

max
y2Y,h(y)0

f(x,y),

where we have separated some complicated functional constraints from the feasible domain of x and y,
respectively. We introduce the Lagrangian:

min
x2X

max
y2Y,µ�0

min
⌫�0

f(x,y) + µ>g(x)� ⌫>h(y),

Under certain conditions on y we have strong duality w.r.t. (y,µ) and ⌫, so we may swap the inner max
and min:

min
x2X,⌫�0

max
y2Y,µ�0

f(x,y) + µ>g(x)� ⌫>h(y).

Under further conditions on x we may have full strong duality to completely swap min and max:

max
y2Y,µ�0

min
x2X,⌫�0

f(x,y) + µ>g(x)� ⌫>h(y).

We may apply the EG Line 4 to solve the above primal-dual problems simultaneously (provided that all
functions involved are continuously differentiable). This is where Khobotov’s line search in Line 6 is con-
venient: verifying continuous differentiability and existence of a saddle point suffices, and the rest is left to
line search, which can even accelerate convergence! This idea of course applies to any monotonic algorithm.

Example 21.9: EG for linear program

Following Korpelevich (1976), we apply EG to the linear program:

p? = min
u�0

hu, ci s.t. Au � b

d? = max
v�0

hb,vi s.t. A>v  c.

We assume the Lagrangian

min
u�0

max
v�0

hu, ci+ hb�Au,vi

has a unique saddle point w? = (u?,v?). Choose the step size ⌘t so that EG iterates wt = (ut,vt) and
w̃t = (ũt, ṽt) converge to a saddle point w? = (u?,v?). Let J = supp(v?) = {j : v?

j
6= 0} and J̄ its

complement. Similarly we define I and Ī for u?.
Korpelevich, G. M. (1976). “The extragradient method for finding saddle points and other problems”. Ekonomika i

matematicheskie metody, vol. 12, no. 4, pp. 747–756.

Algorithm 21.10: Past extragradient (pEG, Popov 1980)

The following ingenious variant only requires 1 evaluation of the operator T but still 2 projections per step.
Compared to the extragradient Line 4, we simply recycle the past evaluation Tw̃t�1 to replace Twt, saving
us 1 evaluation of T.
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Algorithm: Past extragradient for solving a smooth monotone VI
Input: w0 = w̃�1 2 C ✓ domT

1 for t = 0, 1, 2, . . . do
2 choose step size ⌘t > 0
3 w̃t = P

C
(wt � ⌘tTw̃t�1)

4 wt+1 = P
C
(wt � ⌘tTw̃t)

Popov, L. D. (1980). “A modification of the Arrow-Hurwicz method for search of saddle points”. Mathematical notes
of the Academy of Sciences of the USSR, vol. 28, no. 5, pp. 845–848.

Algorithm 21.11: Modified extragradient (mEG, Tseng 2000)

Another ingenious algorithm due to Tseng (2000) requires only 1 projection but still 2 evaluations of T per
step. Note that this variant requires say domT = Rd.
Algorithm: Tseng’s modified forward-backward splitting
Input: w0 2 C ✓ domT

1 for t = 0, 1, 2, . . . do
2 choose step size ⌘t > 0
3 w̃t = P

C
(wt � ⌘tTwt)

4 wt+1 = w̃t � ⌘t(Tw̃t � Twt)

Tseng, P. (2000). “A Modified Forward-Backward Splitting Method for Maximal Monotone Mappings”. SIAM Journal
on Control and Optimization, vol. 38, no. 2, pp. 431–446.

Algorithm 21.12: Optimistic extragradient (oEG, Daskalakis et al. 2018)

Obviously, if we now combine the previous two ideas, we obtain a variant that only requires 1 projection
and 1 evaluation of T per step!
Algorithm: Optimistic extragradient for solving a smooth monotone VI
Input: w0 = w̃�1 2 C ✓ domT

1 for t = 0, 1, 2, . . . do
2 choose step size ⌘t > 0
3 w̃t = P

C
(wt � ⌘tTw̃t�1)

4 wt+1 = w̃t � ⌘t(Tw̃t � Tw̃t�1)

Daskalakis, C., A. Ilyas, V. Syrgkanis, and H. Zeng (2018). “Training GANs with optimism”. In: The 6th International
Conference on Learning Representations.

Algorithm 21.13: Reflected extragradient (rEG, Malitsky 2015)

Another variant that uses reflection and also enjoyes 1 projection and 1 evaluation of T per step. Note that
this variant requires say domT ◆ 2C � C.
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Algorithm: Reflected extragradient for solving a smooth monotone VI
Input: w0 = w�1 2 C ✓ domT

1 for t = 0, 1, 2, . . . do
2 choose step size ⌘t > 0
3 w̃t = 2wt �wt�1

4 wt+1 = P
C
(wt � ⌘tTw̃t)

Malitsky, Y. (2015). “Projected Reflected Gradient Methods for Monotone Variational Inequalities”. SIAM Journal
on Optimization, vol. 25, no. 1, pp. 502–520.

Remark 21.14: Mirror-Prox (Nemirovski 2004)

Nemirovski (2004) equipped the extragradient Line 4 with Bregman divergence and gave it a natural inter-
pretation as approximation of the proximal point Algorithm 4.14. See also Nesterov (2007).
Nemirovski, A. (2004). “Prox-Method with Rate of Convergence O(1/t) for Variational Inequalities with Lipschitz

Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems”. SIAM Journal on Opti-
mization, vol. 15, no. 1, pp. 229–251.

Nesterov, Y. (2007). “Dual extrapolation and its applications to solving variational inequalities and related problems”.
Mathematical Programming, vol. 109, no. 2, pp. 319–344.
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