CS794/C0673: Optimization for Data Science Lec 05: Subgradient

Yaoliang Yu

September 23, 2022

Problem

Nonsmooth minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in C} f(\mathbf{w})
$$

- f : nonsmooth and possibly nonconvex
- C: constraint, possibly nonconvex
- Minimizer may or may not be attained
- Maximization is just negation

Problem

Nonsmooth minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in C} f(\mathbf{w})
$$

- f : nonsmooth and possibly nonconvex
- C: constraint, possibly nonconvex
- Minimizer may or may not be attained
- Maximization is just negation

Problem

Nonsmooth minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in C} f(\mathbf{w})
$$

- f : nonsmooth and possibly nonconvex
- C : constraint, possibly nonconvex
- Minimizer may or may not be attained
- Maximization is just negation

Problem

Nonsmooth minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in C} f(\mathbf{w})
$$

- f : nonsmooth and possibly nonconvex
- C : constraint, possibly nonconvex
- Minimizer may or may not be attained
- Maximization is just negation

Problem

Nonsmooth minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in C} f(\mathbf{w})
$$

- f : nonsmooth and possibly nonconvex
- C : constraint, possibly nonconvex
- Minimizer may or may not be attained
- Maximization is just negation

Support Vector Machines

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n}\left(1-y_{i} \hat{y}_{i}\right)_{+}+C\|\mathbf{w}\|_{2}^{2}, \quad \text { where } \quad \hat{y}_{i}:=\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b
$$

- $\|w\|_{2}^{2}$: margin maximization
- $\left(1-y_{i} \hat{y}_{i}\right)^{+}$: i-th training error, 0 if $y_{i} \hat{y}_{i} \geq 1$ and $1-y_{i} \hat{y}_{i}$ otherwise
- C : hyper-parameter to control tradeoff
- Cannot let $r(\mathrm{w})=\frac{1}{n} \sum_{i=1}^{n}($ and attempt to compute P_{r}^{η}

Support Vector Machines

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n}\left(1-y_{i} \hat{y}_{i}\right)_{+}+C\|\mathbf{w}\|_{2}^{2}, \quad \text { where } \quad \hat{y}_{i}:=\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b,
$$

- $\|\mathrm{w}\|_{2}^{2}$: margin maximization
- $\left(1-y_{i} \hat{y}_{i}\right)^{+}$: i-th training error, 0 if $y_{i} \hat{y}_{i} \geq 1$ and $1-y_{i} \hat{y}_{i}$ otherwise
- C : hyper-parameter to control tradeoff
- Cannot let
and attempt to compute

C. Cortes and V. Vapnik (1995). "Support-vector networks". Machine Learning, vol. 20, no. 3, pp. 273-297.

Support Vector Machines

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n}\left(1-y_{i} \hat{y}_{i}\right)_{+}+C\|\mathbf{w}\|_{2}^{2}, \quad \text { where } \quad \hat{y}_{i}:=\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b,
$$

- $\|\mathrm{w}\|_{2}^{2}$: margin maximization
- $\left(1-\mathrm{y}_{i} \hat{y}_{i}\right)^{+}$: i-th training error, 0 if $\mathrm{y}_{i} \hat{y}_{i} \geq 1$ and $1-\mathrm{y}_{i} \hat{y}_{i}$ otherwise
- C : hyper-parameter to control tradeoff
- Cannot let $r(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n}\left(1-y_{i} \hat{y}_{i}\right)+$ and attempt to compute

[^0]
Support Vector Machines

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n}\left(1-y_{i} \hat{y}_{i}\right)_{+}+C\|\mathbf{w}\|_{2}^{2}, \quad \text { where } \quad \hat{y}_{i}:=\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b,
$$

- $\|\mathrm{w}\|_{2}^{2}$: margin maximization
- $\left(1-\mathrm{y}_{i} \hat{y}_{i}\right)^{+}$: i-th training error, 0 if $\mathrm{y}_{i} \hat{y}_{i} \geq 1$ and $1-\mathrm{y}_{i} \hat{y}_{i}$ otherwise
- C : hyper-parameter to control tradeoff
- Cannot let $r(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n}\left(1-y_{i} \hat{y}_{i}\right)+$ and attempt to compute

[^1]
Support Vector Machines

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n}\left(1-y_{i} \hat{y}_{i}\right)_{+}+C\|\mathbf{w}\|_{2}^{2}, \quad \text { where } \quad \hat{y}_{i}:=\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b,
$$

- $\|\mathrm{w}\|_{2}^{2}$: margin maximization
- $\left(1-\mathrm{y}_{i} \hat{y}_{i}\right)^{+}$: i-th training error, 0 if $\mathrm{y}_{i} \hat{y}_{i} \geq 1$ and $1-\mathrm{y}_{i} \hat{y}_{i}$ otherwise
- C : hyper-parameter to control tradeoff
- Cannot let $r(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n}\left(1-y_{i} \hat{y}_{i}\right)_{+}$and attempt to compute P_{r}^{η}

The Hinge Loss

$\left[\begin{array}{c}\text { zero-one: } \llbracket-\mathrm{y} \hat{y} \geq 0 \rrbracket \\ \text { hinge: }(1-\mathrm{y} \hat{y})^{+} \\ \text {square hinge: }(1-\mathrm{y} \hat{y})_{+}^{2} \\ - \\ \text { logistic } \mathrm{C}_{2}: \log _{2}(1+\exp (-\mathrm{y} \hat{y})) \\ \text { exponential: } \exp (-\mathrm{y} \hat{y}) \\ \text { Perceptron: }(-\mathrm{y} \hat{y})^{+}\end{array}\right.$

Misclassified

Subgradient and Subdifferential

The subdifferential of a convex function at w is the set

$$
\partial f(\mathbf{w}):=\left\{\mathbf{g} \in \mathbb{R}^{d}: \forall \mathrm{z}, f(\mathbf{z}) \geq f(\mathbf{w})+\langle\mathbf{z}-\mathbf{w} ; \mathbf{g}\rangle\right\}
$$

Any $\mathrm{g} \in \partial f(\mathrm{w})$ is called a subgradient of f at w .

- The subdifferential is always closed and convex
- Nonempty if w \in int dom

Subgradient and Subdifferential

The subdifferential of a convex function at w is the set

$$
\partial f(\mathbf{w}):=\left\{\mathbf{g} \in \mathbb{R}^{d}: \forall \mathbf{z}, f(\mathbf{z}) \geq f(\mathbf{w})+\langle\mathbf{z}-\mathbf{w} ; \mathbf{g}\rangle\right\}
$$

Any $\mathrm{g} \in \partial f(\mathrm{w})$ is called a subgradient of f at w .

- The subdifferential is always closed and convex
- Nonempty if v

Subgradient and Subdifferential

The subdifferential of a convex function at w is the set

$$
\partial f(\mathbf{w}):=\left\{\mathbf{g} \in \mathbb{R}^{d}: \forall \mathbf{z}, f(\mathbf{z}) \geq f(\mathbf{w})+\langle\mathbf{z}-\mathbf{w} ; \mathbf{g}\rangle\right\}
$$

Any $\mathrm{g} \in \partial f(\mathrm{w})$ is called a subgradient of f at w .

- The subdifferential is always closed and convex
- Nonempty if $w \in \operatorname{int} \operatorname{dom} f$

Optimality Condition

Theorem: generalizing Fermat's condition
$\mathrm{w} \in \operatorname{argmin} f \Longrightarrow 0 \in \partial f(\mathrm{w})$, and the converse holds if f is convex.

- When f is continuously differentiable, then
- Necessary but not sufficient for nonconvex function
- More generally define the "derivative"

Optimality Condition

Theorem: generalizing Fermat's condition

```
w}\in\operatorname{argmin}f\Longrightarrow0\in\partialf(\textrm{w})\mathrm{ , and the converse holds if f is convex.
```

- When f is continuously differentiable, then $\partial f=\nabla f$
- Necessary but not sufficient for nonconvex function
- More generally, define the "derivative"

Optimality Condition

Theorem: generalizing Fermat's condition
$\mathrm{w} \in \operatorname{argmin} f \Longrightarrow 0 \in \partial f(\mathrm{w})$, and the converse holds if f is convex.

- When f is continuously differentiable, then $\partial f=\nabla f$
- Necessary but not sufficient for nonconvex function
- More generally, define the "derivative"

Optimality Condition

Theorem: generalizing Fermat's condition
$\mathrm{w} \in \operatorname{argmin} f \Longrightarrow 0 \in \partial f(\mathrm{w})$, and the converse holds if f is convex.

- When f is continuously differentiable, then $\partial f=\nabla f$
- Necessary but not sufficient for nonconvex function
- More generally, define the "derivative" $\partial f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ with some nice properties

Optimality Condition

Theorem: generalizing Fermat's condition
$\mathrm{w} \in \operatorname{argmin} f \Longrightarrow 0 \in \partial f(\mathrm{w})$, and the converse holds if f is convex.

- When f is continuously differentiable, then $\partial f=\nabla f$
- Necessary but not sufficient for nonconvex function
- More generally, define the "derivative" $\partial f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ with some nice properties
- reduces to the usual one if f is continuously differentiable nice calculus to allow practical computation

Optimality Condition

Theorem: generalizing Fermat's condition
$\mathrm{w} \in \operatorname{argmin} f \Longrightarrow 0 \in \partial f(\mathrm{w})$, and the converse holds if f is convex.

- When f is continuously differentiable, then $\partial f=\nabla f$
- Necessary but not sufficient for nonconvex function
- More generally, define the "derivative" $\partial f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ with some nice properties
- reduces to the usual one if f is continuously differentiable
$-\mathbf{w}$ is extremal $\Longrightarrow 0 \in \partial f(\mathbf{w})$ nice calculus to allow practical computation

Optimality Condition

Theorem: generalizing Fermat's condition
$\mathrm{w} \in \operatorname{argmin} f \Longrightarrow 0 \in \partial f(\mathrm{w})$, and the converse holds if f is convex.

- When f is continuously differentiable, then $\partial f=\nabla f$
- Necessary but not sufficient for nonconvex function
- More generally, define the "derivative" $\partial f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ with some nice properties
- reduces to the usual one if f is continuously differentiable
- w is extremal $\Longrightarrow 0 \in \partial f(\mathrm{w})$
- nice calculus to allow practical computation

Subdifferential Calculus

Definition: Clarke's subdifferential

Locally Lipschitz continuous functions are differentiable almost everywhere, so we can define subdifferential as limits:

$$
\partial f(\mathbf{w})=\operatorname{conv}\left\{\mathbf{g}: \exists \mathbf{z}_{n} \rightarrow \mathbf{w}, \nabla f\left(\mathbf{z}_{n}\right) \rightarrow \mathbf{g}\right\}
$$

Subdifferential Calculus

Definition: Clarke's subdifferential

Locally Lipschitz continuous functions are differentiable almost everywhere, so we can define subdifferential as limits:

$$
\partial f(\mathbf{w})=\operatorname{conv}\left\{\mathbf{g}: \exists \mathbf{z}_{n} \rightarrow \mathbf{w}, \nabla f\left(\mathbf{z}_{n}\right) \rightarrow \mathbf{g}\right\} .
$$

- $\partial f(\mathbf{w})=\nabla f(\mathbf{w})$ if f is continuously differentiable at w
- $\partial(a f)=a \cdot \partial f(\alpha>0$ for convex functions) - $\partial(f+g) \supseteq \partial f+\partial g$, equality holds if one of f and g is continuously differentiable - $\partial(f \circ a)=\nabla a \cdot \partial f$ if a is continuouslv differentiable
- f is L-Lipschitz continuous iff

[^2]
Subdifferential Calculus

Definition: Clarke's subdifferential

Locally Lipschitz continuous functions are differentiable almost everywhere, so we can define subdifferential as limits:

$$
\partial f(\mathbf{w})=\operatorname{conv}\left\{\mathbf{g}: \exists \mathbf{z}_{n} \rightarrow \mathbf{w}, \nabla f\left(\mathbf{z}_{n}\right) \rightarrow \mathbf{g}\right\} .
$$

- $\partial f(\mathbf{w})=\nabla f(\mathbf{w})$ if f is continuously differentiable at \mathbf{w}
- $\partial(\alpha f)=\alpha \cdot \partial f(\alpha>0$ for convex functions)
- $\partial(f+g) \supseteq \partial f+\partial g$, equality holds if one of f and g is continuously differentiable
- $\partial(f \circ g)=\nabla g \cdot \partial f$ if g is continuously differentiable
- f is I -l inschitz continuous iff

Subdifferential Calculus

Definition: Clarke's subdifferential

Locally Lipschitz continuous functions are differentiable almost everywhere, so we can define subdifferential as limits:

$$
\partial f(\mathbf{w})=\operatorname{conv}\left\{\mathbf{g}: \exists \mathbf{z}_{n} \rightarrow \mathbf{w}, \nabla f\left(\mathbf{z}_{n}\right) \rightarrow \mathbf{g}\right\} .
$$

- $\partial f(\mathbf{w})=\nabla f(\mathbf{w})$ if f is continuously differentiable at \mathbf{w}
- $\partial(\alpha f)=\alpha \cdot \partial f(\alpha>0$ for convex functions)
- $\partial(f+g) \supseteq \partial f+\partial g$, equality holds if one of f and g is continuously differentiable
- f is L-Lipschitz continuous iff

[^3]
Subdifferential Calculus

Definition: Clarke's subdifferential

Locally Lipschitz continuous functions are differentiable almost everywhere, so we can define subdifferential as limits:

$$
\partial f(\mathbf{w})=\operatorname{conv}\left\{\mathbf{g}: \exists \mathbf{z}_{n} \rightarrow \mathbf{w}, \nabla f\left(\mathbf{z}_{n}\right) \rightarrow \mathbf{g}\right\} .
$$

- $\partial f(\mathrm{w})=\nabla f(\mathrm{w})$ if f is continuously differentiable at w
- $\partial(\alpha f)=\alpha \cdot \partial f(\alpha>0$ for convex functions)
- $\partial(f+g) \supseteq \partial f+\partial g$, equality holds if one of f and g is continuously differentiable
- $\partial(f \circ g)=\nabla g \cdot \partial f$ if g is continuously differentiable
- f is L-Lipschitz continuous iff

[^4]
Subdifferential Calculus

Definition: Clarke's subdifferential

Locally Lipschitz continuous functions are differentiable almost everywhere, so we can define subdifferential as limits:

$$
\partial f(\mathbf{w})=\operatorname{conv}\left\{\mathbf{g}: \exists \mathbf{z}_{n} \rightarrow \mathbf{w}, \nabla f\left(\mathbf{z}_{n}\right) \rightarrow \mathbf{g}\right\} .
$$

- $\partial f(\mathrm{w})=\nabla f(\mathrm{w})$ if f is continuously differentiable at w
- $\partial(\alpha f)=\alpha \cdot \partial f(\alpha>0$ for convex functions)
- $\partial(f+g) \supseteq \partial f+\partial g$, equality holds if one of f and g is continuously differentiable
- $\partial(f \circ g)=\nabla g \cdot \partial f$ if g is continuously differentiable
- f is L-Lipschitz continuous iff $\|\partial f\| \leq \mathrm{L}$

[^5]
Example: positive part

$$
\partial(t)_{+}=\partial \max \{t, 0\}= \begin{cases}1, & t>0 \\ 0, & t<0 \\ {[0,1],} & t=0\end{cases}
$$

Let $f(\mathbf{w})=\max _{i} f_{i}(\mathbf{w})$ where each f_{i} is continuously differentiable. Then,

$$
\partial f(\mathbf{w})=\operatorname{conv}\left\{\partial f_{i}(\mathbf{w}): f_{i}(\mathbf{w})=f(\mathbf{w})\right\}
$$

$$
\partial|t|=?
$$

Example: positive part

$$
\partial(t)_{+}=\partial \max \{t, 0\}= \begin{cases}1, & t>0 \\ 0, & t<0 \\ {[0,1],} & t=0\end{cases}
$$

Example: envelope function

Let $f(\mathrm{w})=\max _{i} f_{i}(\mathrm{w})$ where each f_{i} is continuously differentiable. Then,

$$
\partial f(\mathbf{w})=\operatorname{conv}\left\{\partial f_{i}(\mathbf{w}): f_{i}(\mathbf{w})=f(\mathbf{w})\right\}
$$

$$
\partial|t|=?
$$

Example: positive part

$$
\partial(t)_{+}=\partial \max \{t, 0\}= \begin{cases}1, & t>0 \\ 0, & t<0 \\ {[0,1],} & t=0\end{cases}
$$

Example: envelope function

Let $f(\mathrm{w})=\max _{i} f_{i}(\mathrm{w})$ where each f_{i} is continuously differentiable. Then,

$$
\partial f(\mathbf{w})=\operatorname{conv}\left\{\partial f_{i}(\mathbf{w}): f_{i}(\mathbf{w})=f(\mathbf{w})\right\}
$$

Example: absolute function

$$
\partial|t|=?
$$

The Difficulty of Nonsmoothness

- Consider the nonsmooth (separable) function
- The global minimizer is at $w=(0,0)$
- Let $\mathrm{w}=(0,1)$, choose the subgradient $\xi=(1,1)$ and run "gradient" descent
- Cauchy's step size rule:
leading to
0 and we are stuck!

The Difficulty of Nonsmoothness

- Consider the nonsmooth (separable) function

$$
f(\mathbf{w})=\left|w_{1}\right|+\frac{1}{2} w_{2}^{2} .
$$

- The global minimizer is at $w=(0,0)$
- Let $w=(0,1)$, choose the subgradient $\xi=(1.1)$ and run "gradient" descent
- Cauchy's step size rule:

The Difficulty of Nonsmoothness

- Consider the nonsmooth (separable) function

$$
f(\mathbf{w})=\left|w_{1}\right|+\frac{1}{2} w_{2}^{2} .
$$

- The global minimizer is at $\mathrm{w}=(0,0)$
- Let $\mathrm{w}=(0,1)$, choose the subgradient $\mathrm{g}=(1,1)$ and run "gradient" descent
- Cauchy's step size rule:

The Difficulty of Nonsmoothness

- Consider the nonsmooth (separable) function

$$
f(\mathbf{w})=\left|w_{1}\right|+\frac{1}{2} w_{2}^{2} .
$$

- The global minimizer is at $\mathrm{w}=(0,0)$
- Let $\mathrm{w}=(0,1)$, choose the subgradient $\mathrm{g}=(1,1)$ and run "gradient" descent

$$
\mathrm{w} \leftarrow \mathrm{w}-\eta \cdot \mathrm{g}
$$

- Cauchy's step size rule:

The Difficulty of Nonsmoothness

- Consider the nonsmooth (separable) function

$$
f(\mathbf{w})=\left|w_{1}\right|+\frac{1}{2} w_{2}^{2} .
$$

- The global minimizer is at $\mathrm{w}=(0,0)$
- Let $\mathbf{w}=(0,1)$, choose the subgradient $\mathbf{g}=(1,1)$ and run "gradient" descent

$$
\mathrm{w} \leftarrow \mathrm{w}-\eta \cdot \mathrm{g}
$$

- Cauchy's step size rule:

$$
\min _{\eta \geq 0}|\eta|+\frac{1}{2}(1-\eta)^{2},
$$

leading to $\eta=0$ and we are stuck!

The Minimum Point Algorithm

Algorithm 1: The minimum-point subgradient algorithm, may NOT converge Input: $\mathrm{w}_{0} \in \operatorname{dom} f$
$\mathbf{1}$ for $t=0,1, \ldots$ do
2 d $\mathrm{d}_{t} \leftarrow \operatorname{argmin}\|\mathrm{~d}\|_{2} \quad / /$ choose the minimum subgradient choose step size $\eta_{t} \quad / /$ e.g. Cauchy's rule: $\quad \eta_{t}=\underset{\eta \geq 0}{\operatorname{argmin}} f\left(\mathbf{w}_{t}-\eta_{t} \mathrm{~d}_{t}\right)$ $\mathrm{w}_{t+1} \leftarrow \mathrm{w}_{t}-\eta_{t} \mathrm{~d}_{t}$

- Reduces to gradient descent if f is smooth
- Descending: $f\left(\mathrm{w}_{t+1}\right)<f\left(\mathrm{w}_{t}\right)$ (provided the step size is chosen suitably)
- But, it does not necessarily converge to the minimum, even under convexity!

The Minimum Point Algorithm

Algorithm 2: The minimum-point subgradient algorithm, may NOT converge Input: $\mathbf{w}_{0} \in \operatorname{dom} f$
$\mathbf{1}$ for $t=0,1, \ldots$ do
2 d $\mathrm{d}_{t} \leftarrow \operatorname{argmin}\|\mathrm{~d}\|_{2} \quad / /$ choose the minimum subgradient choose step size $\eta_{t} \quad / /$ e.g. Cauchy's rule: $\quad \eta_{t}=\underset{\eta \geq 0}{\operatorname{argmin}} f\left(\mathbf{w}_{t}-\eta_{t} \mathbf{d}_{t}\right)$ $\mathrm{w}_{t+1} \leftarrow \mathrm{w}_{t}-\eta_{t} \mathrm{~d}_{t}$

- Reduces to gradient descent if f is smooth
- Descending: $f\left(\mathrm{w}_{t+1}\right)<f\left(\mathrm{w}_{t}\right)$ (provided the step size is chosen suitably)
- But, it does not necessarily converge to the minimum, even under convexity!

The Minimum Point Algorithm

Algorithm 3: The minimum-point subgradient algorithm, may NOT converge Input: $\mathbf{w}_{0} \in \operatorname{dom} f$
$\mathbf{1}$ for $t=0,1, \ldots$ do
2 d $\mathrm{d}_{t} \leftarrow \operatorname{argmin}\|\mathrm{~d}\|_{2} \quad / /$ choose the minimum subgradient choose step size $\eta_{t} \quad / /$ e.g. Cauchy's rule: $\quad \eta_{t}=\underset{\eta \geq 0}{\operatorname{argmin}} f\left(\mathbf{w}_{t}-\eta_{t} \mathrm{~d}_{t}\right)$ $\mathrm{w}_{t+1} \leftarrow \mathrm{w}_{t}-\eta_{t} \mathrm{~d}_{t}$

- Reduces to gradient descent if f is smooth
- Descending: $f\left(\mathrm{w}_{t+1}\right)<f\left(\mathrm{w}_{t}\right)$ (provided the step size is chosen suitably)
- But, it does not necessarily converge to the minimum, even under convexity!

The Minimum Point Algorithm

Algorithm 4: The minimum-point subgradient algorithm, may NOT converge Input: $\mathrm{w}_{0} \in \operatorname{dom} f$
$\mathbf{1}$ for $t=0,1, \ldots$ do
$2 \quad \mathrm{~d}_{t} \leftarrow \operatorname{argmin}\|\mathrm{~d}\|_{2} \quad / /$ choose the minimum subgradient choose step size $\eta_{t} \quad / /$ e.g. Cauchy's rule: $\quad \eta_{t}=\underset{\eta \geq 0}{\operatorname{argmin}} f\left(\mathbf{w}_{t}-\eta_{t} \mathbf{d}_{t}\right)$

$$
\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}-\eta_{t} \mathbf{d}_{t}
$$

- Reduces to gradient descent if f is smooth
- Descending: $f\left(\mathbf{w}_{t+1}\right)<f\left(\mathbf{w}_{t}\right)$ (provided the step size is chosen suitably)
- But, it does not necessarily converge to the minimum, even under convexity!

Fig. 1. Contours of f and steepest descent path.

```
Algorithm 5: The subgradient algorithm
Input: \(\mathrm{w}_{0} \in C\)
1 for \(t=0,1, \ldots\) do
\(2 \quad\) choose \(\mathrm{d}_{t} \in \partial f\left(\mathrm{w}_{t}\right)\)
        optional: \(\mathrm{d}_{t} \leftarrow \mathrm{~d}_{t} /\left\|\mathrm{d}_{t}\right\|_{2} \quad / /\) normalize
        choose step size \(\eta_{t} \quad / /\) e.g. \(\eta_{t}=O(1 / t)\)
        \(\mathrm{w}_{t+1} \leftarrow \mathrm{P}_{C}\left(\mathrm{w}_{t}-\eta_{t} \mathrm{~d}_{t}\right)\)
```

- When the minimum value f_{*} is known in advance, may also use

[^6] pp. 14-29.
Algorithm 6: The subgradient algorithm
Input: $\mathrm{w}_{0} \in C$
1 for $t=0,1, \ldots$ do
$2 \quad$ choose $\mathrm{d}_{t} \in \partial f\left(\mathrm{w}_{t}\right)$
optional: $\mathrm{d}_{t} \leftarrow \mathrm{~d}_{t} /\left\|\mathrm{d}_{t}\right\|_{2} \quad / /$ normalize
choose step size $\eta_{t} \quad$ // e.g. $\eta_{t}=O(1 / t)$
$\mathrm{w}_{t+1} \leftarrow \mathrm{P}_{C}\left(\mathrm{w}_{t}-\eta_{t} \mathrm{~d}_{t}\right)$

- $\eta_{t} \rightarrow 0, \sum_{t} \eta_{t}=\infty$, e.g. $\eta_{t}=O(1 / \sqrt{t})$
- When the minimum value f_{\star} is known in advance, may also use
B. Polyak (1969). "Minimization of unsmooth functionals". USSR Computational Mathematics and Mathematical Physics, vol. 9, no. 3, pp. 14-29.

Algorithm 7: The subgradient algorithm

Input: $\mathrm{w}_{0} \in C$

```
1 for }t=0,1,\ldots\mathrm{ do
```

$2 \quad$ choose $\mathrm{d}_{t} \in \partial f\left(\mathrm{w}_{t}\right)$

- $\eta_{t} \rightarrow 0, \sum_{t} \eta_{t}=\infty$, e.g. $\eta_{t}=O(1 / \sqrt{t})$
- $\sum_{t} \eta_{t}=\infty, \sum_{t} \eta_{t}^{2}<\infty$, e.g. $\eta_{t}=O(1 / t)$
- When the minimum value is known in advance, may also use
B. Polyak (1969). "Minimization of unsmooth functionals". USSR Computational Mathematics and Mathematical Physics, vol. 9, no. 3, pp. 14-29.

Algorithm 8: The subgradient algorithm
Input: $\mathrm{w}_{0} \in C$
1 for $t=0,1, \ldots$ do
$2 \quad$ choose $\mathrm{d}_{t} \in \partial f\left(\mathrm{w}_{t}\right)$
$3 \quad$ optional: $\mathrm{d}_{t} \leftarrow \mathrm{~d}_{t} /\left\|\mathrm{d}_{t}\right\|_{2}$
// normalize

- $\eta_{t} \rightarrow 0, \sum_{t} \eta_{t}=\infty$, e.g. $\eta_{t}=O(1 / \sqrt{t})$
- $\sum_{t} \eta_{t}=\infty, \sum_{t} \eta_{t}^{2}<\infty$, e.g. $\eta_{t}=O(1 / t)$
- $\eta_{t} \equiv \eta$
- When the minimum value

Algorithm 9: The subgradient algorithm
Input: $\mathrm{w}_{0} \in C$
1 for $t=0,1, \ldots$ do
$2 \quad$ choose $\mathrm{d}_{t} \in \partial f\left(\mathrm{w}_{t}\right)$

$$
\text { // e.g. } \eta_{t}=O(1 / t)
$$

- $\eta_{t} \rightarrow 0, \sum_{t} \eta_{t}=\infty$, e.g. $\eta_{t}=O(1 / \sqrt{t})$
- $\sum_{t} \eta_{t}=\infty, \sum_{t} \eta_{t}^{2}<\infty$, e.g. $\eta_{t}=O(1 / t)$
- $\eta_{t} \equiv \eta$
- $\eta_{t}=\eta^{t}$
- When the minimum value

Algorithm 10: The subgradient algorithm
Input: $\mathrm{w}_{0} \in C$
1 for $t=0,1, \ldots$ do
$2 \quad$ choose $\mathrm{d}_{t} \in \partial f\left(\mathrm{w}_{t}\right)$
// normalize
choose step size η_{t}

$$
\text { // e.g. } \eta_{t}=O(1 / t)
$$

$$
5 \quad \mathbf{w}_{t+1} \leftarrow \mathrm{P}_{C}\left(\mathbf{w}_{t}-\eta_{t} \mathbf{d}_{t}\right)
$$

- $\eta_{t} \rightarrow 0, \sum_{t} \eta_{t}=\infty$, e.g. $\eta_{t}=O(1 / \sqrt{t})$
- $\sum_{t} \eta_{t}=\infty, \sum_{t} \eta_{t}^{2}<\infty$, e.g. $\eta_{t}=O(1 / t)$
- $\eta_{t} \equiv \eta$
- $\eta_{t}=\eta^{t}$
- When the minimum value f_{\star} is known in advance, may also use $\eta_{t}=\frac{f\left(\mathbf{w}_{t}\right)-f_{\star}}{\left\|d_{t}\right\|}$

[^7]
To normalize or not?

Consider minimizing the convex function $f(w)=w^{4}$.

- With normalization:
- Without normalization:

To normalize or not?

Consider minimizing the convex function $f(w)=w^{4}$.

- With normalization: $\bar{w}_{t+1}=\bar{w}_{t}-\eta_{t} \operatorname{sign}\left(\bar{w}_{t}\right)=\operatorname{sign}\left(\bar{w}_{t}\right)\left(\left|\bar{w}_{t}\right|-\eta_{t}\right)$
- Without normalization:

To normalize or not?

Consider minimizing the convex function $f(w)=w^{4}$.

- With normalization: $\bar{w}_{t+1}=\bar{w}_{t}-\eta_{t} \operatorname{sign}\left(\bar{w}_{t}\right)=\operatorname{sign}\left(\bar{w}_{t}\right)\left(\left|\bar{w}_{t}\right|-\eta_{t}\right)$
- $\bar{w}_{t} \rightarrow 0$ as long as $\eta_{t} \rightarrow 0$ and $\sum_{t} \eta_{t}=\infty$
- Without normalization:

To normalize or not?

Consider minimizing the convex function $f(w)=w^{4}$.

- With normalization: $\bar{w}_{t+1}=\bar{w}_{t}-\eta_{t} \operatorname{sign}\left(\bar{w}_{t}\right)=\operatorname{sign}\left(\bar{w}_{t}\right)\left(\left|\bar{w}_{t}\right|-\eta_{t}\right)$
- $\bar{w}_{t} \rightarrow 0$ as long as $\eta_{t} \rightarrow 0$ and $\sum_{t} \eta_{t}=\infty$
- Without normalization: $w_{t+1}=w_{t}-4 \eta_{t} w_{t}^{3}=\left(1-4 \eta_{t} w_{t}^{2}\right) w_{t}$

To normalize or not?

Consider minimizing the convex function $f(w)=w^{4}$.

- With normalization: $\bar{w}_{t+1}=\bar{w}_{t}-\eta_{t} \operatorname{sign}\left(\bar{w}_{t}\right)=\operatorname{sign}\left(\bar{w}_{t}\right)\left(\left|\bar{w}_{t}\right|-\eta_{t}\right)$
- $\bar{w}_{t} \rightarrow 0$ as long as $\eta_{t} \rightarrow 0$ and $\sum_{t} \eta_{t}=\infty$
- Without normalization: $w_{t+1}=w_{t}-4 \eta_{t} w_{t}^{3}=\left(1-4 \eta_{t} w_{t}^{2}\right) w_{t}$
- if we start with $w_{1}=1$ and $\eta_{t}=1 / t$, then

$$
w_{t}^{2} \geq 1 / \eta_{t} \Longrightarrow w_{t+1}^{2}=\left(4 \eta_{t} w_{t}^{2}-1\right)^{2} w_{t}^{2} \geq\left(4 w_{t}-1\right)^{2} w_{t}^{2} \geq 9 w_{t}^{2} \geq 9 t \geq t+1=1 / \eta_{t+1}
$$

i.e. $\left|w_{t}\right| \rightarrow \infty$.

Nonexpansion

A mapping $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is called a nonexpansion iff it is 1-Lipschitz continuous:

$$
\|T w-T z\| \leq\|w-z\|
$$

Almost all algorithms in this course can be written abstractly as

$$
\mathbf{w}_{t+1} \leftarrow \mathrm{~T}_{t} \mathbf{w}_{t},
$$

where the mapping T_{t} often is a nonexpansion (and may not depend on t).
Theorem: Euclidean projection to convex sets is nonexpansion
Let C be a (closed) convex set. Then P_{C} is nonexpansive:

$$
\left\|\mathrm{P}_{C}(\mathbf{w})-\mathrm{P}_{C}(\mathbf{z})\right\|_{2} \leq\|\mathbf{w}-\mathbf{z}\|_{2} .
$$

Same is true for the proximal map P_{f}^{η} when f is convex.

Theorem: convergence of subgradient
Let $C \subseteq \mathbb{R}^{d}$ be (closed) convex and $f: C \rightarrow \mathbb{R}$ be L-Lipschitz continuous convex (w.r.t. $\|\cdot\|_{2}$). For any $w \in C$, subgradient (without normalization) satisfies:

- RHS vanishes iff
and
- Fix accuracy ϵ, can set $\eta_{t}=\eta=\frac{\epsilon}{L^{2}}$ and obtain
- No explicit dependence on dimension
- Slower than $O\left(\frac{1}{6}\right)$ of gradient descent: price of nonsmoothness

Theorem: convergence of subgradient
Let $C \subseteq \mathbb{R}^{d}$ be (closed) convex and $f: C \rightarrow \mathbb{R}$ be L-Lipschitz continuous convex (w.r.t. $\|\cdot\|_{2}$). For any $w \in C$, subgradient (without normalization) satisfies:

- RHS vanishes iff $\sum_{s=0}^{T-1} \eta_{s}=\infty$ and $\sum_{t=0}^{T-1} \eta_{t}^{2}<\infty$ iff $\eta_{t} \rightarrow 0, \sum_{s=0}^{T-1} \eta_{s}=\infty$.
- Fix accuracy ϵ, can set $\eta_{t}=\eta=\frac{\epsilon}{L^{2}}$ and obtain
- No explicit dependence on dimension
- Slower than $O\left(\frac{1}{6}\right)$ of gradient descent: price of nonsmoothness

Theorem: convergence of subgradient
Let $C \subseteq \mathbb{R}^{d}$ be (closed) convex and $f: C \rightarrow \mathbb{R}$ be L-Lipschitz continuous convex (w.r.t. $\|\cdot\|_{2}$). For any $w \in C$, subgradient (without normalization) satisfies:

- RHS vanishes iff $\sum_{s=0}^{T-1} \eta_{s}=\infty$ and $\sum_{t=0}^{T-1} \eta_{t}^{2}<\infty$ iff $\eta_{t} \rightarrow 0, \sum_{s=0}^{T-1} \eta_{s}=\infty$.
- Fix accuracy ϵ, can set $\eta_{t}=\eta=\frac{\epsilon}{L^{2}}$ and obtain $T=\frac{L^{2}\left\|\mathbf{w}_{0}-w\right\|_{2}^{2}}{\epsilon^{2}}$ iterations suffice
- No explicit dependence on dimension
- Slower than $O\left(\frac{1}{e}\right)$ of gradient descent: price of nonsmoothness

Theorem: convergence of subgradient
Let $C \subseteq \mathbb{R}^{d}$ be (closed) convex and $f: C \rightarrow \mathbb{R}$ be L-Lipschitz continuous convex (w.r.t. $\|\cdot\|_{2}$). For any $w \in C$, subgradient (without normalization) satisfies:

- RHS vanishes iff $\sum_{s=0}^{T-1} \eta_{s}=\infty$ and $\sum_{t=0}^{T-1} \eta_{t}^{2}<\infty$ iff $\eta_{t} \rightarrow 0, \sum_{s=0}^{T-1} \eta_{s}=\infty$.
- Fix accuracy ϵ, can set $\eta_{t}=\eta=\frac{\epsilon}{\mathrm{L}^{2}}$ and obtain $T=\frac{\mathrm{L}^{2}\left\|\mathbf{w}_{0}-w\right\|_{2}^{2}}{\epsilon^{2}}$ iterations suffice
- No explicit dependence on dimension d
- Slower than $O\left(\frac{1}{e}\right)$ of gradient descent: price of nonsmoothness

Theorem: convergence of subgradient
Let $C \subseteq \mathbb{R}^{d}$ be (closed) convex and $f: C \rightarrow \mathbb{R}$ be L-Lipschitz continuous convex (w.r.t. $\|\cdot\|_{2}$). For any $w \in C$, subgradient (without normalization) satisfies:
$\min _{0 \leq t \leq T-1} f\left(\mathbf{w}_{t}\right)-f(\mathrm{w}) \leq \sum_{t=0}^{T-1} \frac{\eta_{t}}{\sum_{s=0}^{T-1} \eta_{s}}\left(f\left(\mathrm{w}_{t}\right)-f(\mathrm{w})\right) \leq \frac{\left\|\mathrm{w}_{0}-\mathrm{w}\right\|_{2}^{2}+\mathrm{L}^{2} \sum_{t=0}^{T-1} \eta_{t}^{2}}{2 \sum_{s=0}^{T-1} \eta_{s}}$.

- RHS vanishes iff $\sum_{s=0}^{T-1} \eta_{s}=\infty$ and $\sum_{t=0}^{T-1} \eta_{t}^{2}<\infty$ iff $\eta_{t} \rightarrow 0, \sum_{s=0}^{T-1} \eta_{s}=\infty$.
- Fix accuracy ϵ, can set $\eta_{t}=\eta=\frac{\epsilon}{\mathrm{L}^{2}}$ and obtain $T=\frac{\mathrm{L}^{2}\left\|\mathbf{w}_{0}-w\right\|_{2}^{2}}{\epsilon^{2}}$ iterations suffice
- No explicit dependence on dimension d
- Slower than $O\left(\frac{1}{\epsilon}\right)$ of gradient descent: price of nonsmoothness

$$
\begin{aligned}
\left\|\mathbf{w}_{t+1}-\mathbf{w}\right\|_{2}^{2} & =\left\|\mathrm{P}_{C}\left(\mathbf{w}_{t}-\eta_{t} \mathbf{d}_{t}\right)-\mathbf{w}\right\|_{2}^{2} \\
{[\mathbf{w} \in C] } & =\left\|\mathrm{P}_{C}\left(\mathbf{w}_{t}-\eta_{t} \mathbf{d}_{t}\right)-\mathrm{P}_{C}(\mathbf{w})\right\|_{2}^{2}
\end{aligned}
$$

[projections are nonexpansive] $\leq\left\|\mathrm{w}_{t}-\eta_{t} \mathrm{~d}_{t}-\mathrm{w}\right\|_{2}^{2}$

$$
=\left\|\mathbf{w}_{t}-\mathbf{w}\right\|_{2}^{2}+\eta_{t}^{2}\left\|\mathrm{~d}_{t}\right\|_{2}^{2}-2 \eta_{t}\left\langle\mathbf{w}_{t}-\mathrm{w}, \mathrm{~d}_{t}\right\rangle
$$

$$
\left[\mathrm{d}_{t} \text { is a subgradient, } \eta_{t} \geq 0\right] \leq\left\|\mathrm{w}_{t}-\mathrm{w}\right\|_{2}^{2}+\eta_{t}^{2}\left\|\mathrm{~d}_{t}\right\|_{2}^{2}+2 \eta_{t}\left(f(\mathbf{w})-f\left(\mathrm{w}_{t}\right)\right)
$$

$$
[\partial f \text { is bounded by } \mathbf{L}] \leq\left\|\mathbf{w}_{t}-\mathbf{w}\right\|_{2}^{2}+\eta_{t}^{2} \mathrm{~L}^{2}+2 \eta_{t}\left(f(\mathbf{w})-f\left(\mathbf{w}_{t}\right)\right) .
$$

Telescoping we obtain:

$$
\begin{array}{r}
\left\|\mathbf{w}_{T}-\mathbf{w}\right\|_{2}^{2} \leq\left\|\mathbf{w}_{0}-\mathbf{w}\right\|_{2}^{2}+\mathrm{L}^{2} \sum_{t=0}^{T-1} \eta_{t}^{2}+2 \sum_{t=0}^{T-1} \frac{\eta_{t}}{\sum_{s=0}^{T-1} \eta_{s}}\left(f(\mathbf{w})-f\left(\mathbf{w}_{t}\right)\right) \cdot \sum_{s=0}^{T-1} \eta_{s} \\
\min _{0 \leq \leq \leq T-1} f\left(\mathbf{w}_{t}\right)-f(\mathbf{w}) \leq \sum_{t=0}^{T-1} \frac{\eta_{t}}{\sum_{s=0}^{T-1} \eta_{s}}\left(f\left(\mathbf{w}_{t}\right)-f(\mathbf{w})\right) \leq \frac{\left\|\mathbf{w}_{0}-\mathbf{w}\right\|_{2}^{2}+\mathrm{L}^{2} \sum_{t=0}^{T-1} \eta_{t}^{2}}{2 \sum_{s=0}^{T-1} \eta_{s}}
\end{array}
$$

Extending to Composite

$$
\min _{\mathbf{w}} f(\mathbf{w}), \text { where } f(\mathbf{w})=\ell(\mathbf{w})+r(\mathbf{w})
$$

Algorithm 11: The proximal subgradient algorithm
Input: W_{0}, functions ℓ and r
1 for $t=0,1, \ldots$ do
$2 \quad$ choose $\mathrm{d}_{t} \in \partial \ell\left(\mathrm{w}_{t}\right)$
3 optional: $\mathrm{d}_{t} \leftarrow \mathrm{~d}_{t} /\left\|\mathrm{d}_{t}\right\|_{2}$ choose step size $\eta_{t} \quad / /$ e.g. $\eta_{t}=O(1 / t)$ $\mathrm{Z}_{t+1} \leftarrow \mathrm{w}_{t}-\eta_{t} \mathrm{~d}_{t} \quad / /$ subgradient w.r.t. ℓ $\mathrm{w}_{t+1} \leftarrow \mathrm{P}_{r}^{\eta_{t}}\left(\mathbf{z}_{t+1}\right)$
// proximal w.r.t. r

[^8]
Example: Elastic net

$$
\min _{\mathbf{w}} \frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{1}+\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}
$$

Now we have 4 choices:

- Set $\ell=\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}+\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}$ and $r=\lambda\|\mathbf{w}\|_{1}$.
- Set $\ell=\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}$ and $r=\lambda\|\mathbf{w}\|_{1}+\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}$.
- Set $\ell=\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{1}+\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}$.
- Set $\ell=\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{1}$ and $r=\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}$.

What are the pros and cons?

Example: Elastic net

$$
\min _{\mathbf{w}} \frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{1}+\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}
$$

Now we have 4 choices:

- Set $\ell=\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}+\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}$ and $r=\lambda\|\mathbf{w}\|_{1}$.
- Set $\ell=\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}$ and $r=\lambda\|\mathbf{w}\|_{1}+\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}$.
- Set $\ell=\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{1}+\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}$.
- Set $\ell=\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{1}$ and $r=\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}$.

What are the pros and cons?

Example: Elastic net

$$
\min _{\mathbf{w}} \frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{1}+\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}
$$

Now we have 4 choices:

- Set $\ell=\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}+\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}$ and $r=\lambda\|\mathbf{w}\|_{1}$.
- Set $\ell=\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}$ and $r=\lambda\|\mathbf{w}\|_{1}+\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}$.
- Set $\ell=\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{1}+\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}$.
- Set $\ell=\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{1}$ and $r=\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}$.

What are the pros and cons?

Example: Elastic net

$$
\min _{\mathbf{w}} \frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{1}+\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}
$$

Now we have 4 choices:

- Set $\ell=\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}+\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}$ and $r=\lambda\|\mathbf{w}\|_{1}$.
- Set $\ell=\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}$ and $r=\lambda\|\mathbf{w}\|_{1}+\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}$.
- Set $\ell=\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{1}+\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}$.
- Set $\ell=\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{1}$ and $r=\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}$.

What are the pros and cons?

Example: Elastic net

$$
\min _{\mathbf{w}} \frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{1}+\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}
$$

Now we have 4 choices:

- Set $\ell=\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}+\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}$ and $r=\lambda\|\mathbf{w}\|_{1}$.
- Set $\ell=\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}$ and $r=\lambda\|\mathbf{w}\|_{1}+\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}$.
- Set $\ell=\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{1}+\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}$.
- Set $\ell=\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{1}$ and $r=\frac{\gamma}{2}\|\mathbf{w}\|_{2}^{2}$.

What are the pros and cons?

[^0]: C. Cortes and V. Vapnik (1995). "Support-vector networks". Machine Learning, vol. 20, no. 3, pp. 273-297.

[^1]: C. Cortes and V. Vapnik (1995). "Support-vector networks". Machine Learning, vol. 20, no. 3, pp. 273-297.

[^2]: F. H. Clarke (1990). "Optimization and Nonsmooth Analysis". reprinted from the 1983 edition. SIAM.

[^3]: F. H. Clarke (1990). "Optimization and Nonsmooth Analysis". reprinted from the 1983 edition. SIAM.

[^4]: F. H. Clarke (1990). "Optimization and Nonsmooth Analysis". reprinted from the 1983 edition. SIAM.

[^5]: F. H. Clarke (1990). "Optimization and Nonsmooth Analysis". reprinted from the 1983 edition. SIAM.

[^6]: B. Polyak (1969). "Minimization of unsmooth functionals". USSR Computational Mathematics and Mathematical Physics, vol. 9, no. 3,

[^7]: B. Polyak (1969). "Minimization of unsmooth functionals". USSR Computational Mathematics and Mathematical Physics, vol. 9, no. 3, pp. 14-29.

[^8]: J. C. Duchi and Y. Singer (2009). "Efficient Online and Batch Learning Using Forward Backward Splitting". Journal of Machine Learning Research, vol. 10, pp. 2899-2934.

