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Problem

Nonsmooth minimization:

f⋆ = inf
w∈C

f(w)

• f : nonsmooth and possibly nonconvex

• C: constraint, possibly nonconvex

• Minimizer may or may not be attained

• Maximization is just negation
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Support Vector Machines

min
w∈Rd,b∈R

1

n

n∑
i=1

(1− yiŷi)+ + C∥w∥22, where ŷi := ⟨w,xi⟩+ b,

• ∥w∥22: margin maximization

• (1− yiŷi)
+: i-th training error, 0 if yiŷi ≥ 1 and 1− yiŷi otherwise

• C: hyper-parameter to control tradeoff

• Cannot let r(w) = 1
n

∑n
i=1(1− yiŷi)+ and attempt to compute Pη

r

C. Cortes and V. Vapnik (1995). “Support-vector networks”. Machine Learning, vol. 20, no. 3, pp. 273–297.
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https://doi.org/10.1007/BF00994018


The Hinge Loss
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zero-one: J−yŷ ≥ 0K
hinge: (1− yŷ)+

square hinge: (1− yŷ)2+
logistic2: log2(1 + exp(−yŷ))

exponential: exp(−yŷ)
Perceptron: (−yŷ)+
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Subgradient and Subdifferential

The subdifferential of a convex function at w is the set

∂f(w) := {g ∈ Rd : ∀z, f(z) ≥ f(w) + ⟨z−w;g⟩}

Any g ∈ ∂f(w) is called a subgradient of f at w.
• The subdifferential is always closed and convex
• Nonempty if w ∈ int dom f
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Optimality Condition

Theorem: generalizing Fermat’s condition
w ∈ argmin f =⇒ 0 ∈ ∂f(w), and the converse holds if f is convex.

• When f is continuously differentiable, then ∂f = ∇f

• Necessary but not sufficient for nonconvex function

• More generally, define the “derivative” ∂f : Rd → Rd with some nice properties

– reduces to the usual one if f is continuously differentiable

– w is extremal =⇒ 0 ∈ ∂f(w)

– nice calculus to allow practical computation
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Subdifferential Calculus

Definition: Clarke’s subdifferential
Locally Lipschitz continuous functions are differentiable almost everywhere, so we can
define subdifferential as limits:

∂f(w) = conv{g : ∃zn → w,∇f(zn)→ g}.

• ∂f(w) = ∇f(w) if f is continuously differentiable at w
• ∂(αf) = α · ∂f (α > 0 for convex functions)
• ∂(f + g) ⊇ ∂f + ∂g, equality holds if one of f and g is continuously differentiable
• ∂(f ◦ g) = ∇g · ∂f if g is continuously differentiable
• f is L-Lipschitz continuous iff ∥∂f∥ ≤ L

F. H. Clarke (1990). “Optimization and Nonsmooth Analysis”. reprinted from the 1983 edition. SIAM.
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https://en.wikipedia.org/wiki/Lipschitz_continuity
https://doi.org/10.1137/1.9781611971309


Example: positive part

∂(t)+ = ∂max{t, 0} =


1, t > 0

0, t < 0

[0, 1], t = 0

Example: envelope function
Let f(w) = maxi fi(w) where each fi is continuously differentiable. Then,

∂f(w) = conv{∂fi(w) : fi(w) = f(w)}

Example: absolute function

∂|t| =?
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The Difficulty of Nonsmoothness

• Consider the nonsmooth (separable) function

f(w) = |w1|+ 1
2
w2

2.

• The global minimizer is at w = (0, 0)
• Let w = (0, 1), choose the subgradient g = (1, 1) and run “gradient” descent

w← w − η · g

• Cauchy’s step size rule:

min
η≥0

|η|+ 1
2
(1− η)2,

leading to η = 0 and we are stuck!
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The Minimum Point Algorithm

Algorithm 1: The minimum-point subgradient algorithm, may NOT converge
Input: w0 ∈ dom f

1 for t = 0, 1, . . . do
2 dt ← argmin

d∈∂f(wt)

∥d∥2 // choose the minimum subgradient

3 choose step size ηt // e.g. Cauchy’s rule: ηt = argmin
η≥0

f(wt − ηtdt)

4 wt+1 ← wt − ηtdt

• Reduces to gradient descent if f is smooth

• Descending: f(wt+1) < f(wt) (provided the step size is chosen suitably)

• But, it does not necessarily converge to the minimum, even under convexity!
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P. Wolfe (1975). “A method of conjugate subgradients for minimizing nondifferentiable functions”. Mathematical Programming Study,
vol. 3, pp. 145–173.
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https://doi.org/10.1007/BFb0120703


Algorithm 2: The subgradient algorithm
Input: w0 ∈ C

1 for t = 0, 1, . . . do
2 choose dt ∈ ∂f(wt)
3 optional: dt ← dt/∥dt∥2 // normalize
4 choose step size ηt // e.g. ηt = O(1/t)
5 wt+1 ← PC(wt − ηtdt)

• ηt → 0,
∑

t ηt =∞, e.g. ηt = O(1/
√
t)

• ∑
t ηt =∞,

∑
t η

2
t <∞, e.g. ηt = O(1/t)

• ηt ≡ η

• ηt = ηt

• When the minimum value f⋆ is known in advance, may also use ηt =
f(wt)−f⋆

∥dt∥

B. Polyak (1969). “Minimization of unsmooth functionals”. USSR Computational Mathematics and Mathematical Physics, vol. 9, no. 3,
pp. 14–29.
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https://doi.org/10.1016/0041-5553(69)90061-5


To normalize or not?

Consider minimizing the convex function f(w) = w4.

• With normalization: w̄t+1 = w̄t − ηt sign(w̄t) = sign(w̄t)(|w̄t| − ηt)

– w̄t → 0 as long as ηt → 0 and
∑

t ηt =∞

• Without normalization: wt+1 = wt − 4ηtw
3
t = (1− 4ηtw

2
t )wt

– if we start with w1 = 1 and ηt = 1/t, then

w2
t ≥ 1/ηt =⇒ w2

t+1 = (4ηtw
2
t − 1)2w2

t ≥ (4wt − 1)2w2
t ≥ 9w2

t ≥ 9t ≥ t+ 1 = 1/ηt+1,

i.e. |wt| → ∞.
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Nonexpansion

A mapping T : Rd → Rd is called a nonexpansion iff it is 1-Lipschitz continuous:

∥Tw − Tz∥ ≤ ∥w − z∥

Almost all algorithms in this course can be written abstractly as

wt+1 ← Ttwt,

where the mapping Tt often is a nonexpansion (and may not depend on t).

Theorem: Euclidean projection to convex sets is nonexpansion
Let C be a (closed) convex set. Then PC is nonexpansive:

∥PC(w)− PC(z)∥2 ≤ ∥w − z∥2.

Same is true for the proximal map Pη
f when f is convex.
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Theorem: convergence of subgradient

Let C ⊆ Rd be (closed) convex and f : C → R be L-Lipschitz continuous convex
(w.r.t. ∥ · ∥2). For any w ∈ C, subgradient (without normalization) satisfies:

min
0≤t≤T−1

f(wt)− f(w) ≤
T−1∑
t=0

ηt∑T−1
s=0 ηs

(f(wt)− f(w)) ≤ ∥w0 −w∥22 + L2
∑T−1

t=0 η2t

2
∑T−1

s=0 ηs
.

• RHS vanishes iff
∑T−1

s=0 ηs =∞ and
∑T−1

t=0 η2t <∞ iff ηt → 0,
∑T−1

s=0 ηs =∞.

• Fix accuracy ϵ, can set ηt = η = ϵ
L2

and obtain T =
L2∥w0−w∥22

ϵ2
iterations suffice

• No explicit dependence on dimension d

• Slower than O(1
ϵ
) of gradient descent: price of nonsmoothness
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∥wt+1 −w∥22 = ∥PC(wt − ηtdt)−w∥22
[w ∈ C] = ∥PC(wt − ηtdt)− PC(w)∥22

[projections are nonexpansive] ≤ ∥wt − ηtdt −w∥22
= ∥wt −w∥22 + η2t ∥dt∥22 − 2ηt ⟨wt −w,dt⟩

[dt is a subgradient, ηt ≥ 0] ≤ ∥wt −w∥22 + η2t ∥dt∥22 + 2ηt(f(w)− f(wt))

[∂f is bounded by L] ≤ ∥wt −w∥22 + η2t L
2 + 2ηt(f(w)− f(wt)).

Telescoping we obtain:

∥wT −w∥22 ≤ ∥w0 −w∥22 + L2
T−1∑
t=0

η2t + 2
T−1∑
t=0

ηt∑T−1
s=0 ηs

(f(w)− f(wt)) ·
T−1∑
s=0

ηs

min
0≤t≤T−1

f(wt)− f(w) ≤
T−1∑
t=0

ηt∑T−1
s=0 ηs

(f(wt)− f(w)) ≤ ∥w0 −w∥22 + L2
∑T−1

t=0 η2t

2
∑T−1

s=0 ηsL05 16/18



Extending to Composite

min
w

f(w), where f(w) = ℓ(w) + r(w)

Algorithm 3: The proximal subgradient algorithm
Input: w0, functions ℓ and r

1 for t = 0, 1, . . . do
2 choose dt ∈ ∂ℓ(wt)
3 optional: dt ← dt/∥dt∥2 // normalize
4 choose step size ηt // e.g. ηt = O(1/t)
5 zt+1 ← wt − ηtdt // subgradient w.r.t. ℓ
6 wt+1 ← Pηt

r (zt+1) // proximal w.r.t. r

J. C. Duchi and Y. Singer (2009). “Efficient Online and Batch Learning Using Forward Backward Splitting”. Journal of Machine Learning
Research, vol. 10, pp. 2899–2934.

L05 17/18

https://www.jmlr.org/papers/v10/duchi09a.html


Example: Elastic net

min
w

1
n
∥wX− y∥22 + λ∥w∥1 + γ

2
∥w∥22

Now we have 4 choices:

• Set ℓ = 1
n
∥wX− y∥22 +

γ
2
∥w∥22 and r = λ∥w∥1.

• Set ℓ = 1
n
∥wX− y∥22 and r = λ∥w∥1 + γ

2
∥w∥22.

• Set ℓ = 1
n
∥wX− y∥22 + λ∥w∥1 + γ

2
∥w∥22.

• Set ℓ = 1
n
∥wX− y∥22 + λ∥w∥1 and r = γ

2
∥w∥22.

What are the pros and cons?

H. Zou and T. Hastie (2005). “Regularization and variable selection via the elastic net”. Journal of the Royal Statistical Society, Series B,
vol. 67, pp. 301–320.
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https://doi.org/10.1111/j.1467-9868.2005.00503.x



