CS794/C0673: Optimization for Data Science Lec 11: Smoothing

Yaoliang Yu

Composite smooth minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in \mathbb{R}^{d}} f(\mathbf{w})
$$

- f : nonsmooth but convex
- Subgradient achieves optimal rate $O\left(t^{-1 / 2}\right)$, even with matching constants!
- Nesterov's momentum enjoys faster rate $O\left(t^{-2}\right)$, provided that f is L-smooth

Can we break the lower bound $O\left(t^{-1 / 2}\right)$, at least for some nonsmooth functions?

Robust Linear Regression

$$
\min _{\mathbf{w}} \frac{1}{n}\|A \mathbf{w}-\mathbf{b}\|_{1}+\lambda\|\mathbf{w}\|_{1},
$$

- We approximate a nonsmooth function with an $L^{[1]}$-smooth one
- just as in calculus where we approximate a smooth function by polynomials
- Can only afford to find an approximate minimizer anyway, so a reasonable approximation of our objective function should not affect things much (intuitively)
- However, since we do not know where the minimizer is, the approximation needs to be uniform (see next) and global (hence violating the black-box access assumption in lower bounds).

Theorem: Uniform approximation leads to similar minimum
Consider the function $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ and its uniform approximation f_{ϵ}, i.e.,

$$
\forall \mathbf{w}, \quad \underline{\epsilon} \leq f(\mathbf{w})-f_{\epsilon}(\mathbf{w}) \leq \bar{\epsilon} .
$$

Then, we have

$$
\underline{\epsilon} \leq \inf f-\inf f_{\epsilon} \leq \bar{\epsilon} .
$$

Moreover, let $f_{\epsilon}(\mathbf{w}) \leq \inf f_{\epsilon}+\delta$, then $f(\mathbf{w}) \leq \inf f+(\bar{\epsilon}-\underline{\epsilon})+\delta$.

- δ-suboptimal minimizer w of the uniformly approximate function f_{ϵ} is $[(\bar{\epsilon}-\underline{\epsilon})+\delta]$-suboptimal for the original function f
- Control the additional error $\bar{\epsilon}-\underline{\epsilon}$
- Choose f_{ϵ} with small L ${ }^{[1]}$-smoothness (if possible)

Example: Pointwise approximation is not enough

If for any $\mathrm{w}, f_{\epsilon}(\mathrm{w}) \rightarrow f(\mathrm{w})$ as $\epsilon \rightarrow 0$, then we say f_{ϵ} is a pointwise approximation of f. Clearly, uniform approximation implies pointwise approximation while the converse is not true, as the following example shows:

$$
f_{\epsilon}(w)=\epsilon w,
$$

which clearly converges to $f \equiv 0$ pointwise. However, $\inf f_{\epsilon}=-\infty<0=\inf f$ (thus uniform convergence fails).

Proximal Map and Moreau Envelope

$$
\begin{aligned}
\mathrm{P}_{f}^{\eta}(\mathbf{w}) & :=\underset{\mathbf{z}}{\operatorname{argmin}} \frac{1}{2 \eta}\|\mathbf{w}-\mathbf{z}\|_{2}^{2}+f(\mathbf{z}) \\
\mathrm{M}_{f}^{\eta}(\mathbf{w}) & :=\min _{\mathbf{z}} \frac{1}{2 \eta}\|\mathbf{w}-\mathbf{z}\|_{2}^{2}+f(\mathbf{z})
\end{aligned}
$$

- $\mathrm{P}_{f}^{\eta}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ while $\mathrm{M}_{f}^{\eta}: \mathbb{R}^{d} \rightarrow \mathbb{R}$
- Under mild conditions, P_{f}^{η} is always nonempty and compact
- P_{f}^{η} is unique if f is convex while M_{f}^{η} is always unique
- M_{f}^{η} is a nicer version of f :
$-\mathrm{M}_{f}^{\eta} \leq f, \inf \mathrm{M}_{f}^{\eta}=\inf f, \operatorname{argmin} \mathrm{M}_{f}^{\eta}=\operatorname{argmin} f$
- $\mathrm{M}_{f}^{\eta} \rightarrow f$ if $\eta \rightarrow 0$, and M_{f}^{η} is "smoother" than f

Fenchel Conjugate

The Fenchel conjugate of a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ is defined as:

$$
f^{*}\left(\mathbf{w}^{*}\right)=\sup _{\mathbf{w}}\left\langle\mathbf{w} ; \mathbf{w}^{*}\right\rangle-f(\mathbf{w}),
$$

which is always closed and convex (even when f is not).

- Fenchel-Young inequality follows from the definition:

$$
f(\mathbf{w})+f^{*}\left(\mathbf{w}^{*}\right) \geq\left\langle\mathbf{w} ; \mathbf{w}^{*}\right\rangle,
$$

with equality iff $\mathrm{w}^{*}=\partial f(\mathrm{w})$.

- $f^{* *}=f$ iff f is (closed) convex

Theorem: Duality between L-smoothness and $\frac{1}{\mathrm{~L}}$-strong convexity
A convex function f is $L=L^{[1]}$-smooth iff f^{*} is $\frac{1}{L}$-strongly convex.

Corollary:

The Moreau envelope of a closed convex function is convex and $\frac{1}{\eta}$-smooth.

$$
\left(\mathrm{M}_{f}^{\eta}\right)^{*}=f^{*}+\eta \mathrm{q}
$$

Example: Huber's function

$$
h_{\tau}(s):= \begin{cases}\tau\left(|s|-\frac{\tau}{2}\right), & |s| \geq \tau \\ \frac{1}{2} s^{2}, & |s| \leq \tau\end{cases}
$$

Theorem: Uniform Moreau approximation
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be convex and $\mathrm{L}=\mathrm{L}^{[0]}$-Lipschitz continuous (w.r.t. the norm $\|\cdot\|_{2}$). Then,

$$
\forall \eta>0, \quad \underbrace{\mathrm{M}_{f}^{\eta} \leq f \leq \mathrm{M}_{f}^{\eta}+\underbrace{\eta \mathrm{L}^{2} / 2}_{\epsilon} .}_{\underline{\xi}=0}
$$

$$
f(\mathbf{z})-\mathrm{M}_{f}^{\eta}(\mathbf{z})=\left[\sup _{\mathrm{w}} f(\mathbf{z})-f(\mathbf{w})-\frac{1}{2 \eta}\|\mathbf{w}-\mathbf{z}\|_{2}^{2}\right] \leq\left[\sup _{\mathbf{w}} \mathbf{L}\|\mathbf{z}-\mathbf{w}\|_{2}-\frac{1}{2 \eta}\|\mathbf{w}-\mathbf{z}\|_{2}^{2}\right]
$$

- The approximation error $\eta L^{2} / 2$ is proportional to η
- The $\mathrm{L}^{[1]}$-smoothness of the approximation (Moreau envelope) is inversely proportional to η

Let f be some nonsmooth $\mathrm{L}=\mathrm{L}^{[0]}$-Lipschitz continuous function. Then, to find w so that $f(\mathrm{w}) \leq \inf f+\epsilon$:

- can simply find w so that $\mathrm{M}_{f}^{\eta}(\mathrm{w}) \leq \mathrm{M}_{f}^{\eta}\left(\mathrm{w}_{\star}\right)+\delta$, where $\mathrm{w}_{\star} \in \operatorname{argmin} f$;
- know $f(w) \leq \inf f+0+\eta L^{2} / 2+\delta$;
- thus, with $\eta \mathrm{L}^{2} / 2+\delta \leq \epsilon$, w does the job.

If we use Nesterov's momentum to minimize M_{f}^{η} :

$$
\frac{2 L\left\|\mathbf{w}_{\star}-\mathbf{z}_{1}\right\|_{2}^{2}}{(t+1)^{2}}=\frac{2\left\|\mathbf{w}_{\star}-\mathbf{z}_{1}\right\|_{2}^{2}}{\eta(t+1)^{2}} \leq \delta \Longleftrightarrow t \geq T:=\sqrt{\frac{2}{\eta \delta}} \cdot\left\|\mathbf{w}_{\star}-\mathbf{z}_{1}\right\|_{2}-1 .
$$

To find the optimal trade-off, we solve:

$$
\max _{\eta \mathrm{L}^{2} / 2+\delta \leq \epsilon} \eta \delta \Longrightarrow \delta=\epsilon / 2, \quad \eta=\epsilon / \mathrm{L}^{2} \Longrightarrow T:=\frac{2 \mathrm{~L}\left\|\mathbf{w}_{\star}-\mathbf{z}_{1}\right\|_{2}}{\epsilon}-1
$$

which is significantly faster than the subgradient algorithm, which converges after $\frac{L^{2}\left\|w_{*}-w_{0}\right\|_{2}^{2}}{c^{2}}-1$ iterations. We have seemingly beaten the lower bound!

Example: Robust linear regression revisited

We have seen that the Moreau envelope of the absolute value function

$$
\mathrm{M}_{\cdot \mid \mathrm{I}}^{\eta}(z)=\left[\min _{w} \frac{1}{2 \eta}|w-z|^{2}+|w|\right]=\left\{\begin{array}{ll}
|z|-\frac{\eta}{2}, & \text { if }|z| \geq \eta \\
\frac{z^{2}}{2 \eta}, & \text { if }|z| \leq \eta
\end{array},\right.
$$

whence follows $\mathrm{M}_{\|\cdot\|_{1}}^{\eta}(\mathrm{z})=\sum_{j} \mathrm{M}_{\| \cdot \mid}^{\eta}\left(z_{j}\right)$. Thus, we may approximate the robust linear regression formulation as:

which can now be solved using Nesterov's momentum.

The Price of Smoothing

We point out that smoothing is not a free operation, for it increases the $L^{[1]}$-smoothness parameter. Thus, whenever possible one should try to avoid smoothing any function unnecessarily. For instance, we could have also smoothed the ℓ_{1}-norm regularizer to arrive at:

$$
\min _{\mathbf{w}} \frac{1}{n} \sum_{i} \mathrm{M}_{|\cdot|}^{\eta}\left(\left\langle\mathbf{a}_{i:}, \mathbf{w}\right\rangle+b_{i}\right)+\lambda \sum_{j} \mathrm{M}_{|\cdot|}^{\eta}\left(w_{j}\right),
$$

whose L-smoothness parameter is evidently larger than the one in the previous example, leading to a slower convergence.

Example: Support vector machines (SVM) revisited

Recall the soft-margin SVM:

Explain how to find an ϵ-minimizer in $O(1 / \epsilon)$ iterations.

Example: Smoothing the max function

Let $f(\mathrm{w})=\max _{j} w_{j}$ be the max function. Its Moreau envelope is:
$\left[\min _{\mathbf{w}} \frac{1}{2 \eta}\|\mathbf{w}-\mathbf{z}\|_{2}^{2}+\max _{j} w_{j}\right]=\left[\min _{t} \min _{\mathbf{w} \leq t} \frac{1}{2 \eta}\|\mathbf{w}-z\|_{2}^{2}+t\right]=\left[\min _{t} \frac{1}{2 \eta}\left\|(\mathbf{z}-t)_{+}\right\|_{2}^{2}+t\right]$
W.I.o.g. let $z_{1} \geq \cdots \geq z_{d}$, and let $z_{k+1} \leq t<z_{k}$, then

$$
\left[\inf _{t \in\left[z_{k+1}, z_{k}\right)} \frac{1}{2 \eta} \sum_{j=1}^{k}\left(z_{j}-t\right)^{2}+t\right]=: a_{k} .
$$

Finding the smallest a_{k} gives us the solution for t hence $w=t \wedge z$.

Example: Smoothing the max function, cont'

Alternatively, the log-sum-exp function $\mathrm{w} \mapsto \log \sum_{j} \exp \left(w_{j}\right)$ can also be used to approximate the max:

$$
\eta \log \sum_{j} \exp \left(w_{j} / \eta\right)-\eta \log d \leq \max _{j} w_{j} \leq \eta \log \sum_{j} \exp \left(w_{j} / \eta\right)
$$

We note that max is the recession function of log-sum-exp:

