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Problem

Composite smooth minimization:

f⋆ = inf
w∈Rd

f(w)

• f : nonsmooth but convex

• Subgradient achieves optimal rate O(t−1/2), even with matching constants!

• Nesterov’s momentum enjoys faster rate O(t−2), provided that f is L-smooth

Can we break the lower bound O(t−1/2), at least for some nonsmooth functions?
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Robust Linear Regression

min
w

1
n
∥Aw − b∥1 + λ∥w∥1,
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Approximation

• We approximate a nonsmooth function with an L[1]-smooth one

– just as in calculus where we approximate a smooth function by polynomials

• Can only afford to find an approximate minimizer anyway, so a reasonable
approximation of our objective function should not affect things much (intuitively)

• However, since we do not know where the minimizer is, the approximation needs
to be uniform (see next) and global (hence violating the black-box access
assumption in lower bounds).
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Theorem: Uniform approximation leads to similar minimum

Consider the function f : Rd → R ∪ {∞} and its uniform approximation fϵ, i.e.,

∀w, ϵ ≤ f(w)− fϵ(w) ≤ ϵ.

Then, we have

ϵ ≤ inf f − inf fϵ ≤ ϵ.

Moreover, let fϵ(w) ≤ inf fϵ + δ, then f(w) ≤ inf f + (ϵ− ϵ) + δ.

• δ-suboptimal minimizer w of the uniformly approximate function fϵ is
[(ϵ− ϵ) + δ]-suboptimal for the original function f

• Control the additional error ϵ− ϵ

• Choose fϵ with small L[1]-smoothness (if possible)
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Example: Pointwise approximation is not enough

If for any w, fϵ(w) → f(w) as ϵ → 0, then we say fϵ is a pointwise approximation of
f . Clearly, uniform approximation implies pointwise approximation while the converse
is not true, as the following example shows:

fϵ(w) = ϵw,

which clearly converges to f ≡ 0 pointwise. However, inf fϵ = −∞ < 0 = inf f
(thus uniform convergence fails).
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Proximal Map and Moreau Envelope

Pη
f (w) := argmin

z

1
2η
∥w − z∥22 + f(z)

Mη
f (w) := min

z

1
2η
∥w − z∥22 + f(z)

• Pη
f : Rd → Rd while Mη

f : Rd → R

• Under mild conditions, Pη
f is always nonempty and compact

• Pη
f is unique if f is convex while Mη

f is always unique

• Mη
f is a nicer version of f :

– Mη
f ≤ f , inf Mη

f = inf f , argminMη
f = argmin f

– Mη
f → f if η → 0, and Mη

f is “smoother” than f

J. J. Moreau. “Proximité et Dualtité dans un Espace Hilbertien”. Bulletin de la Société Mathématique de France, vol. 93 (1965),
pp. 273–299.
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Fenchel Conjugate

The Fenchel conjugate of a function f : Rd → R ∪ {∞} is defined as:

f ∗(w∗) = sup
w

⟨w;w∗⟩ − f(w),

which is always closed and convex (even when f is not).

• Fenchel-Young inequality follows from the definition:

f(w) + f ∗(w∗) ≥ ⟨w;w∗⟩ ,

with equality iff w∗ = ∂f(w).

• f ∗∗ = f iff f is (closed) convex
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Theorem: Duality between L-smoothness and 1
L
-strong convexity

A convex function f is L = L[1]-smooth iff f ∗ is 1
L
-strongly convex.

Corollary:

The Moreau envelope of a closed convex function is convex and 1
η
-smooth.

(Mη
f )

∗ = f ∗ + ηq

Example: Huber’s function

hτ (s) :=

{
τ(|s| − τ

2
), |s| ≥ τ

1
2
s2, |s| ≤ τ
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Theorem: Uniform Moreau approximation

Let f : Rd → R be convex and L = L[0]-Lipschitz continuous (w.r.t. the norm ∥ · ∥2).
Then,

∀η > 0, Mη
f ≤︸ ︷︷ ︸
ϵ=0

f ≤ Mη
f + ηL2/2︸ ︷︷ ︸

ϵ

.

f(z)−Mη
f (z) =

[
sup
w

f(z)− f(w)− 1
2η
∥w − z∥22

]
≤

[
sup
w

L∥z−w∥2 − 1
2η
∥w − z∥22

]
• The approximation error ηL2/2 is proportional to η
• The L[1]-smoothness of the approximation (Moreau envelope) is inversely

proportional to η
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Let f be some nonsmooth L = L[0]-Lipschitz continuous function. Then, to find w so
that f(w) ≤ inf f + ϵ:
• can simply find w so that Mη

f (w) ≤ Mη
f (w⋆) + δ, where w⋆ ∈ argmin f ;

• know f(w) ≤ inf f + 0 + ηL2/2 + δ;
• thus, with ηL2/2 + δ ≤ ϵ, w does the job.

If we use Nesterov’s momentum to minimize Mη
f :

2L∥w⋆ − z1∥22
(t+ 1)2

=
2∥w⋆ − z1∥22
η(t+ 1)2

≤ δ ⇐⇒ t ≥ T :=

√
2

ηδ
· ∥w⋆ − z1∥2 − 1.

To find the optimal trade-off, we solve:

max
ηL2/2+δ≤ϵ

ηδ =⇒ δ = ϵ/2, η = ϵ/L2 =⇒ T :=
2L∥w⋆ − z1∥2

ϵ
− 1.

which is significantly faster than the subgradient algorithm, which converges after
L2∥w⋆−w0∥22

ϵ2
− 1 iterations. We have seemingly beaten the lower bound!
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Example: Robust linear regression revisited

We have seen that the Moreau envelope of the absolute value function

Mη
|·|(z) =

[
min
w

1
2η
|w − z|2 + |w|

]
=

{
|z| − η

2
, if |z| ≥ η

z2

2η
, if |z| ≤ η

,

whence follows Mη
∥·∥1(z) =

∑
j M

η
|·|(zj). Thus, we may approximate the robust linear

regression formulation as:

min
w

1

n

∑
i

Mη
|·|(⟨ai:,w⟩+ bi) + λ∥w∥1.

which can now be solved using Nesterov’s momentum.
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The Price of Smoothing

We point out that smoothing is not a free operation, for it increases the
L[1]-smoothness parameter. Thus, whenever possible one should try to avoid smoothing
any function unnecessarily. For instance, we could have also smoothed the ℓ1-norm
regularizer to arrive at:

min
w

1

n

∑
i

Mη
|·|(⟨ai:,w⟩+ bi) + λ

∑
j

Mη
|·|(wj),

whose L-smoothness parameter is evidently larger than the one in the previous
example, leading to a slower convergence.
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Example: Support vector machines (SVM) revisited

Recall the soft-margin SVM:

min
w

1

n

∑
i

(1− yiŷi)+ + λ∥w∥22, where ŷi = ⟨xi,w⟩+ b.

Explain how to find an ϵ-minimizer in O(1/ϵ) iterations.
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Example: Smoothing the max function

Let f(w) = maxj wj be the max function. Its Moreau envelope is:[
min
w

1
2η
∥w − z∥22 +max

j
wj

]
=

[
min

t
min
w≤t

1
2η
∥w − z∥22 + t

]
=

[
min

t

1
2η
∥(z− t)+∥22 + t

]
.

W.l.o.g. let z1 ≥ · · · ≥ zd, and let zk+1 ≤ t < zk, then[
inf

t∈[zk+1,zk)

1

2η

k∑
j=1

(zj − t)2 + t

]
=: ak.

Finding the smallest ak gives us the solution for t hence w = t ∧ z.
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Example: Smoothing the max function, cont’

Alternatively, the log-sum-exp function w 7→ log
∑

j exp(wj) can also be used to
approximate the max:

η log
∑
j

exp(wj/η)− η log d ≤ max
j

wj ≤ η log
∑
j

exp(wj/η).

We note that max is the recession function of log-sum-exp:[
lim
η↓0

η log
∑
j

exp(wj/η)

]
=

[
inf
η>0

η log
∑
j

exp(wi/η)

]
= max

j
wj.
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