CS794/C0673: Optimization for Data Science Lec 20: Randomized Smoothing

Yaoliang Yu

November 25, 2022

Problem

Constrained minimization:

$$
\min _{\mathbf{w} \in C \subseteq \mathbb{R}^{d}} f(\mathbf{w})
$$

- C is closed convex and f is (non)convex
- Can only evaluate the function value $f(\mathbf{w})$ but not the (sub)gradient
- Zero-th order method (a.k.a. gradient-free or derivative-free)
- For most (if not all) functions in practice, computing the function value (a scalar) costs as much as computing a (sub)gradient (a vector)!
- But only when we have direct access to the inner workings of f

$$
\min _{x \in[a, b]} f(x)
$$

Algorithm 1: Golden-section search
Input: $a<b, g=\frac{\sqrt{5}+1}{2}$, tol
$1 x_{1}=a+(b-a) / g$
$2 x_{2}=b-(b-a) / g$
3 while $x_{2}-x_{1}>$ tol do
4 if $f\left(x_{2}\right)>f\left(x_{1}\right)$ then
$5 \quad b=x_{2}$

$$
x_{2}=a+(b-a) / g
$$

else

$$
\begin{aligned}
& a=x_{1} \\
& x_{1}=b-(b-a) / g
\end{aligned}
$$

Fix the number of evaluations. Is there an "optimal" alg?

$$
\inf _{\mathcal{A}} \sup _{f} \text { length of returned interval }
$$

Key idea: recycle!

$$
\min _{\lambda_{2} \leq 1 / 2} \prod_{i=2}^{N}\left(1-\lambda_{i}\right), \quad \text { s.t. } \quad \lambda_{n+1}=\frac{\lambda_{n}}{1-\lambda_{n}} \wedge \frac{1-2 \lambda_{n}}{1-\lambda_{n}}
$$

Solution: $\lambda_{n}=\frac{F_{n-1}}{F_{n+1}}$

Uniform Grid Search

```
Algorithm 2: Random pursuit
Input: \(\mathbf{w}_{0}\) such that \(\llbracket f \leq f\left(\mathbf{w}_{0}\right) \rrbracket\) is compact
1 for \(t=1,2, \ldots\) do
2 choose normalized direction \(\mathrm{d}_{t}\) randomly
\(3 \quad \eta_{t} \leftarrow \operatorname{argmin}_{\eta \in \mathbb{R}} f\left(\mathbf{w}_{t}+\eta \mathbf{d}_{t}\right) \quad\) // line search on chosen direction
\(4 \quad \mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}+\eta_{t} \mathbf{d}_{t}\)
```

 S. U. Stich et al. "Optimization of Convex Functions with Random Pursuit". SIAM Journal on Optimization, vol. 23, no. 2 (2013),
 pp. 1284-1309, S. U. Stich et al. "Variable metric random pursuit". Mathematical Programming, vol. 156 (2016), pp. 549-579.

If f is L_{1}-smooth, then

$$
\begin{aligned}
f\left(\mathbf{w}_{t}+\eta_{t} \mathbf{d}_{t}\right) & \leq f\left(\mathbf{w}_{t}\right)+\eta_{t}\left\langle\mathbf{d}_{t}, \nabla f\left(\mathbf{w}_{t}\right)\right\rangle+\frac{\mathbf{L}_{1}}{2} \eta_{t}^{2} \\
& \leq f\left(\mathbf{w}_{t}\right)+\eta\left(\mathbf{w}-\mathbf{w}_{t}\right)^{\top} \mathbf{d}_{t} \mathbf{d}_{t}^{\top} \nabla f\left(\mathbf{w}_{t}\right)+\frac{\mathbf{L}_{1}}{2} \eta^{2}\left(\mathbf{w}-\mathbf{w}_{t}\right)^{\top} \mathbf{d}_{t} \mathbf{d}_{t}^{\top}\left(\mathbf{w}-\mathbf{w}_{t}\right)^{\top}
\end{aligned}
$$

- The above inequality is due to setting $\eta_{t}=\eta\left(\mathbf{w}-\mathbf{w}_{t}\right)^{\top} \mathbf{d}_{t}$ for some $\eta>0$
- Using $\operatorname{Ed}_{t} \mathrm{~d}_{t}^{\top}=\frac{1}{d} \mathrm{I}$ and assuming f is convex:

$$
\begin{aligned}
\mathbb{E} f\left(\mathbf{w}_{t}+\eta_{t} \mathbf{d}_{t}\right) & \leq f\left(\mathbf{w}_{t}\right)+\frac{\eta}{d}\left\langle\mathbf{w}-\mathbf{w}_{t}, \nabla f\left(\mathbf{w}_{t}\right)\right\rangle+\frac{\eta^{2} \mathbf{L}_{1}}{2 d}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|_{2}^{2} \\
& \leq f\left(\mathbf{w}_{t}\right)+\frac{\eta}{d}\left[f(\mathbf{w})-f\left(\mathbf{w}_{t}\right)\right]+\left(\frac{\eta}{d}\right)^{2} \frac{d \mathbf{L}_{1}}{2}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|_{2}^{2}
\end{aligned}
$$

- A simple induction (as in conditional gradient) yields:

$$
\mathbb{E}\left[f\left(\mathbf{w}_{t}\right)-f(\mathbf{w})\right] \leq O\left(\frac{d \mathbf{L}_{1}}{t+1}\right)
$$

- A factor of dimension d worse

Convolution

Definition: Convolution and Fourier transform
The convolution of two functions f and g is defined through integration:

$$
(f * g)(\mathbf{w}):=\int_{\mathbf{z}} f(\mathbf{w}-\mathbf{z}) g(\mathbf{z}) \mathrm{d} \mathbf{z}=\int_{\mathbf{z}} f(\mathbf{z}) g(\mathbf{w}-\mathbf{z}) \mathrm{d} \mathbf{z}=:(g * f)(\mathbf{w}) .
$$

Recall the Fourier transform and its inverse:

$$
\begin{aligned}
(\mathscr{F} f)\left(\mathbf{w}^{*}\right) & =\mathscr{F} f\left(\mathbf{w}^{*}\right)=\int_{\mathbf{w}} \exp \left(-2 \pi i\left\langle\mathbf{w}, \mathbf{w}^{*}\right\rangle\right) f(\mathbf{w}) \mathrm{d} \mathbf{w} \\
\left(\mathscr{F}^{-1} g\right)(\mathbf{w}) & =\int_{\mathbf{w}^{*}} \exp \left(2 \pi i\left\langle\mathbf{w}, \mathbf{w}^{*}\right\rangle\right) g\left(\mathbf{w}^{*}\right) \mathrm{d} \mathbf{w}^{*}
\end{aligned}
$$

$$
\mathscr{F}(f * g)=\mathscr{F} f \cdot \mathscr{F} g, \quad \mathscr{F} \mathscr{F}^{-1}=\mathscr{F}^{-1} \mathscr{F}=\mathrm{Id}, \quad \mathscr{F} f^{(\mathbf{k})}=\left(-2 \pi i \mathbf{w}^{*}\right)^{\mathbf{k}} \mathscr{F} f
$$

- Applying Fourier transform to the derivative of convolution:

$$
\begin{aligned}
\mathscr{F}(f * g)^{(\mathbf{k})}=\left(-2 \pi i \mathbf{w}^{*}\right)^{\mathbf{k}} \cdot \mathscr{F}(f * g)=\left[\left(-2 \pi i \mathbf{w}^{*}\right)^{\mathbf{k}} \mathscr{F} f\right] \mathscr{F} g & =\mathscr{F}\left(f^{(\mathbf{k})} * g\right) \\
& =\mathscr{F}\left(f * g^{(\mathbf{k})}\right)
\end{aligned}
$$

- Applying the inverse transform we obtain the formula of differentiating under the integral:

$$
(f * g)^{(\mathrm{k})}=f^{(\mathbf{k})} * \mathbf{g}=f * g^{(\mathbf{k})}
$$

- This can in fact be the definition of the derivative (distribution) of f, using the derivative of some super smooth functions g !

Randomized Smoothing

Definition:
For a (vector-valued) function $\mathrm{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{c}$ we define its randomized smoothing as

$$
\mathbf{f}_{\gamma}(\mathbf{w})=\mathbb{E} \mathbf{f}(\mathbf{w}+\gamma \boldsymbol{\varepsilon})=\mathbb{E} \mathbf{f}(\mathbf{w}-\gamma \boldsymbol{\varepsilon}),
$$

where ε is some symmetric random noise with zero mean and identity covariance.

- Let p be the probability density function (pdf) of ε
- Dilated density: $p_{\gamma}(\mathbf{z})=\frac{1}{\gamma^{d}} p\left(\frac{1}{\gamma} \mathbf{z}\right)$
- We have point-wise convergence:

$$
\mathbf{f}_{\gamma}=\mathbb{E} \mathbf{f}(\mathbf{w}-\gamma \boldsymbol{\varepsilon})=\mathbf{f} * p_{\gamma}, \text { hence } \mathbf{f}_{\gamma} \rightarrow \mathbf{f} \text { as } \gamma \rightarrow 0
$$

- Intuitively expected, as the noise shrinks to 0, i.e. $p_{\gamma} \rightarrow \delta_{0}^{\prime}$

Calculus for Randomized Smoothing

- The map $\mathrm{f} \mapsto \mathbf{f}_{\gamma}$ is linear
- If f is convex/concave, so is f_{γ}
- If f is convex, then $f_{\gamma} \geq f$
- If f is $\mathrm{L}_{0^{-}}$-Lipschitz continuous (w.r.t. $\|\cdot\|_{2}$ say), so is f_{γ}. Moreover,

$$
\left\|\mathrm{f}_{\gamma}-\mathrm{f}\right\|_{2} \leq \gamma \mathrm{L}_{0} \mathbb{E}\|\varepsilon\|_{2} \leq \gamma \mathrm{L}_{0} \sqrt{\mathbb{E}\|\varepsilon\|_{2}^{2}}=\gamma \mathrm{L}_{0} \sqrt{d}
$$

- If f is L_{1}-smooth (w.r.t. $\|\cdot\|_{2}$ say), so is f_{γ}. Moreover,

$$
f_{\gamma}-f \leq \frac{\gamma^{2} L_{1}}{2} \mathbb{E}\|\varepsilon\|_{2}^{2}=\frac{\gamma^{2} L_{1} d}{2},
$$

whereas a two-sided bound holds if both $\pm f$ are L_{1}-smooth.

Gradient approximation

- If $\pm f$ is L_{1}-smooth, then $\left\|\nabla f_{\gamma}-\nabla f\right\|_{\circ} \leq \gamma \mathrm{L}_{1} \sqrt{d}$.
- in fact, $\nabla f_{\gamma}=(\nabla f)_{\gamma}$, and $\|\nabla f\|_{\circ} \leq\left\|\nabla f_{\gamma}\right\|_{\circ}+\gamma \mathrm{L}_{1} \sqrt{d}$
- If $\pm f$ is L_{2}-smooth, then $\left\|\nabla f_{\gamma}-\nabla f\right\|_{\circ} \leq \gamma^{2} \mathrm{~L}_{2} d / 2$.
- in fact, $\nabla f_{\gamma}=(\nabla f)_{\gamma}$ and $\nabla^{2} f_{\gamma}=\left(\nabla^{2} f\right)_{\gamma}$

Justifying the Name

Differentiating under the integral we obtain

$$
f_{\gamma}^{(\mathbf{k})}:=\left[f * p_{\gamma}\right]^{(\mathbf{k})}=f^{(\mathbf{k}-\mathbf{l})} * p_{\gamma}^{(\mathbf{l})}, \quad \nabla^{k} f_{\gamma}(\mathbf{w})=\int \nabla^{k-1} f(\mathbf{w}-\mathbf{z}) \otimes \nabla p_{\gamma}(\mathbf{z}) \mathrm{d} \mathbf{z} .
$$

Therefore, if f is L_{k-1}-smooth, then f_{γ} is L_{k}-smooth, where

$$
\mathrm{L}_{k} \leq \mathrm{L}_{k-1} \int\left\|\nabla p_{\gamma}(\mathbf{z})\right\|_{2} \mathrm{~d} \mathbf{z}=\frac{\mathrm{L}_{k-1}}{\gamma} \int\|\nabla p(\mathbf{z})\|_{2} \mathrm{~d} \mathbf{z}=\frac{\mathrm{s} \mathrm{~L}_{k-1}}{\gamma}
$$

- $s:=\mathbb{E}\|\nabla \ln p(\varepsilon)\|_{2}, \quad \varepsilon \sim p$
- f_{γ} is (at least) 1 degree more smoother than f

$$
\begin{aligned}
\nabla f_{\gamma}(\mathbf{w}) & =\int f(\mathbf{w}-\mathbf{z}) \nabla p_{\gamma}(\mathbf{z}) \mathrm{d} \mathbf{z}=\frac{1}{\gamma} \mathbb{E}[f(\mathbf{w}-\gamma \boldsymbol{\varepsilon}) \nabla \ln p(\boldsymbol{\varepsilon})] \\
& =-\frac{1}{\gamma} \mathbb{E}[f(\mathbf{w}+\gamma \varepsilon) \nabla \ln p(\varepsilon)] \\
& =-\mathbb{E}\left[\frac{f(\mathbf{w}+\gamma \varepsilon)-f(\mathbf{w})}{\gamma} \nabla \ln p(\varepsilon)\right] \\
& =-\mathbb{E}\left[\frac{f(\mathbf{w}+\gamma \varepsilon)-f(\mathbf{w}-\gamma \varepsilon)}{2 \gamma} \nabla \ln p(\varepsilon)\right]
\end{aligned}
$$

When f is e.g. convex or an envelope function, we have the limit:

$$
\begin{aligned}
\nabla f_{0}(\mathbf{w}) & :=-\mathbb{E}\left[f^{\prime}(\mathbf{w} ; \varepsilon) \nabla \ln p(\varepsilon)\right], \quad \text { where } \quad f^{\prime}(\mathbf{w} ; \boldsymbol{\varepsilon}):=\lim _{\gamma \downarrow 0}[f(\mathbf{w}+\gamma \boldsymbol{\varepsilon})-f(\mathbf{w})] / \gamma \\
& =-\mathbb{E}\left[\sigma_{\partial f(\mathbf{w})}(\boldsymbol{\varepsilon}) \nabla \ln p(\varepsilon)\right]
\end{aligned}
$$

Needless to say, when f is actually differentiable, we have $\nabla f_{0}=\nabla f$.

Gaussian Smoothing

$$
\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \mathbb{I}) \text {, i.e. } p(\varepsilon)=(2 \pi)^{d / 2} \exp \left(-\|\varepsilon\|_{2}^{2} / 2\right)
$$

- $-\nabla \ln p(\varepsilon)=\varepsilon$ and $s=\mathbb{E}\|\nabla \ln p(\varepsilon)\|_{2} \leq \sqrt{d}$
- Conveniently, f_{γ} is in fact infinitely many times differentiable, e.g.

$$
\nabla f_{\gamma}(\mathbf{w})=\frac{1}{\gamma} \mathbb{E}[f(\mathbf{w}+\gamma \varepsilon) \varepsilon]=\mathbb{E}\left[\frac{f(\mathbf{w}+\gamma \varepsilon)-f(\mathbf{w})}{\gamma} \varepsilon\right]=\mathbb{E}\left[\frac{f(\mathbf{w}+\gamma \varepsilon)-f(\mathbf{w}-\gamma \varepsilon)}{2 \gamma} \varepsilon\right]
$$

- Requires f to be defined on entire \mathbb{R}^{d}

[^0]
Uniform Smoothing

$$
\varepsilon \sim \operatorname{Uniform}(K), \text { i.e. } p(\varepsilon)= \begin{cases}1 / v_{d}, & \text { if } \varepsilon \in K \\ 0, & \text { otherwise }\end{cases}
$$

- v_{d} is the volume of the (symmetric, isotropic, i.e. $\mathbb{E} \varepsilon \varepsilon^{\top}=\mathbb{I}$) compact set K
- Applying Stokes' theorem, $\nabla p(\varepsilon)=\mathbf{1}_{\partial K} \cdot \mathrm{n}(\varepsilon) / v_{d}$, where $\mathrm{n}(\varepsilon)$ is the normal vector
- $s=u_{d-1} / v_{d}$ where u_{d-1} is the surface area of ∂K; choose $\boldsymbol{\delta} \sim \operatorname{Uniform}(\partial K)$:

$$
\begin{aligned}
\nabla f_{\gamma}(\mathbf{w}) & =-\frac{s}{\gamma} \mathbb{E}[f(\mathbf{w}+\gamma \boldsymbol{\delta}) \mathrm{n}(\boldsymbol{\delta})]=-s \mathbb{E}\left[\frac{f(\mathbf{w}+\gamma \boldsymbol{\delta})-f(\mathbf{w})}{\gamma} \mathrm{n}(\boldsymbol{\delta})\right] \\
& =-s \mathbb{E}\left[\frac{f(\mathbf{w}+\gamma \boldsymbol{\delta})-f(\mathbf{w}-\gamma \boldsymbol{\delta})}{2 \gamma} \mathrm{n}(\boldsymbol{\delta})\right]
\end{aligned}
$$

- Requires f to be defined (and bounded) over $C+\gamma K$.
- Let $K=\mathrm{B}_{2}(\mathbf{0}, \sqrt{d})$ we have $\mathrm{n}(\boldsymbol{\delta})=-\sqrt{d} \boldsymbol{\delta} /\|\boldsymbol{\delta}\|_{2}$ and $s=\sqrt{d}$

[^1]
Put Everything Together

- We optimize f_{γ} as a smoothed approximation of f
- We compute an unbiased, stochastic (sub)gradient of f_{γ} by

$$
\begin{aligned}
& \text { 1. } \hat{\partial}^{1} f_{\gamma}(\mathbf{w})=-\frac{1}{\gamma} f(\mathbf{w}+\gamma \boldsymbol{\epsilon}) \cdot \nabla \ln p(\boldsymbol{\epsilon}) \\
& \text { 2. } \hat{\partial}^{1,0} f_{\gamma}(\mathbf{w})=-\frac{f(\mathbf{w}+\gamma \varepsilon)-f(\mathbf{w})}{\gamma} \cdot \nabla \ln p(\varepsilon) \\
& \text { 3. } \hat{\partial}^{1,1} f_{\gamma}(\mathbf{w})=-\frac{f(\mathbf{w}+\gamma \varepsilon)-f(\mathbf{w}-\gamma \boldsymbol{\varepsilon})}{2 \gamma} \cdot \nabla \ln p(\varepsilon) \\
& \text { 4. } \hat{\partial} f_{0}(\mathbf{w})=-f^{\prime}(\mathbf{w} ; \varepsilon) \cdot \nabla \ln p(\varepsilon)
\end{aligned}
$$

- Eexcept the last choice, only require 1 or 2 evaluations of the function
- Except the last choice, these stochastic (sub)gradients in general are biased for f
- We bound the second moment of the stochastic (sub)gradient
- We apply the stochastic GDA algorithm and obtain convergence towards f_{γ}
- We set γ appropriately so that we obtain convergence towards f

L_{0}-Lipschitz Continuous and Convex

- If f is convex, then $f_{\gamma} \geq f$
- If f is L_{0}-Lipschitz continuous (w.r.t. $\|\cdot\|_{2}$ say), so is f_{2}. Moreover,

$$
\left\|\mathfrak{f}_{\gamma}-\mathrm{f}\right\|_{2} \leq \gamma \mathrm{L}_{0} \mathbb{E}\|\varepsilon\|_{2} \leq \gamma \mathrm{L}_{0} \sqrt{\mathbb{E}\|\varepsilon\|_{2}^{2}}=\gamma \mathrm{L}_{0} \sqrt{d}
$$

- Thus, we obtain the approximation bound:

$$
\mathbb{E}\left[f\left(\overline{\mathbf{w}}_{t}\right)-f(\mathbf{w})\right]-\gamma \mathrm{L}_{0} \sqrt{d} \leq \mathbb{E}\left[f_{\gamma}\left(\overline{\mathbf{w}}_{t}\right)-f_{\gamma}(\mathbf{w})\right]
$$

- Using $\hat{\partial}^{1,0} f_{\gamma}$ we obtain

$$
\mathbb{E}\left[f_{\gamma}\left(\overline{\mathbf{w}}_{t}\right)-f_{\gamma}(\mathbf{w})\right] \leq \frac{\left\|\mathbf{w}_{0}-\mathbf{w}\right\|_{2}^{2}+\sum_{k=0}^{t} \eta_{k}^{2} \cdot \mathbb{E}\left\|\hat{\partial}^{1,0} f_{\gamma}(\mathbf{w})\right\|_{2}^{2}}{2 H_{t}}
$$

- If f is L_{0}-Lipschitz continuous, then using Gaussian smoothing:

$$
\begin{aligned}
\mathbb{E}\left\|\hat{\partial}^{1,0} f_{\gamma}(\mathbf{w})\right\|_{2}^{2} & =\mathbb{E}\left\|-\frac{f(\mathbf{w}+\gamma \varepsilon)-f(\mathbf{w})}{\gamma} \cdot \nabla \ln p(\varepsilon)\right\|_{2}^{2} \\
& \leq \mathrm{L}_{0}^{2} \cdot \mathbb{E}\|\varepsilon\|_{2}^{4} \\
& \leq \mathrm{L}_{0}^{2} \cdot d(d+2) \leq \mathrm{L}_{0}^{2}(d+1)^{2}
\end{aligned}
$$

- Setting $\gamma=\frac{\epsilon}{2 \mathrm{~L}_{0} \sqrt{d}}, \quad \eta_{t}=\frac{\operatorname{diam}(C)}{(d+1) \mathrm{L} \sqrt{t+1}}$ we have

$$
\mathbb{E}\left[f\left(\overline{\mathrm{w}}_{t}\right)-f(\mathbf{w})\right] \leq \epsilon, \quad \text { if } t>\frac{4(d+1)^{2}}{\epsilon^{2}}\left[\operatorname{diam}(C) \mathrm{L}_{0}\right]^{2},
$$

which is d^{2} times slower than running subgradient directly on f.

L_{1}-smooth and convex

- If f is convex, then $f_{\gamma} \geq f$
- If f is L_{1}-smooth (w.r.t. $\|\cdot\|_{2}$ say), so is f_{γ}. Moreover,

$$
f_{\gamma}-f \leq \frac{\gamma^{2} L_{1}}{2} \mathbb{E}\|\varepsilon\|_{2}^{2}=\frac{\gamma^{2} L_{\gamma} d}{2}
$$

- Thus, we obtain the approximation bound:

$$
\mathbb{E}\left[f\left(\overline{\mathbf{w}}_{t}\right)-f(\mathbf{w})\right]-\frac{\gamma^{2} L_{1} d}{2} \leq \mathbb{E}\left[f_{\gamma}\left(\overline{\mathbf{w}}_{t}\right)-f_{\gamma}(\mathbf{w})\right]
$$

- Using again $\hat{\partial}^{1,0} f_{\gamma}$ we obtain similarly

$$
\mathbb{E}\left[f_{\gamma}\left(\overline{\mathbf{w}}_{t}\right)-f_{\gamma}(\mathbf{w})\right] \leq \frac{\left\|\mathbf{w}_{0}-\mathbf{w}\right\|_{2}^{2}+\sum_{k=0}^{t} \eta_{k}^{2} \cdot \mathbb{E}\left\|\hat{\partial}^{1,0} f_{\gamma}\left(\mathbf{w}_{k}\right)\right\|_{2}^{2}}{2 H_{t}}
$$

- If ∇f is L_{1}-Lipschitz continuous:

$$
\begin{aligned}
\mathbb{E}\left\|\hat{\partial}^{1,0} f_{\gamma}(\mathbf{w})\right\|_{2}^{2} & =\mathbb{E}\left\|-\frac{f(\mathbf{w}+\gamma \varepsilon)-f(\mathbf{w})}{\gamma} \cdot \nabla \ln p(\varepsilon)\right\|_{2}^{2} \\
& \leq \mathbb{E}\left[\langle\nabla f(\mathbf{w}), \varepsilon\rangle+\frac{\mathrm{L}_{1} \gamma\|\varepsilon\|_{2}^{2}}{2}\right]^{2}\|\varepsilon\|_{2}^{2} \\
& \leq \frac{\gamma^{2} \mathrm{~L}_{1}^{2}}{2} d(d+2)(d+4)+2(d+2)\|\nabla f(\mathbf{w})\|_{2}^{2}
\end{aligned}
$$

- With $\gamma=O\left(\frac{1}{d} \sqrt{\frac{\epsilon}{\mathrm{~L}_{1}}}\right)$ and $\eta_{t} \equiv O\left(\frac{1}{d \mathrm{~L}_{1}}\right)$, need $O\left(\frac{d}{\epsilon} \mathrm{~L}_{1} \operatorname{diam}^{2}(C)\right)$ many steps to obtain an ϵ-minimizer of f
- d times slower than running (projected) gradient directly on f
- If f is differentiable:

$$
\begin{aligned}
\mathbb{E}\left\|\hat{\partial} f_{0}(\mathbf{w})\right\|_{2}^{2} & =\mathbb{E}\|\varepsilon\|_{2}^{4}\left\langle\frac{\varepsilon}{\|\varepsilon\|_{2}}, \nabla f(\mathbf{w})\right\rangle^{2} \\
& =\mathbb{E}\|\varepsilon\|_{2}^{4} \cdot \mathbb{E}\left\langle\frac{\varepsilon}{\|\varepsilon\|_{2}}, \nabla f(\mathbf{w})\right\rangle^{2}=(d+2)\|\nabla f(\mathbf{w})\|_{2}^{2}
\end{aligned}
$$

- If $\pm f$ is $\mathrm{L}_{1}^{ \pm}$-smooth:

$$
\mathbb{E}\left\|\hat{\partial}^{1,1} f_{\gamma}(\mathbf{w})\right\|_{2}^{2} \leq \frac{\gamma^{2}\left(\mathrm{~L}_{1}^{+}+\mathrm{L}_{1}^{-}\right)^{2}}{8} d(d+2)(d+4)+2(d+2)\|\nabla f(\mathbf{w})\|_{2}^{2}
$$

- If $\nabla^{2} f$ is L_{2}-Lipschitz continuous

$$
\mathbb{E}\left\|\hat{\partial}^{1,1} f_{\gamma}(\mathbf{w})\right\|_{2}^{2} \leq \frac{\gamma^{4} \mathbf{L}_{2}^{2}}{18} d(d+2)(d+4)(d+6)+2(d+2)\|\nabla f(\mathbf{w})\|_{2}^{2}
$$

[^0]: Y. Nesterov and V. Spokoiny. "Random Gradient-Free Minimization of Convex Functions". Foundations of Computational Mathematics, vol. 17 (2017), pp. 527-566.

[^1]: A. S. Nemirovski and D. B. Yudin. "Problem complexity and method efficiency in optimization". Wiley, 1983, A. D. Flaxman et al. "Online convex optimization in the bandit setting: gradient descent without a gradient". In: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms. 2005, pp. 385-394.

