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Problem

Constrained minimization:

min
w∈C⊆Rd

f(w)

• C is closed convex and f is (non)convex

• Can only evaluate the function value f(w) but not the (sub)gradient

• Zero-th order method (a.k.a. gradient-free or derivative-free)

• For most (if not all) functions in practice, computing the function value (a scalar)
costs as much as computing a (sub)gradient (a vector)!

• But only when we have direct access to the inner workings of f
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min
x∈[a,b]

f(x)

Algorithm 1: Golden-section search

Input: a < b, g =
√
5+1
2

, tol
1 x1 = a+ (b− a)/g
2 x2 = b− (b− a)/g
3 while x2 − x1 > tol do
4 if f(x2) > f(x1) then
5 b = x2

6 x2 = a+ (b− a)/g

7 else
8 a = x1

9 x1 = b− (b− a)/g
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Fix the number of evaluations. Is there an “optimal” alg?

inf
A

sup
f

length of returned interval

Key idea: recycle!

min
λ2≤1/2

N∏
i=2

(1− λi), s.t. λn+1 =
λn

1− λn

∧ 1− 2λn

1− λn

Solution: λn = Fn−1

Fn+1

J. Kiefer. “Sequential Minimax Search for a Maximum”. Proceedings of the American Mathematical Society, vol. 4, no. 3 (1953),
pp. 502–506.
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https://doi.org/10.1090/S0002-9939-1953-0055639-3


Uniform Grid Search
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Algorithm 2: Random pursuit
Input: w0 such that Jf ≤ f(w0)K is compact

1 for t = 1, 2, . . . do
2 choose normalized direction dt randomly
3 ηt ← argminη∈R f(wt + ηdt) // line search on chosen direction

4 wt+1 ← wt + ηtdt

S. U. Stich et al. “Optimization of Convex Functions with Random Pursuit”. SIAM Journal on Optimization, vol. 23, no. 2 (2013),
pp. 1284–1309, S. U. Stich et al. “Variable metric random pursuit”. Mathematical Programming, vol. 156 (2016), pp. 549–579.
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https://doi.org/10.1137/110853613
https://doi.org/10.1007/s10107-015-0908-z


If f is L1-smooth, then

f(wt + ηtdt) ≤ f(wt) + ηt ⟨dt,∇f(wt)⟩+ L1
2
η2t

≤ f(wt) + η(w −wt)
⊤dtd

⊤
t ∇f(wt) +

L1
2
η2(w −wt)

⊤dtd
⊤
t (w −wt)

⊤

• The above inequality is due to setting ηt = η(w −wt)
⊤dt for some η > 0

• Using Edtd
⊤
t = 1

d
I and assuming f is convex:

Ef(wt + ηtdt) ≤ f(wt) +
η
d
⟨w −wt,∇f(wt)⟩+ η2L1

2d
∥w −wt∥22

≤ f(wt) +
η
d
[f(w)− f(wt)] + (η

d
)2 dL1

2
∥w −wt∥22

• A simple induction (as in conditional gradient) yields:

E[f(wt)− f(w)] ≤ O
(
dL1
t+1

)
• A factor of dimension d worse
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Convolution

Definition: Convolution and Fourier transform
The convolution of two functions f and g is defined through integration:

(f ∗ g)(w) :=

∫
z

f(w − z)g(z) dz =

∫
z

f(z)g(w − z) dz =: (g ∗ f)(w).

Recall the Fourier transform and its inverse:

(Ff)(w∗) = Ff(w∗) =

∫
w

exp(−2πi ⟨w,w∗⟩)f(w) dw

(F−1g)(w) =

∫
w∗

exp(2πi ⟨w,w∗⟩)g(w∗) dw∗
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https://en.wikipedia.org/wiki/Fourier_transform


F (f ∗ g) = Ff ·Fg, FF−1 = F−1F = Id, Ff (k) = (−2πiw∗)kFf

• Applying Fourier transform to the derivative of convolution:

F (f ∗ g)(k) = (−2πiw∗)k ·F (f ∗ g) = [(−2πiw∗)kFf ]Fg = F (f (k) ∗ g)
= F (f ∗ g(k))

• Applying the inverse transform we obtain the formula of differentiating under the
integral:

(f ∗ g)(k) = f (k) ∗ g = f ∗ g(k)

• This can in fact be the definition of the derivative (distribution) of f , using the
derivative of some super smooth functions g!
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Randomized Smoothing

Definition:
For a (vector-valued) function f : Rd → Rc we define its randomized smoothing as

fγ(w) = Ef(w + γε) = Ef(w − γε),

where ε is some symmetric random noise with zero mean and identity covariance.

• Let p be the probability density function (pdf) of ε
• Dilated density: pγ(z) =

1
γdp(

1
γ
z)

• We have point-wise convergence:

fγ = Ef(w − γε) = f ∗ pγ, hence fγ → f as γ → 0

• Intuitively expected, as the noise shrinks to 0, i.e. pγ → δ′0
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https://en.wikipedia.org/wiki/Probability_density_function


Calculus for Randomized Smoothing

• The map f 7→ fγ is linear

• If f is convex/concave, so is fγ

• If f is convex, then fγ ≥ f

• If f is L0-Lipschitz continuous (w.r.t. ∥ · ∥2 say), so is fγ. Moreover,

∥fγ − f∥2 ≤γL0E∥ε∥2 ≤ γL0

√
E∥ε∥22 = γL0

√
d

• If f is L1-smooth (w.r.t. ∥ · ∥2 say), so is fγ. Moreover,

fγ − f ≤γ2L1
2
E∥ε∥22 =

γ2L1d
2

,

whereas a two-sided bound holds if both ±f are L1-smooth.
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Gradient approximation

• If ±f is L1-smooth, then ∥∇fγ −∇f∥◦ ≤ γL1
√
d.

– in fact, ∇fγ = (∇f)γ , and ∥∇f∥◦ ≤ ∥∇fγ∥◦ + γL1
√
d

• If ±f is L2-smooth, then ∥∇fγ −∇f∥◦ ≤ γ2L2d/2.

– in fact, ∇fγ = (∇f)γ and ∇2fγ = (∇2f)γ
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Justifying the Name

Differentiating under the integral we obtain

f (k)
γ := [f ∗ pγ](k) = f (k−l) ∗ p(l)γ , ∇kfγ(w) =

∫
∇k−1f(w − z)⊗∇pγ(z) dz.

Therefore, if f is Lk−1-smooth, then fγ is Lk-smooth, where

Lk ≤ Lk−1

∫
∥∇pγ(z)∥2 dz = Lk−1

γ

∫
∥∇p(z)∥2 dz = sLk−1

γ

• s := E∥∇ ln p(ε)∥2, ε ∼ p

• fγ is (at least) 1 degree more smoother than f
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∇fγ(w) =

∫
f(w − z)∇pγ(z) dz = 1

γ
E[f(w − γε)∇ ln p(ε)]

= − 1
γ
E[f(w + γε)∇ ln p(ε)]

= −E
[
f(w + γε)− f(w)

γ
∇ ln p(ε)

]
= −E

[
f(w + γε)− f(w − γε)

2γ
∇ ln p(ε)

]
When f is e.g. convex or an envelope function, we have the limit:

∇f0(w) := −E[f ′(w; ε)∇ ln p(ε)], where f ′(w; ε) := lim
γ↓0

[f(w + γε)− f(w)]/γ

= −E[σ∂f(w)(ε)∇ ln p(ε)]

Needless to say, when f is actually differentiable, we have ∇f0 = ∇f .
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Gaussian Smoothing

ε ∼ N (0, I), i.e. p(ε) = (2π)d/2 exp(−∥ε∥22/2)

• −∇ ln p(ε) = ε and s = E∥∇ ln p(ε)∥2 ≤
√
d

• Conveniently, fγ is in fact infinitely many times differentiable, e.g.

∇fγ(w) = 1
γ
E[f(w + γε)ε] = E

[
f(w+γε)−f(w)

γ
ε
]
= E

[
f(w+γε)−f(w−γε)

2γ
ε
]

• Requires f to be defined on entire Rd

Y. Nesterov and V. Spokoiny. “Random Gradient-Free Minimization of Convex Functions”. Foundations of Computational Mathematics,
vol. 17 (2017), pp. 527–566.
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https://doi.org/10.1007/s10208-015-9296-2


Uniform Smoothing

ε ∼ Uniform(K), i.e. p(ε) =

{
1/vd, if ε ∈ K

0, otherwise

• vd is the volume of the (symmetric, isotropic, i.e. Eεε⊤ = I) compact set K
• Applying Stokes’ theorem, ∇p(ε) = 1∂K · n(ε)/vd, where n(ε) is the normal vector
• s = ud−1/vd where ud−1 is the surface area of ∂K; choose δ ∼ Uniform(∂K):

∇fγ(w) = − s
γ
E[f(w + γδ)n(δ)] = −sE

[
f(w+γδ)−f(w)

γ
n(δ)

]
= −sE

[
f(w+γδ)−f(w−γδ)

2γ
n(δ)

]
• Requires f to be defined (and bounded) over C + γK.
• Let K = B2(0,

√
d) we have n(δ) = −

√
dδ/∥δ∥2 and s =

√
d

A. S. Nemirovski and D. B. Yudin. “Problem complexity and method efficiency in optimization”. Wiley, 1983, A. D. Flaxman et al. “Online
convex optimization in the bandit setting: gradient descent without a gradient”. In: Proceedings of the sixteenth annual ACM-SIAM symposium
on Discrete algorithms. 2005, pp. 385–394.
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https://en.wikipedia.org/wiki/Stokes_theorem
https://dl.acm.org/doi/10.5555/1070432.1070486
https://dl.acm.org/doi/10.5555/1070432.1070486


Put Everything Together

• We optimize fγ as a smoothed approximation of f
• We compute an unbiased, stochastic (sub)gradient of fγ by

1. ∂̂1fγ(w) = − 1
γ f(w + γϵ) · ∇ ln p(ϵ)

2. ∂̂1,0fγ(w) = − f(w+γε)−f(w)
γ · ∇ ln p(ε)

3. ∂̂1,1fγ(w) = − f(w+γε)−f(w−γε)
2γ · ∇ ln p(ε)

4. ∂̂f0(w) = −f ′(w; ε) · ∇ ln p(ε)

• Eexcept the last choice, only require 1 or 2 evaluations of the function
• Except the last choice, these stochastic (sub)gradients in general are biased for f
• We bound the second moment of the stochastic (sub)gradient
• We apply the stochastic GDA algorithm and obtain convergence towards fγ
• We set γ appropriately so that we obtain convergence towards f
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L0-Lipschitz Continuous and Convex

• If f is convex, then fγ ≥ f

• If f is L0-Lipschitz continuous (w.r.t. ∥ · ∥2 say), so is fγ. Moreover,

∥fγ − f∥2 ≤γL0E∥ε∥2 ≤ γL0

√
E∥ε∥22 = γL0

√
d

• Thus, we obtain the approximation bound:

E[f(w̄t)− f(w)]− γL0
√
d ≤ E[fγ(w̄t)− fγ(w)]

• Using ∂̂1,0fγ we obtain

E[fγ(w̄t)− fγ(w)] ≤ ∥w0 −w∥22 +
∑t

k=0 η
2
k · E∥∂̂1,0fγ(w)∥22

2Ht
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• If f is L0-Lipschitz continuous, then using Gaussian smoothing:

E∥∂̂1,0fγ(w)∥22 = E
∥∥∥−f(w+γε)−f(w)

γ
· ∇ ln p(ε)

∥∥∥2

2

≤ L20 · E∥ε∥42
≤ L20 · d(d+ 2) ≤ L20(d+ 1)2

• Setting γ = ϵ
2L0

√
d
, ηt =

diam(C)

(d+1)L0
√
t+1

we have

E[f(w̄t)− f(w)] ≤ ϵ, if t > 4(d+1)2

ϵ2
[diam(C)L0]

2,

which is d2 times slower than running subgradient directly on f .
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L1-smooth and convex

• If f is convex, then fγ ≥ f

• If f is L1-smooth (w.r.t. ∥ · ∥2 say), so is fγ. Moreover,

fγ − f ≤γ2L1
2
E∥ε∥22 =

γ2L1d
2

• Thus, we obtain the approximation bound:

E[f(w̄t)− f(w)]− γ2L1d
2
≤ E[fγ(w̄t)− fγ(w)]

• Using again ∂̂1,0fγ we obtain similarly

E[fγ(w̄t)− fγ(w)] ≤ ∥w0 −w∥22 +
∑t

k=0 η
2
k · E∥∂̂1,0fγ(wk)∥22

2Ht
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• If ∇f is L1-Lipschitz continuous:

E∥∂̂1,0fγ(w)∥22 = E
∥∥∥−f(w+γε)−f(w)

γ
· ∇ ln p(ε)

∥∥∥2

2

≤ E
[
⟨∇f(w), ε⟩+ L1γ∥ε∥22

2

]2
∥ε∥22

≤ γ2L21
2

d(d+ 2)(d+ 4) + 2(d+ 2)∥∇f(w)∥22

• With γ = O
(
1
d

√
ϵ
L1

)
and ηt ≡ O

(
1

dL1

)
, need O

(
d
ϵ
L1 diam2(C)

)
many steps to

obtain an ϵ-minimizer of f

• d times slower than running (projected) gradient directly on f
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More Moment Bounds for Gaussian Smoothing

• If f is differentiable:

E∥∂̂f0(w)∥22 = E∥ε∥42
〈

ε
∥ε∥2 ,∇f(w)

〉2

= E∥ε∥42 · E
〈

ε
∥ε∥2 ,∇f(w)

〉2

= (d+ 2)∥∇f(w)∥22

• If ±f is L±1 -smooth:

E∥∂̂1,1fγ(w)∥22 ≤
γ2(L+1 +L−1 )2

8
d(d+ 2)(d+ 4) + 2(d+ 2)∥∇f(w)∥22

• If ∇2f is L2-Lipschitz continuous

E∥∂̂1,1fγ(w)∥22 ≤
γ4L22
18

d(d+ 2)(d+ 4)(d+ 6) + 2(d+ 2)∥∇f(w)∥22
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