
CS794/CO673: Optimization for Data Science
Lec 23: Prox-Linear

Yaoliang Yu

December 2, 2022



Problem

Composite minimization:

min
w∈Rd

f(w), where f(w) = φ(s(w))

• s : Rd → Rp is a sufficiently smooth vector-valued function

• φ : Rp → R is possibly nonsmooth
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Gauss-Newton

• Given wt, we linearize the inner function s and proceed to minimize the outer
function φ:

wt+1 = argmin
w

φ
(
s(wt) + s′(wt)(w −wt)

)
• It may happen that f(wt+1) > f(wt), since our linearization only holds locally

around wt while there is no guarantee that wt+1 will remain close to wt
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Example: Nonlinear least squares

Often we need to find a solution to some nonlinear equation, i.e. s(w) = 0. Opera-
tionally, it is preferred to solve the nonlinear least-squares reformulation:

min
w

1
2
∥s(w)∥22, where φ = 1

2
∥ · ∥22.

• Directly solving the above problem may be challenging
• Reduce it to a sequence of linear least squares problems:

wt+1 = argmin
w

1
2
∥s(wt) + s′(wt)(w −wt)∥22

• Typically worsens the condition number
• Taking square root we arrive at an equivalent reformulation:

min
w

∥s(w)∥2, where φ = ∥ · ∥2.
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Prox-linear

wt+1 = argmin
w

φ
(
s(wt) + s′(wt)(w −wt)

)︸ ︷︷ ︸
f̃t(w)=f̃(w;wt)

+ 1
2ηt

∥w −wt∥22, i.e., wt+1 = Pηt
f̃t
(wt)

• Prox-linear adds regularization to the Gauss-Newton algorithm

• Could also turn the implicit regularization into an explicit constraint, resulting in
the so-called trust region methods

• When the outer function φ is convex, the regularized problem is strongly convex,
while the original function f = φ ◦ s may not even be convex

• Can show that the increment ∥wt+1 −wt∥2 is (continuous) increasing w.r.t. ηt
while ∥wt+1 −wt∥2/ηt is (continuous) decreasing w.r.t. ηt
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Making Sense of Prox-linear

• For sufficiently small ηt, wt+1 will remain close to wt so that decreasing the
surrogate function f̃ leads to decrease in the original function f as well:

df(wt+1)

dηt
= f ′(wt+1)

dwt+1

dηt
= f ′(wt+1)[−(Id + ηtf̃

′′
t (wt+1))

−1f̃ ′
t(wt+1)],

where we differentiated the optimality condition of wt+1 w.r.t. ηt in the last step:

ηtf̃
′
t(wt+1) +wt+1 −wt = 0.

Noting that wt+1 → wt if ηt ↓ 0, under mild continuity assumptions (e.g. φ and s
are sufficiently smooth or convex), we have

df(wt+1)

dηt
|ηt=0

= −∥f ′(wt)∥22 < 0

• If wt+1 = wt = w, then clearly w is a stationary point of f̃t and hence of f
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The Generality of Composition

• Let s̃(w) = (s(w),w) and φ̃(z,w) = φ(z) + r(w). Show that

φ̃(s̃(w)) = φ(s(w)) + r(w),

and the Gauss-Newton update for the left-hand side reduces to:

wt+1 = argmin
w

φ
(
s(wt) + s′(wt)(w −wt)

)
+ r(w)

• Find s and φ so that the Gauss-Newton update for φ ◦ s reduces to the
generalized conditional gradient update for ℓ+ r.

• Find s and φ so that the prox-linear update for φ ◦ s reduces to the gradient
update for ℓ+ r.

• Find s and φ so that the prox-linear update for φ ◦ s reduces to the proximal
gradient update for ℓ+ r, with a forward step for ℓ and a backward step for r.
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Properties of Prox-linear

wt+1 = argmin
w

φ
(
s(wt) + s′(wt)(w −wt)

)︸ ︷︷ ︸
f̃t(w)=f̃(w;wt)

+ 1
2ηt

∥w −wt∥22, i.e., wt+1 = Pηt
f̃t
(wt)

• Gauss-Newton is affine equivariant while prox-linear is not
• Prox-linear is an interpolation between Gauss-Newton and gradient descent

– η → ∞: reduces to Gauss-Newton
– η → 0: reduces to gradient descent (upon normalization)

• Convergence can be proved as before (Nesterov, Drusvyatskiy and Lewis)
• Quadratic variants (Bolte et al. 2020):

wt+1 = argmin
w

φ
(
s(wt) + s′(wt)(w −wt) +

1
2ηt

∥w −wt∥2
)
,
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Stochas Updates and Variance Reduction

min
w

Eξ[φ
(
s(w, ξ)

)
]

• When linearize s, can use the same stochastic idea as in SGD

• If the expectation is over a finite dataset, can apply variance reduction

D. Drusvyatskiy and C. Paquette. “Efficiency of minimizing compositions of convex functions and smooth maps”. Mathematical
Programming, vol. 178 (2019), pp. 503–558, J. Zhang and L. Xiao. “Stochastic variance-reduced prox-linear algorithms for nonconvex composite
optimization”. Mathematical Programming (2021).
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Quasi-Newton Method

wt+1 = wt − ηt ·Ht · f ′(wt)

• Ht is some approximation of the inverse Hessian: Ht ≈ [f ′′(wt)]
−1

• Can approximate Hessian using O(d) evals of gradient:

f ′(wt + αej)− f ′(wt)

α
, j = 1, . . . , d

• Let ht = f ′(wt+1)− f ′(wt) and pt = ηtHtf
′(wt) = wt+1 −wt

• Use previous gradients to directly approximate Hessian inverse:

Ht+1 = argmin
H

∥H −Ht∥ s.t. Hht = pt

L23 9/10



• Davidon-Fletcher-Powell:

Ht+1 = Ht −
Hthth

⊤
t Ht

h⊤
t Htht

+
ptp

⊤
t

p⊤
t ht

• Broyden-Fletcher-Goldfarb-Shanno (BFGS):

Ht+1 = (I − pth
⊤
t

h⊤
t pt

)Ht(I −
htp

⊤
t

h⊤
t pt

) +
ptp

⊤
t

p⊤
t ht
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