CS794/CO673: Optimization for Data Science

Lec 23: Prox-Linear

Yaoliang Yu

December 2, 2022

Problem

Composite minimization:

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}} f(\mathbf{w}), \text { where } f(\mathbf{w})=\varphi(\mathbf{s}(\mathbf{w}))
$$

- $\mathrm{s}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}$ is a sufficiently smooth vector-valued function
- $\varphi: \mathbb{R}^{p} \rightarrow \mathbb{R}$ is possibly nonsmooth

Gauss-Newton

- Given \mathbf{w}_{t}, we linearize the inner function s and proceed to minimize the outer function φ :

$$
\mathbf{w}_{t+1}=\underset{\mathbf{w}}{\operatorname{argmin}} \varphi\left(\mathbf{s}\left(\mathbf{w}_{t}\right)+\mathbf{s}^{\prime}\left(\mathbf{w}_{t}\right)\left(\mathbf{w}-\mathbf{w}_{t}\right)\right)
$$

- It may happen that $f\left(\mathbf{w}_{t+1}\right)>f\left(\mathbf{w}_{t}\right)$, since our linearization only holds locally around \mathbf{w}_{t} while there is no guarantee that \mathbf{w}_{t+1} will remain close to \mathbf{w}_{t}

Example: Nonlinear least squares

Often we need to find a solution to some nonlinear equation, i.e. $\mathbf{s}(\mathbf{w})=\mathbf{0}$. Operationally, it is preferred to solve the nonlinear least-squares reformulation:

$$
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{s}(\mathbf{w})\|_{2}^{2}, \quad \text { where } \quad \varphi=\frac{1}{2}\|\cdot\|_{2}^{2} .
$$

- Directly solving the above problem may be challenging
- Reduce it to a sequence of linear least squares problems:

$$
\mathbf{w}_{t+1}=\underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2}\left\|\mathbf{s}\left(\mathbf{w}_{t}\right)+\mathbf{s}^{\prime}\left(\mathbf{w}_{t}\right)\left(\mathbf{w}-\mathbf{w}_{t}\right)\right\|_{2}^{2}
$$

- Typically worsens the condition number
- Taking square root we arrive at an equivalent reformulation:

$$
\min _{\mathbf{w}}\|\mathbf{s}(\mathbf{w})\|_{2}, \quad \text { where } \quad \varphi=\|\cdot\|_{2} .
$$

Prox-linear

$$
\mathbf{w}_{t+1}=\underset{\mathbf{w}}{\operatorname{argmin}} \underbrace{\varphi\left(\mathbf{s}\left(\mathbf{w}_{t}\right)+\mathbf{s}^{\prime}\left(\mathbf{w}_{t}\right)\left(\mathbf{w}-\mathbf{w}_{t}\right)\right)}_{\tilde{f}_{t}(\mathbf{w})=\tilde{f}\left(\mathbf{w} ; \mathbf{w}_{t}\right)}+\frac{1}{2 \eta_{t}}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|_{2}^{2}, \text { i.e., } \mathbf{w}_{t+1}=\mathrm{P}_{\tilde{f_{t}}}^{\eta_{t}}\left(\mathbf{w}_{t}\right)
$$

- Prox-linear adds regularization to the Gauss-Newton algorithm
- Could also turn the implicit regularization into an explicit constraint, resulting in the so-called trust region methods
- When the outer function φ is convex, the regularized problem is strongly convex, while the original function $f=\varphi$ ०s may not even be convex
- Can show that the increment $\left\|\mathbf{w}_{t+1}-\mathrm{w}_{t}\right\|_{2}$ is (continuous) increasing w.r.t. η_{t} while $\left\|\mathbf{w}_{t+1}-\mathbf{w}_{t}\right\|_{2} / \eta_{t}$ is (continuous) decreasing w.r.t. η_{t}

Making Sense of Prox-linear

- For sufficiently small $\eta_{t}, \mathbf{w}_{t+1}$ will remain close to \mathbf{w}_{t} so that decreasing the surrogate function \tilde{f} leads to decrease in the original function f as well:

$$
\frac{\mathrm{d} f\left(\mathbf{w}_{t+1}\right)}{\mathrm{d} \eta_{t}}=f^{\prime}\left(\mathbf{w}_{t+1}\right) \frac{\mathrm{d} \mathbf{w}_{t+1}}{\mathrm{~d} \eta_{t}}=f^{\prime}\left(\mathbf{w}_{t+1}\right)\left[-\left(\mathrm{Id}+\eta_{t} \tilde{f}_{t}^{\prime \prime}\left(\mathbf{w}_{t+1}\right)\right)^{-1} \tilde{f}_{t}^{\prime}\left(\mathbf{w}_{t+1}\right)\right]
$$

where we differentiated the optimality condition of \mathbf{w}_{t+1} w.r.t. η_{t} in the last step:

$$
\eta_{t} \tilde{f}_{t}^{\prime}\left(\mathbf{w}_{t+1}\right)+\mathbf{w}_{t+1}-\mathbf{w}_{t}=0 .
$$

Noting that $\mathbf{w}_{t+1} \rightarrow \mathbf{w}_{t}$ if $\eta_{t} \downarrow 0$, under mild continuity assumptions (e.g. φ and \mathbf{s} are sufficiently smooth or convex), we have

$$
\left.\frac{\mathrm{d} f\left(\mathbf{w}_{t+1}\right)}{\mathrm{d} \eta_{t}}\right|_{\eta_{t}=0}=-\left\|f^{\prime}\left(\mathbf{w}_{t}\right)\right\|_{2}^{2}<0
$$

- If $\mathbf{w}_{t+1}=\mathbf{w}_{t}=\mathbf{w}$, then clearly \mathbf{w} is a stationary point of \tilde{f}_{t} and hence of f

The Generality of Composition

- Let $\tilde{\mathbf{s}}(\mathbf{w})=(\mathbf{s}(\mathbf{w}), \mathbf{w})$ and $\tilde{\varphi}(\mathbf{z}, \mathbf{w})=\varphi(\mathbf{z})+r(\mathbf{w})$. Show that

$$
\tilde{\varphi}(\tilde{\mathbf{s}}(\mathbf{w}))=\varphi(\mathbf{s}(\mathbf{w}))+r(\mathbf{w})
$$

and the Gauss-Newton update for the left-hand side reduces to:

$$
\mathbf{w}_{t+1}=\underset{\mathbf{w}}{\operatorname{argmin}} \varphi\left(\mathbf{s}\left(\mathbf{w}_{t}\right)+\mathbf{s}^{\prime}\left(\mathbf{w}_{t}\right)\left(\mathbf{w}-\mathbf{w}_{t}\right)\right)+r(\mathbf{w})
$$

- Find \mathbf{s} and φ so that the Gauss-Newton update for $\varphi \circ \mathbf{s}$ reduces to the generalized conditional gradient update for $\ell+r$.
- Find \mathbf{s} and φ so that the prox-linear update for $\varphi \circ \mathbf{s}$ reduces to the gradient update for $\ell+r$.
- Find s and φ so that the prox-linear update for $\varphi \circ \mathrm{s}$ reduces to the proximal gradient update for $\ell+r$, with a forward step for ℓ and a backward step for r.

Properties of Prox-linear

$$
\mathbf{w}_{t+1}=\underset{\mathbf{w}}{\operatorname{argmin}} \underbrace{\varphi\left(\mathbf{s}\left(\mathbf{w}_{t}\right)+\mathbf{s}^{\prime}\left(\mathbf{w}_{t}\right)\left(\mathbf{w}-\mathbf{w}_{t}\right)\right)}_{\tilde{f}_{t}(\mathbf{w})=\tilde{f}\left(\mathbf{w} ; \mathbf{w}_{t}\right)}+\frac{1}{2 \eta_{t}}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|_{2}^{2}, \text { i.e., } \mathbf{w}_{t+1}=\mathrm{P}_{\tilde{f_{t}}}^{\eta_{t}}\left(\mathbf{w}_{t}\right)
$$

- Gauss-Newton is affine equivariant while prox-linear is not
- Prox-linear is an interpolation between Gauss-Newton and gradient descent
- $\eta \rightarrow \infty$: reduces to Gauss-Newton
- $\eta \rightarrow 0$: reduces to gradient descent (upon normalization)
- Convergence can be proved as before (Nesterov, Drusvyatskiy and Lewis)
- Quadratic variants (Bolte et al. 2020):

$$
\mathbf{w}_{t+1}=\underset{\mathbf{w}}{\operatorname{argmin}} \varphi\left(\mathbf{s}\left(\mathbf{w}_{t}\right)+\mathbf{s}^{\prime}\left(\mathbf{w}_{t}\right)\left(\mathbf{w}-\mathbf{w}_{t}\right)+\frac{1}{2 \eta_{t}}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|^{2}\right)
$$

Stochas Updates and Variance Reduction

$\min _{\mathbf{w}} \mathbb{E}_{\boldsymbol{\xi}}[\varphi(\mathbf{s}(\mathbf{w}, \boldsymbol{\xi}))]$

- When linearize s, can use the same stochastic idea as in SGD
- If the expectation is over a finite dataset, can apply variance reduction

Quasi-Newton Method

$$
\mathbf{w}_{t+1}=\mathbf{w}_{t}-\eta_{t} \cdot H_{t} \cdot f^{\prime}\left(\mathbf{w}_{t}\right)
$$

- H_{t} is some approximation of the inverse Hessian: $H_{t} \approx\left[f^{\prime \prime}\left(\mathbf{w}_{t}\right)\right]^{-1}$
- Can approximate Hessian using $O(d)$ evals of gradient:

$$
\frac{f^{\prime}\left(\mathbf{w}_{t}+\alpha \mathbf{e}_{j}\right)-f^{\prime}\left(\mathbf{w}_{t}\right)}{\alpha}, j=1, \ldots, d
$$

- Let $\mathbf{h}_{t}=f^{\prime}\left(\mathbf{w}_{t+1}\right)-f^{\prime}\left(\mathbf{w}_{t}\right)$ and $\mathbf{p}_{t}=\eta_{t} H_{t} f^{\prime}\left(\mathbf{w}_{t}\right)=\mathbf{w}_{t+1}-\mathbf{w}_{t}$
- Use previous gradients to directly approximate Hessian inverse:

$$
H_{t+1}=\underset{H}{\operatorname{argmin}}\left\|H-H_{t}\right\| \quad \text { s.t. } \quad H \mathbf{h}_{t}=\mathbf{p}_{t}
$$

- Davidon-Fletcher-Powell:

$$
H_{t+1}=H_{t}-\frac{H_{t} \mathbf{h}_{t} \mathbf{h}_{t}^{\top} H_{t}}{\mathbf{h}_{t}^{\top} H_{t} \mathbf{h}_{t}}+\frac{\mathbf{p}_{t} \mathbf{p}_{t}^{\top}}{\mathbf{p}_{t}^{\top} \mathbf{h}_{t}}
$$

- Broyden-Fletcher-Goldfarb-Shanno (BFGS):

$$
H_{t+1}=\left(I-\frac{\mathbf{p}_{t} \mathbf{h}_{t}^{\top}}{\mathbf{h}_{t}^{\top} \mathbf{p}_{t}}\right) H_{t}\left(I-\frac{\mathbf{h}_{t} \mathbf{p}_{t}^{\top}}{\mathbf{h}_{t}^{\top} \mathbf{p}_{t}}\right)+\frac{\mathbf{p}_{t} \mathbf{p}_{t}^{\top}}{\mathbf{p}_{t}^{\top} \mathbf{h}_{t}}
$$

