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Problem

Composite minimization:

min w
s f(w),

¢ s: R? — R? is a sufficiently smooth function

® o :RR?” — R is possibly nonsmooth



Gauss-Newton

e Given w,, we linearize the inner function s and proceed to minimize the outer
function ¢:

Wi = argvinin o(s(wy) + 8 (W) (W — wy))

® |t may happen that f(w;,1) > f(w;), since our linearization only holds locally
around w; while there is no guarantee that w;,; will remain close to w;



Example: Nonlinear least squares

Often we need to find a solution to some nonlinear equation, i.e. s(w) = 0. Opera-
tionally, it is preferred to solve the nonlinear least-squares reformulation:

2

n})‘i,n SlIs(w)|l3, where o =1] - |5

® Directly solving the above problem may be challenging
® Reduce it to a sequence of least squares problems:
w1 = argmin 1 |s(wy) + s'(we)(w — wy)|[3
w
e Taking square root we arrive at an equivalent reformulation:

min [|s(w)lls, where @ = |- |-



Prox-linear

wier = argmin p(s(w,) + 8 (w))(w — w) +ohllw — will3, ice.. wies = P (w))
A\ A 2

v~

Fe(w)=F (wiw:)

Prox-linear adds regularization to the Gauss-Newton algorithm

Could also turn the implicit regularization into an explicit constraint, resulting in
the so-called trust region methods

o , the regularized problem is strongly convex,
while the original function f = ¢ o s may not even be convex

Can show that the increment ||w;;1 — W;||5 is (continuous) increasing w.r.t. 7
while ||w; 1 — wy||2/n; is (continuous) decreasing w.r.t. 7
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Making Sense of Prox-linear

e For sufficiently small 7, w;; will remain close to w; so that decreasing the
surrogate function f leads to decrease in the original function f as well:

df(wis1)
dny

where we differentiated the optimality condition of w; | w.r.t. 7, in the last step:

dwyi g

= f(Wis1) dn, = f'(We)[—(Id + mﬁ’(Wm))_lﬂ(WHl)]’

mft/(wt+1) + Wi — wy = 0.

Noting that w;,; — w; if 7, | 0, under mild continuity assumptions (e.g. ¢ and s
are sufficiently smooth or convex), we have

df(wis1)

dn,  'm=0 = —||f'(wy)[3 <0

® If w1 = w; = w, then clearly w is a stationary point of f; and hence of f



The Generality of Composition

o Let §(w) = (s(w),w) and p(z,w) = ¢(z) + r(w). Show that

P(8(w)) = p(s(w)) + r(w),
and the Gauss-Newton update for the left-hand side reduces to:

Wiyl = argvinin p(s(wi) + 8" (W) (W — wy)) +7(w)

® Find s and ¢ so that the Gauss-Newton update for ¢ o's reduces to the
generalized conditional gradient update for £ + r.

® Find s and ¢ so that the prox-linear update for ¢ o s reduces to the gradient
update for £ + r.

® Find s and ¢ so that the prox-linear update for ¢ o s reduces to the proximal
gradient update for ¢ + r, with a forward step for ¢ and a backward step for r.



Properties of Prox-linear

2t fe

>

W41 = argmin go(s(wt) + ' (wy)(w — Wt)) oL |lw — wy|3, d.e., w1 = P (wy)

~"

Fe(w)=F (wiw:)

® Gauss-Newton is affine equivariant while prox-linear is not
® Prox-linear is an interpolation between Gauss-Newton and gradient descent

— 1 — oo: reduces to Gauss-Newton

— 1 — 0: reduces to gradient descent (upon normalization)

Convergence can be proved as before (Nesterov, Drusvyatskiy and Lewis)
® Quadratic variants (Bolte et al. 2020):
: l 1 2
w1 = argmin @ (s(wy) + s'(wy)(w — wy) + o [W = we| ),
W
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Stochas Updates and Variance Reduction

min Eelp(s(w.£))]
® \When linearize s, can use the same stochastic idea as in SGD

e |f the expectation is over a finite dataset, can apply variance reduction

D. Drusvyatskiy and C. Paquette. . Mathematical
Programming, vol. 178 (2019), pp. 503-558, J. Zhang and L. Xiao.
. Mathematical Programming (2021).
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Quasi-Newton Method

Wi =W, — 1 - Hy - f/(Wt)

H, is some approximation of the inverse Hessian: H; ~ [f”(w;)] ™!

Can approximate Hessian using O(d) evals of gradient:
f'(we + ae;j) — f'(wy)
a

Let hy = f'(Wir1) — f'(wy) and py = n H f'(Wy) = Wiepp — Wy

L j=1,....d

Use previous gradients to directly approximate Hessian inverse:

Hyyy = argmin ||H — Hy|| s.t. Hh,; = p;
H



® Davidon-Fletcher-Powell:
chthtTHt ptPtT

H.,=H, —
i ' htTcht ptTht

® Broyden-Fletcher-Goldfarb-Shanno (BFGS):

pth

h,p, ) pp;
hTPt

H. 1= (I —
. ( h;r P PtT h,

=) H(I -







