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Problem

Constrained smooth minimization:

f⋆ = inf
w∈C

f(w).

• Constraint on the domain: closed set C ⊆ Rd

• f : Rd → R is smooth, e.g. continuously differentiable

• f can be convex or nonconvex; C can be convex or nonconvex

• Minimizer may or may not be attained

• Maximization is just negation
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White-box Adversarial Attacks

• Mathematically, a neural network is a function f(w;x)
• Typically, input x is given and network weights w optimized
• Could also freeze weights w and optimize x, adversarially!

min
δ

size(δ) s.t. pred[f(w;x+ δ)] ̸= y

• More generally: maxδ ℓ(w;x+ δ, y) s.t. size(δ) ≤ ϵ and 0 ≤ x+ δ ≤ 1
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Convexity

A point set C ⊆ Rd is convex iff for any w, z ∈ C, the line segment [w, z] ⊆ C.

The epigraph of a function f : Rd → (−∞,∞] is defined as the set

epi f := {(w, t) ∈ Rd+1 : f(w) ≤ t}

A function f : Rd → (−∞,∞] is convex iff its epigraph is a convex set, or equivalently

∀w,∀z, ∀λ ∈ [0, 1], f(λw + (1− λ)z) ≤ λf(w) + (1− λ)f(z)

Theorem: second-order test for convexity

f is convex iff ∇2f is positive semidefinite.
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Calculus of Convexity

• f, g convex =⇒ α · f + β · g is convex for any α, β ≥ 0

• f convex =⇒ f(Aw) is convex

• f convex increasing and g convex =⇒ f ◦ g is convex

• f convex =⇒ (w, t > 0) 7→ tf(w/t) is convex

• ft convex =⇒ f = supt ft is convex

• f(w, z) convex =⇒ g = minz f(w, z) is convex

• Is log(
∑

j exp(wj)) convex?
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A Nice Univariate Result

Theorem: constrained univariate convex minimization
For any univariate convex function f and convex interval C = [a, b], we have

PC

(
argmin

w∈R
f(w)

)
⊆ argmin

w∈C
f(w),

where PC(w) = P[a,b](w) = (a ∨ w) ∧ b is the closest point in C to w.

• Not true if C is not an interval (i.e. not convex)
• Not true if f is not convex
• Not true when dimension d ≥ 2, even when both f and C are convex
• Except when argminw∈Rd f(w) ⊆ C
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An Algorithm that does NOT work

η ← argmin
η≥0

f(wη), s.t. wη := w − η · ∇f(w) ∈ C

w← wη

• Does NOT work

– f(w) := 1
2 (w

2
1 + w2

2)

– C = {w ≥ 0 : w1 + w2 = 1}

– stuck at w = (1, 0) while minimum is at w⋆ = ( 12 ,
1
2 )

• Important to leave the constraint set C
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(Euclidean) Projection

Let C ⊆ Rd be a closed set. The Euclidean projection of a point w ∈ Rd to C is:

PC(w) := argmin
z∈C

∥z−w∥2,

i.e. the point(s) in C that are closest to the given point w.

• We always have PC(w) ̸= ∅ and compact

• PC(w) = w iff w ∈ C

• PC(w) = bdC if w ̸∈ C

• In Rd, PC is unique iff C is convex
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Geometrically

Theorem:
If C is convex, then w̄ = PC(w) iff for all z ∈ C

⟨z− w̄,w − w̄⟩ ≤ 0,

or equivalently, 1
2
∥z−w∥22 ≥ 1

2
∥z− w̄∥22 + 1

2
∥w̄ −w∥22.
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Example: Projection to the hypercube

min
a≤δ≤b

∥δ − γ∥2 = min
a≤δ≤b

∥δ − γ∥22

• Problem is separable: reduce to each dimension separately
• Apply the nice univariate result δ⋆ = (γ ∨ a) ∧ b

Example: Projection to the ball

min
∥z∥2≤λ

∥w − z∥2 = min
∥z∥2≤λ

∥w − z∥22

• Decompose z = r · z̄, where r ≥ 0, ∥z̄∥2 = 1

• Apply the nice univariate result w⋆ =
(

λ
∥w∥2 ∧ 1

)
·w
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Algorithm 1: Projected gradient descent for constrained smooth minimization
Input: w0 ∈ Rd, constraint C ⊆ Rd, smooth function f : Rd → R

1 for t = 0, 1, . . . do
2 gt ← ∇f(wt) // compute the gradient
3 wt+1 ← wt − ηtgt // ηt is the step size
4 wt+1 ← PC(wt+1) // project back to the constraint

• C = Rd: reduces to gradient descent
• Motivation from L-smoothness:

f(w) ≤ f(wt) + ⟨w −wt,∇f(wt)⟩+ 1
2ηt
∥w −wt∥22

= 1
2ηt
∥w − (wt − ηt∇f(wt))∥22 + f(wt)− ηt

2
∥∇f(wt)∥22

A. A. Goldstein. “Convex programming in Hilbert space”. Bulletin of the American Mathematical Society, vol. 70, no. 5 (1964),
pp. 709–710, E. S. Levitin and B. T. Polyak. “Constrained Minimization Methods”. USSR Computational Mathematics and Mathematical
Physics, vol. 6, no. 5 (1966), pp. 1–50. [English translation in Zh. Vȳchisl. Mat. mat. Fiz. vol. 6, no. 5, pp. 787–823, 1965].
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