CS794/CO673: Optimization for Data Science Lec 03: Projection

Yaoliang Yu

September 16, 2022

Constrained smooth minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in C} f(\mathbf{w}) .
$$

- Constraint on the domain: closed set $C \subseteq \mathbb{R}^{d}$
- $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is smooth, e.g. continuously differentiable
- f can be convex or nonconvex; C can be convex or nonconvex
- Minimizer may or may not be attained
- Maximization is just negation

White-box Adversarial Attacks

- Mathematically, a neural network is a function $f(\mathbf{w} ; \mathbf{x})$
- Typically, input x is given and network weights w optimized
- Could also freeze weights w and optimize x, adversarially!

$$
\min _{\boldsymbol{\delta}} \operatorname{size}(\boldsymbol{\delta}) \quad \text { s.t. } \quad \operatorname{pred}[f(\mathbf{w} ; \mathbf{x}+\boldsymbol{\delta})] \neq \mathrm{y}
$$

- More generally: $\max _{\delta} \ell(\mathbf{w} ; \mathbf{x}+\delta, \mathrm{y})$ s.t. $\operatorname{size}(\delta) \leq \epsilon$ and $0 \leq \mathrm{x}+\delta \leq 1$

Convexity

A point set $C \subseteq \mathbb{R}^{d}$ is convex iff for any $\mathbf{w}, \mathbf{z} \in C$, the line segment $[\mathbf{w}, \mathbf{z}] \subseteq C$. The epigraph of a function $f: \mathbb{R}^{d} \rightarrow(-\infty, \infty]$ is defined as the set

$$
\text { epi } f:=\left\{(\mathbf{w}, t) \in \mathbb{R}^{d+1}: f(\mathbf{w}) \leq t\right\}
$$

A function $f: \mathbb{R}^{d} \rightarrow(-\infty, \infty]$ is convex iff its epigraph is a convex set, or equivalently

$$
\forall \mathbf{w}, \forall \mathbf{z}, \forall \lambda \in[0,1], \quad f(\lambda \mathbf{w}+(1-\lambda) \mathbf{z}) \leq \lambda f(\mathbf{w})+(1-\lambda) f(\mathbf{z})
$$

Theorem: second-order test for convexity

f is convex iff $\nabla^{2} f$ is positive semidefinite.

a)
b)

Calculus of Convexity

- f, g convex $\Longrightarrow \alpha \cdot f+\beta \cdot g$ is convex for any $\alpha, \beta \geq 0$
- f convex $\Longrightarrow f(A w)$ is convex
- f convex increasing and g convex $\Longrightarrow f \circ g$ is convex
- f convex $\Longrightarrow(\mathrm{w}, t>0) \mapsto t f(\mathrm{w} / t)$ is convex
- f_{t} convex $\Longrightarrow f=\sup _{t} f_{t}$ is convex
- $f(\mathbf{w}, \mathbf{z})$ convex $\Longrightarrow g=\min _{\mathbf{z}} f(\mathbf{w}, \mathbf{z})$ is convex
- Is $\log \left(\sum_{j} \exp \left(w_{j}\right)\right)$ convex?

A Nice Univariate Result

Theorem: constrained univariate convex minimization
For any univariate convex function f and convex interval $C=[a, b]$, we have

$$
\mathbf{P}_{C}(\underset{w \in \mathbb{R}}{\operatorname{argmin}} f(w)) \subseteq \underset{w \in C}{\operatorname{argmin}} f(w),
$$

where $\mathrm{P}_{C}(w)=\mathrm{P}_{[a, b]}(w)=(a \vee w) \wedge b$ is the closest point in C to w.

- Not true if C is not an interval (i.e. not convex)
- Not true if f is not convex
- Not true when dimension $d \geq 2$, even when both f and C are convex
- Except when $\operatorname{argmin}_{\mathbf{w}_{\in} \in \mathbb{R}^{d}} f(\mathrm{w}) \subseteq C$

An Algorithm that does NOT work

$$
\begin{aligned}
& \eta \leftarrow \underset{\eta \geq 0}{\operatorname{argmin}} f\left(\mathbf{w}_{\eta}\right), \quad \text { s.t. } \quad \mathbf{w}_{\eta}:=\mathbf{w}-\eta \cdot \nabla f(\mathbf{w}) \in C \\
& \mathbf{w} \leftarrow \mathbf{w}_{\eta}
\end{aligned}
$$

- Does NOT work
$-f(\mathbf{w}):=\frac{1}{2}\left(w_{1}^{2}+w_{2}^{2}\right)$
$-C=\left\{\mathbf{w} \geq 0: w_{1}+w_{2}=1\right\}$
- stuck at $\mathbf{w}=(1,0)$ while minimum is at $\mathbf{w}_{\star}=\left(\frac{1}{2}, \frac{1}{2}\right)$
- Important to leave the constraint set C

(Euclidean) Projection

Let $C \subseteq \mathbb{R}^{d}$ be a closed set. The Euclidean projection of a point $\mathrm{w} \in \mathbb{R}^{d}$ to C is:

$$
\mathrm{P}_{C}(\mathbf{w}):=\underset{\mathbf{z} \in C}{\operatorname{argmin}}\|\mathbf{z}-\mathbf{w}\|_{2},
$$

i.e. the point(s) in C that are closest to the given point w.

- We always have $\mathrm{P}_{C}(\mathrm{w}) \neq \emptyset$ and compact
- $\mathrm{P}_{C}(\mathrm{w})=\mathrm{w}$ iff $\mathrm{w} \in C$
- $\mathrm{P}_{C}(\mathrm{w})=\mathrm{bd} C$ if $\mathrm{w} \notin C$
- $\operatorname{In} \mathbb{R}^{d}, \mathrm{P}_{C}$ is unique iff C is convex

Geometrically

Theorem:
If C is convex, then $\overline{\mathrm{w}}=\mathrm{P}_{C}(\mathrm{w})$ iff for all $\mathrm{z} \in C$

$$
\langle\mathbf{z}-\overline{\mathbf{w}}, \mathbf{w}-\overline{\mathbf{w}}\rangle \leq 0,
$$

or equivalently, $\frac{1}{2}\|\mathrm{z}-\mathrm{w}\|_{2}^{2} \geq \frac{1}{2}\|\mathrm{z}-\overline{\mathrm{w}}\|_{2}^{2}+\frac{1}{2}\|\overline{\mathrm{w}}-\mathrm{w}\|_{2}^{2}$.

Example: Projection to the hypercube

$$
\min _{\mathrm{a} \leq \delta \leq \mathrm{b}}\|\delta-\gamma\|_{2}=\min _{\mathrm{a} \leq \delta \leq \mathrm{b}}\|\delta-\gamma\|_{2}^{2}
$$

- Problem is separable: reduce to each dimension separately
- Apply the nice univariate result $\delta_{\star}=(\gamma \vee \mathrm{a}) \wedge \mathrm{b}$

Example: Projection to the ball

$$
\min _{\|\mathbf{z}\|_{2} \leq \lambda}\|\mathbf{w}-\mathbf{z}\|_{2}=\min _{\|\mathbf{z}\|_{2} \leq \lambda}\|\mathbf{w}-\mathbf{z}\|_{2}^{2}
$$

- Decompose $\mathbf{z}=r \cdot \overline{\mathbf{z}}$, where $r \geq 0,\|\overline{\mathbf{z}}\|_{2}=1$
- Apply the nice univariate result $\mathrm{w}_{\star}=\left(\frac{\lambda}{\|\mathrm{w}\|_{2}} \wedge 1\right) \cdot \mathrm{w}$
Algorithm 1: Projected gradient descent for constrained smooth minimization
Input: $\mathrm{w}_{0} \in \mathbb{R}^{d}$, constraint $C \subseteq \mathbb{R}^{d}$, smooth function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$
$\mathbf{1}$ for $t=0,1, \ldots$ do
$2 \quad \mathbf{g}_{t} \leftarrow \nabla f\left(\mathbf{w}_{t}\right)$ // compute the gradient
$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}-\eta_{t} \mathbf{g}_{t}$ // η_{t} is the step size
$\mathrm{w}_{t+1} \leftarrow \mathrm{P}_{C}\left(\mathrm{w}_{t+1}\right)$ // project back to the constraint
- $C=\mathbb{R}^{d}$: reduces to gradient descent
- Motivation from L-smoothness:

$$
\begin{aligned}
f(\mathbf{w}) & \leq f\left(\mathbf{w}_{t}\right)+\left\langle\mathbf{w}-\mathbf{w}_{t}, \nabla f\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{2 \eta_{t}}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|_{2}^{2} \\
& =\frac{1}{2 \eta_{t}}\left\|\mathbf{w}-\left(\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right)\right\|_{2}^{2}+f\left(\mathbf{w}_{t}\right)-\frac{\eta_{t}}{2}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

[^0]

[^0]: A. A. Goldstein. "Convex programming in Hilbert space". Bulletin of the American Mathematical Society, vol. 70, no. 5 (1964), pp. 709-710, E. S. Levitin and B. T. Polyak. "Constrained Minimization Methods". USSR Computational Mathematics and Mathematical Physics, vol. 6, no. 5 (1966), pp. 1-50. [English translation in Zh. Vȳchisl. Mat. mat. Fiz. vol. 6, no. 5, pp. 787-823, 1965].

