CS794/C0673: Optimization for Data Science

 Lec 15: Projection AlgorithmsYaoliang Yu

November 04, 2022

Problem

Constrained minimization problem:

$$
\begin{array}{ll}
\inf _{\mathbf{w} \in \mathbb{R}^{d}} & f(\mathbf{w}) \\
\text { s.t. } & \mathbf{w} \in \bigcap_{i \in I} C_{i},
\end{array}
$$

- Each $C_{2} \subset \mathbb{R}^{d}$ is closed, convex and
- Projector $\mathrm{P}_{i}=\mathrm{P}_{C_{i}}$ can be easily computed
- However
- Function

Problem

Constrained minimization problem:

$$
\begin{array}{ll}
\inf _{\mathbf{w} \in \mathbb{R}^{d}} & f(\mathbf{w}) \\
\text { s.t. } & \mathbf{w} \in \bigcap_{i \in I} C_{i},
\end{array}
$$

- Each $C_{i} \subseteq \mathbb{R}^{d}$ is closed, cenvex and simple
- Projector $\mathrm{P}_{i}=\mathrm{P}_{C_{i}}$ can be easily computed
- However,
- Function

Problem

Constrained minimization problem:

$$
\begin{array}{ll}
\inf _{\mathbf{w} \in \mathbb{R}^{d}} & f(\mathbf{w}) \\
\text { s.t. } & \mathbf{w} \in \bigcap_{i \in I} C_{i},
\end{array}
$$

- Each $C_{i} \subseteq \mathbb{R}^{d}$ is closed, convex and simple
- Projector $\mathrm{P}_{i}=\mathrm{P}_{C_{i}}$ can be easily computed
- However
- Function

Problem

Constrained minimization problem:

$$
\begin{array}{ll}
\inf _{\mathbf{w} \in \mathbb{R}^{d}} & f(\mathbf{w}) \\
\text { s.t. } & \mathbf{w} \in \bigcap_{i \in I} C_{i},
\end{array}
$$

- Each $C_{i} \subseteq \mathbb{R}^{d}$ is closed, convex and simple
- Projector $\mathrm{P}_{i}=\mathrm{P}_{C_{i}}$ can be easily computed
- However, projecting to the intersection C is usually much harder
- Function

Problem

Constrained minimization problem:

$$
\begin{array}{ll}
\inf _{\mathbf{w} \in \mathbb{R}^{d}} & f(\mathbf{w}) \\
\text { s.t. } & \mathbf{w} \in \bigcap_{i \in I} C_{i},
\end{array}
$$

- Each $C_{i} \subseteq \mathbb{R}^{d}$ is closed, convex and simple
- Projector $\mathrm{P}_{i}=\mathrm{P}_{C_{i}}$ can be easily computed
- However, projecting to the intersection C is usually much harder
- Function $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ is convex

Perceptron and SVM revisited

Recall the perceptron problem:

$$
\begin{array}{ll}
\min _{\mathbf{w} \in \mathbb{R}^{d}} & f(\mathbf{w}) \equiv 0 \\
\text { s.t. } \quad \mathbf{w} \in \bigcap_{i=1}^{n} C_{i}, \quad \text { where } \quad C_{i}:=\left\{\mathbf{w}:\left\langle y_{i} \mathbf{x}_{i}, \mathbf{w}\right\rangle \geq 1\right\}
\end{array}
$$

Similarly, we may rewrite the hard-margin SVM problem as:

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}} \frac{1}{2}\|\mathbf{w}\|_{2}^{2} \quad \text { s.t. } \quad \mathbf{w} \in \bigcap_{i=1}^{n} C_{i} .
$$

We note that the projector $\mathrm{P}_{C_{i}}$ is available in closed-form:

$$
\mathrm{P}_{C_{i}}(\mathbf{z}):=\left[\underset{\mathbf{w} \in C_{i}}{\operatorname{argmin}}\|\mathbf{w}-\mathbf{z}\|_{2}\right]=\mathbf{z}+\frac{\left(1-\left\langle y_{i} \mathbf{x}_{i}, \mathbf{z}\right\rangle\right)_{+}}{\left\|\mathbf{x}_{i}\right\|_{2}^{2}} y_{i} \mathbf{x}_{i} .
$$

A nonconvex example

	2			3	9		7	7
	1							
4		7			2			8
		5	2				9	
				8	7			
	4							
				6			7	
	7							
$\overline{9}$		3		2	6	$\overline{6}$		

Theorem: Fejér's characterization of the closed convex hull
Let $A \subseteq \mathbb{R}^{d}$. Then, $\mathrm{w} \notin \overline{\text { conv }} A$ iff there exists $\mathrm{z} \in \mathbb{R}^{d}$ such that for all $\mathrm{a} \in A$ (hence all $\mathrm{a} \in \overline{\operatorname{conv}} A$) we have $\|\mathrm{w}-\mathrm{a}\|_{2}>\|\mathrm{z}-\mathrm{a}\|_{2}$.

L. Fejér. "Über die Lage der Nullstellen von Polynomen, die aus Minimumforderungen gewisser Art entspringen". Mathematische Annalen, vol. 85, no. 1 (1922), pp. 41-48.

Algorithmic Significance of Fejér's Result

Can be used to solve the convex feasibility problem:

$$
\text { find } \mathrm{w} \in C \text {, }
$$

where the closed (and convex) set $C \subseteq \mathbb{R}^{d}$ represents the solutions set of any problem. Indeed, starting from an arbitrary point w_{0}, if it is in C then we are done; if not then according to Fejér's Theorem there exists some w_{1} such that $\left\|\mathrm{w}_{1}-\mathrm{w}\right\|<\left\|\mathrm{w}_{0}-\mathrm{w}\right\|$ for all $\mathrm{w} \in C$.

- We need to be able to certify if $w_{0} \in C$, which may be trivial when the set C is defined by explicit inequalities, such as
- If $\mathrm{w}_{0} \notin C$, we need to be able to explicitly and efficiently find
- We also need sufficient decrease so that
- We may also want to prove the convergence (rate) of the whole sequence

Algorithmic Significance of Fejér's Result

Can be used to solve the convex feasibility problem:

$$
\text { find } \quad \mathrm{w} \in C \text {, }
$$

where the closed (and convex) set $C \subseteq \mathbb{R}^{d}$ represents the solutions set of any problem. Indeed, starting from an arbitrary point w_{0}, if it is in C then we are done; if not then according to Fejér's Theorem there exists some w_{1} such that $\left\|\mathrm{w}_{1}-\mathrm{w}\right\|<\left\|\mathrm{w}_{0}-\mathrm{w}\right\|$ for all $\mathrm{w} \in C$.

- We need to be able to certify if $\mathrm{w}_{0} \in C$, which may be trivial when the set C is defined by explicit inequalities, such as $C=\{\mathrm{w}: g(\mathrm{w}) \leq 0\}$.
- If $w_{0} \notin C$, we need to be able to explicitly and efficiently find
- We also need sufficient decrease so that
- We may also want to prove the convergence (rate) of the whole sequence

Algorithmic Significance of Fejér's Result

Can be used to solve the convex feasibility problem:

$$
\text { find } \quad \mathrm{w} \in C \text {, }
$$

where the closed (and convex) set $C \subseteq \mathbb{R}^{d}$ represents the solutions set of any problem. Indeed, starting from an arbitrary point w_{0}, if it is in C then we are done; if not then according to Fejér's Theorem there exists some w_{1} such that $\left\|\mathrm{w}_{1}-\mathrm{w}\right\|<\left\|\mathrm{w}_{0}-\mathrm{w}\right\|$ for all $\mathrm{w} \in C$.

- We need to be able to certify if $\mathrm{w}_{0} \in C$, which may be trivial when the set C is defined by explicit inequalities, such as $C=\{\mathrm{w}: g(\mathrm{w}) \leq 0\}$.
- If $\mathrm{w}_{0} \notin C$, we need to be able to explicitly and efficiently find w_{1}.
- We also need sufficient decrease so that
- We may also want to prove the convergence (rate) of the whole sequence

Algorithmic Significance of Fejér's Result

Can be used to solve the convex feasibility problem:

$$
\text { find } \quad \mathrm{w} \in C \text {, }
$$

where the closed (and convex) set $C \subseteq \mathbb{R}^{d}$ represents the solutions set of any problem. Indeed, starting from an arbitrary point w_{0}, if it is in C then we are done; if not then according to Fejér's Theorem there exists some w_{1} such that $\left\|\mathrm{w}_{1}-\mathrm{w}\right\|<\left\|\mathrm{w}_{0}-\mathrm{w}\right\|$ for all $\mathrm{w} \in C$.

- We need to be able to certify if $\mathrm{w}_{0} \in C$, which may be trivial when the set C is defined by explicit inequalities, such as $C=\{\mathrm{w}: g(\mathrm{w}) \leq 0\}$.
- If $\mathrm{w}_{0} \notin C$, we need to be able to explicitly and efficiently find w_{1}.
- We also need sufficient decrease so that $\operatorname{dist}\left(\mathrm{w}_{t}, C\right) \rightarrow 0$.
- We may also want to prove the convergence (rate) of the whole sequence

Algorithmic Significance of Fejér's Result

Can be used to solve the convex feasibility problem:

$$
\text { find } \quad \mathrm{w} \in C \text {, }
$$

where the closed (and convex) set $C \subseteq \mathbb{R}^{d}$ represents the solutions set of any problem. Indeed, starting from an arbitrary point w_{0}, if it is in C then we are done; if not then according to Fejér's Theorem there exists some w_{1} such that $\left\|\mathrm{w}_{1}-\mathrm{w}\right\|<\left\|\mathrm{w}_{0}-\mathrm{w}\right\|$ for all $\mathrm{w} \in C$.

- We need to be able to certify if $\mathrm{w}_{0} \in C$, which may be trivial when the set C is defined by explicit inequalities, such as $C=\{\mathrm{w}: g(\mathrm{w}) \leq 0\}$.
- If $\mathrm{w}_{0} \notin C$, we need to be able to explicitly and efficiently find w_{1}.
- We also need sufficient decrease so that $\operatorname{dist}\left(\mathrm{w}_{t}, C\right) \rightarrow 0$.
- We may also want to prove the convergence (rate) of the whole sequence w_{t}.

Let $C=\cap_{i \in I} C_{i} \neq \emptyset$. Suppose $\mathrm{w}_{0} \notin C$ (otherwise we are done). Then there exists some $C_{i} \not \not \not \mathrm{w}_{0}$. Apply the constructive part of Fejér's Theorem by letting

$$
\mathrm{w}_{1}=\mathrm{P}_{C_{i}}\left(\mathrm{w}_{0}\right),
$$

we immediately have

$$
\forall \mathrm{w} \in C_{i} \supseteq C,\left\|\mathrm{w}-\mathrm{w}_{1}\right\|_{2}<\left\|\mathrm{w}-\mathrm{w}_{0}\right\|_{2} .
$$

Iterating the above idea leads to the method of alternating projections:
Algorithm 1: Method of alternating projections Input: w_{0}
1 for $t=0,1, \ldots$ do
2
3 $\begin{aligned} & \text { choose set } C_{i_{t}} \\ & \mathrm{w}_{t+1} \leftarrow\left(1-\eta_{t}\right) \mathrm{w}_{t}+\eta_{t} \mathrm{P}_{C_{i_{t}}}\left(\mathrm{w}_{t}\right)\end{aligned}$
// cyclic, random or greedy
// $\eta_{t} \in[0,2]$

Half Justification

Clearly, we have for any $\mathrm{w} \in C$:

$$
\begin{aligned}
\left\|\mathbf{w}_{t+1}-\mathbf{w}\right\|_{2}^{2}= & \left\|\mathbf{w}_{t}-\mathbf{w}-\eta_{t}\left(\mathbf{w}_{t}-\mathrm{P}_{C_{i_{t}}}\left(\mathbf{w}_{t}\right)\right)\right\|_{2}^{2} \\
= & \left\|\mathbf{w}_{t}-\mathbf{w}\right\|_{2}^{2}+\left(\eta_{t}^{2}-2 \eta_{t}\right)\left\|\mathbf{w}_{t}-\mathrm{P}_{C_{i_{t}}}\left(\mathbf{w}_{t}\right)\right\|_{2}^{2}+ \\
& 2 \eta_{t}\left\langle\mathbf{w}-\mathrm{P}_{C_{i_{t}}}\left(\mathbf{w}_{t}\right), \mathbf{w}_{t}-\mathrm{P}_{C_{i_{t}}}\left(\mathbf{w}_{t}\right)\right\rangle
\end{aligned}
$$

(optimality of projection) $\leq\left\|\mathbf{w}_{t}-\mathbf{w}\right\|_{2}^{2}+\left(\eta_{t}^{2}-2 \eta_{t}\right)\left\|\mathbf{w}_{t}-\mathrm{P}_{C_{i_{t}}}\left(\mathbf{w}_{t}\right)\right\|_{2}^{2}$
$\left(\eta_{t} \in[0,2]\right) \leq\left\|\mathbf{w}_{t}-\mathbf{w}\right\|_{2}^{2}$.

Theorem: Convergence of alternating projections

Let $C=\cap_{i \in I} C_{i} \neq \emptyset$ where each C_{i} is closed and convex and $|I|<\infty$. If 0 $0<\alpha \leq$ $\eta_{t} \leq 2-\beta<2$ for some $\alpha, \beta>0$, then with the cyclic update order we have

$$
\mathbf{w}_{t} \rightarrow \mathbf{w}_{\star} \in C .
$$

L. M. Bregman. "The method of successive projection for finding a common point of convex sets". Soviet Mathematics Doklady, vol. 162, no. 3 (1965), pp. 688-692, L. G. Gubin et al. "The Method of Projections for Finding the Common Point of Convex Sets". USSR Computational Mathematics and Mathematical Physics, vol. 7, no. 6 (1967), pp. 1-24. [English translation of paper in Zh. Vȳchisl. Mat. mat. Fiz. vol. 7, no. 6, pp. 1211-1228, 1967]

Alternating Bregman Projection

Instead of the Euclidean projection, can also consider the Bregman projection

$$
\mathbb{P}_{C}(\mathbf{z})=\mathbb{P}_{C, h}(\mathbf{z})=\underset{\mathbf{w} \in C}{\operatorname{argmin}} \mathrm{D}_{h}(\mathbf{w}, \mathbf{z}),
$$

where $h: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ is a Legendre function.

Algorithm 2: Alternating Bregman projection

Input: \mathbf{w}_{0}, dom $h \supseteq C$
$\mathbf{1}$ for $t=0,1, \ldots$ do

```
2 choose set Cit
3
    \mp@subsup{\mathbf{w}}{t+1}{}\leftarrow(1-\mp@subsup{\eta}{t}{})\mp@subsup{\textrm{w}}{t}{}+\mp@subsup{\eta}{t}{}\mp@subsup{\mathbb{P}}{\mp@subsup{C}{\mp@subsup{i}{t}{}}{}}{}(\mp@subsup{\textrm{w}}{t}{})
// cyclic, random or greedy
// }\mp@subsup{\eta}{t}{}\in[0,2
```

[^0]
Dykstra's algorithm

We now present a beautiful algorithm for solving:

$$
\min _{\mathbf{w}} f(\mathbf{w}) \quad \text { s.t. } \quad \mathbf{w} \in C:=\cap_{i \in I} C_{i},
$$

where f is Legendre and each C_{i} is closed and convex.
Algorithm 3: Dykstra's algorithm

```
Input: }\mp@subsup{\textrm{w}}{0}{}=\operatorname{argmin}f,\mp@subsup{\textrm{a}}{i}{}=0,\mp@subsup{b}{i}{}=0\mathrm{ for all }i\in
```

$\mathbf{1}$ for $t=0,1, \ldots$ do
2 choose set $C_{i_{t}}$
$3 \quad \mathbf{w}_{t+1} \leftarrow \underset{\mathbf{w} \in C_{i_{t}}}{\operatorname{argmin}} f(\mathbf{w})-\left\langle\mathbf{w}, \nabla f\left(\mathbf{w}_{t}\right)+\mathbf{a}_{i_{t}}\right\rangle$
$\mathbf{a}_{i_{t}} \leftarrow \mathrm{a}_{i_{t}}+\nabla f\left(\mathbf{w}_{t}\right)-\nabla f\left(\mathbf{w}_{t+1}\right)$
$b_{i_{t}} \leftarrow\left\langle\mathbf{a}_{i_{t}, t+1}, \mathbf{w}_{t+1}\right\rangle$
// needed only for proof
$5 \frac{/ / \text { needed only for proof }}{\substack{\text { R. L. Dykstra. "An Algorithm for Restricted Least Squares Regression". Journal of the American Statistical Association, vol. } 78, \text { no. } 384}}$ (1983), pp. 837-842.
// cyclic, random or greedy
// Bregman projection
$5 \frac{\text { R }}{5} b_{i_{t}} \leftarrow\left\langle\mathbf{a}_{i_{t}, t+1}, \mathbf{w}_{t+1}\right\rangle \quad$ // needed only for proof

Dykstra $=$ AltMin in the Dual

Apply Fenchel-Rockafellar duality we obtain the dual problem:

$$
\inf _{\left\{\mathbf{w}_{i}^{*}\right\}} f^{*}\left(-\sum_{i} \mathbf{w}_{i}^{*}\right)+\sum_{i} \sigma_{i}\left(\mathbf{w}_{i}^{*}\right),
$$

where the (unique) primal solution w and dual solution $\left\{\mathrm{w}_{i}^{*}\right\}$ are connected by:

$$
\sum_{i} \mathbf{w}_{i}^{*}+\nabla f(\mathbf{w})=0 .
$$

- f is Legendre is smooth and convex so AltMin applies

Dykstra $=$ AltMin in the Dual

Apply Fenchel-Rockafellar duality we obtain the dual problem:

$$
\inf _{\left\{\mathbf{w}_{i}^{*}\right\}} f^{*}\left(-\sum_{i} \mathbf{w}_{i}^{*}\right)+\sum_{i} \sigma_{i}\left(\mathbf{w}_{i}^{*}\right),
$$

where the (unique) primal solution w and dual solution $\left\{\mathrm{w}_{i}^{*}\right\}$ are connected by:

$$
\sum_{i} \mathbf{w}_{i}^{*}+\nabla f(\mathbf{w})=0
$$

- f is Legendre $\Longrightarrow f^{*}$ is smooth and convex so AltMin applies

$$
\begin{array}{r}
\mathbf{w}_{i, t+1}^{*}=\underset{\mathbf{w}_{i}^{*}}{\operatorname{argmin}} f^{*}\left(-\mathbf{w}_{i}^{*}-\sum_{j \neq i} \mathbf{w}_{j, t}^{*}\right)+\sigma_{i}\left(\mathbf{w}_{i}^{*}\right) \\
\quad \text { or } \mathbf{w}_{t+1}=\underset{\mathbf{w} \in C_{i}}{\operatorname{argmin}} f(\mathbf{w})+\left\langle\mathbf{w} ; \sum_{j \neq i} \mathbf{w}_{j, t}^{*}\right\rangle
\end{array}
$$

The primal solution w_{t+1} and dual solution $\mathrm{w}_{i, t+1}^{*}$ are now both unique due to the strict convexity in Legendre functions and they are connected by:

$$
\begin{equation*}
\nabla f\left(\mathbf{w}_{t+1}\right)+\mathbf{w}_{i, t+1}^{*}+\sum_{j \neq i} \mathbf{w}_{j, t}^{*}=\mathbf{0}=\nabla f\left(\mathbf{w}_{t+1}\right)+\sum_{j} \mathbf{w}_{j, t+1}^{*}, \tag{1}
\end{equation*}
$$

since at time t we update $\mathrm{w}_{i, t+1}^{*}$ and keep $\mathrm{w}_{j, t+1}^{*}=\mathrm{w}_{j, t}^{*}$ for all $j \neq i$.
Let us define (and maintain)

$$
\forall l=1, \ldots,|I|, \quad \mathrm{a}_{l, t}+\nabla f\left(\mathbf{w}_{t}\right)+\sum_{j \neq l} \mathbf{w}_{j, t}^{*}=\mathbf{0} \stackrel{(1)}{=} \mathbf{a}_{l, t}-\mathbf{w}_{l, t}^{*},
$$

where the last inequality follows from (1). Then,

$$
\begin{aligned}
\mathbf{a}_{i, t+1} & =\mathbf{w}_{i, t+1}^{*} \stackrel{(1)}{=}-\nabla f\left(\mathbf{w}_{t+1}\right)-\sum_{j \neq i} \mathbf{w}_{j, t}^{*} \stackrel{(1)}{=}-\nabla f\left(\mathbf{w}_{t+1}\right)+\mathbf{w}_{j, t}^{*}+\nabla f\left(\mathbf{w}_{t}\right) \\
& =\mathbf{a}_{i, t}+\nabla f\left(\mathbf{w}_{t}\right)-\nabla f\left(\mathbf{w}_{t+1}\right)
\end{aligned}
$$

while for all $l \neq i, \mathrm{a}_{l, t+1}=\mathrm{w}_{l, t}^{*}=\mathrm{a}_{l, t}$ since $\mathrm{w}_{l, t}^{*}$ was held fixed.

Entropy-regularized optimal transport

Let $\mathrm{p} \in \Delta_{m}$ and $\mathrm{q} \in \Delta_{n}$ be two probability vectors, and we seek a joint distribution $\Pi \in \mathbb{R}_{+}^{m \times n}$ with p and q as marginals such that the transportation cost is minimized:

$$
\min _{\Pi \in \mathbb{R}_{+}^{m \times n}}\langle C, \Pi\rangle \quad \text { s.t. } \quad \Pi 1=\mathrm{p}, \quad \Pi^{\top} 1=\mathrm{q} .
$$

Add a small entropy regularization:

$$
\min _{\Pi \in \mathbb{R}_{+}^{m \times n}}\langle C, \Pi\rangle+\lambda \sum_{i j} \pi_{i j} \log \pi_{i j} \quad \text { s.t. } \quad \Pi 1=\mathrm{p}, \quad \Pi^{\top} 1=\mathrm{q} .
$$

W.I.o.g. let $\Pi_{0} \propto \exp (-C / \lambda) \geq 0$ and $1^{\top} \Pi_{0} 1=1$ to obtain the equivalent problem:

$$
\begin{array}{rl}
\min _{\Pi \in \mathbb{R}_{+}^{m \times n}} & \mathrm{KL}\left(\Pi \| \Pi_{0}\right) \\
\text { s.t. } & \Pi 1=\mathrm{p}, \quad \Pi^{\top} \mathbf{1}=\mathrm{q} .
\end{array}
$$

[^0]: L. M. Bregman. "A relaxation method of finding a common point of convex sets and its application to problems of optimization". Soviet Mathematics Doklady, vol. 171, no. 5 (1966), pp. 1578-1581.

