CS794/CO673: Optimization for Data Science Lec 22: Newton and Gauss-Newton

Yaoliang Yu

December 2, 2022

Smooth minimization:

 $\min_{\mathbf{w}\in\mathbb{R}^d} f(\mathbf{w})$

• *f* is a sufficiently smooth and (non)convex function

• Can high-order derivatives improver convergece?

• First-order approximation:

$$f(\mathbf{w}) \le f(\mathbf{w}_t) + \langle \mathbf{w} - \mathbf{w}_t, f'(\mathbf{w}_t) \rangle + \frac{1}{2\eta_t} \|\mathbf{w} - \mathbf{w}_t\|_2^2$$

• Minimize the upper bound we obtain the familiar GD:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t f'(\mathbf{w}_t)$$

• If interested in maximizing f, use GA instead:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \eta_t f'(\mathbf{w}_t)$$

- For L-smooth functions, gradient norm converges at rate $O(1/\sqrt{t})$
- For convex and L-smooth functions, function value converges at rate O(1/t)

Newton's Algorithm

• With 2nd order derivative, we have

$$f(\mathbf{w}) pprox f(\mathbf{w}_t) + \langle \mathbf{w} - \mathbf{w}_t, f'(\mathbf{w}_t)
angle + rac{1}{2\eta_t} \langle \mathbf{w} - \mathbf{w}_t, f''(\mathbf{w}_t) (\mathbf{w} - \mathbf{w}_t)
angle$$

• Similarly, minimize the approximation we obtain Newton's algorithm:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t [f''(\mathbf{w}_t)]^{-1} f'(\mathbf{w}_t)$$

- often $\eta_t \equiv 1$, at least in later stages
- require the Hessian f'' to be nondegenerate
- Backbone of interior-point methods

Affine Equivariance

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t [f''(\mathbf{w}_t)]^{-1} f'(\mathbf{w}_t)$$

• Consider the change-of-variable $\mathbf{w} = A\mathbf{z}$ for some invertible A:

$$(f \circ A)'(\mathbf{z}) = A^{\top} f'(A\mathbf{z})$$
$$(f \circ A)''(\mathbf{z}) = A^{\top} f''(A\mathbf{z})A$$

• Newton update is affine equivalent:

$$\mathbf{z}_{t+1} = \mathbf{z}_t - \eta_t A^{-1} [f''(A\mathbf{z}_t)]^{-1} (A^{\top})^{-1} A^{\top} f'(A\mathbf{z}_t)$$

• How about gradient descent?

Affine Invariance

• Consider changing the inner product with a positive definite matrix Q:

$$\langle \mathbf{w}, \mathbf{z} \rangle_Q := \langle \mathbf{w}, Q \mathbf{z} \rangle$$

• Under the new inner product, we have

$$\nabla f \to Q^{-1} \nabla f, \qquad \nabla^2 f \to Q^{-1} \nabla^2 f$$

• Newton's update remains again the same

$$f(\mathbf{w}) \approx f(\mathbf{w}_t) + \langle \mathbf{w} - \mathbf{w}_t, f'(\mathbf{w}_t) \rangle + \frac{1}{2\eta_t} \langle \mathbf{w} - \mathbf{w}_t, f''(\mathbf{w}_t) (\mathbf{w} - \mathbf{w}_t) \rangle$$

$$f(\mathbf{w}) \leq f(\mathbf{w}_t) + \langle \mathbf{w} - \mathbf{w}_t, f'(\mathbf{w}_t) \rangle + \frac{1}{2\eta_t} \|\mathbf{w} - \mathbf{w}_t\|_2^2$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t [f''(\mathbf{w}_t)]^{-1} f'(\mathbf{w}_t)$$

- Consider scaling f to αf for any $\alpha \in \mathbb{R} \setminus \{0\}$
- Newton's update remains the same:

$$(\alpha f)' = \alpha f', \qquad (\alpha f)'' = \alpha f''$$

- In other words, minimizing f or maximizing f yields the same Newton update!
- Newton only cares to find a root: $f'(\mathbf{w}) = 0$

Theorem:

Suppose f is σ -strongly convex and f'' is L-Lipschitz continuous (w.r.t. the ℓ_2 norm), and $q = \frac{L}{2\sigma^2} ||f'(\mathbf{w}_0)||_2 < 1$, then for all t:

$$\|\mathbf{w}_t - \mathbf{w}_*\|_2 \leq rac{1}{\sigma} \|f'(\mathbf{w}_t)\|_2 \leq rac{2\sigma}{\mathsf{L}} q^{2^t},$$

where \mathbf{w}_* is the unique minimizer of f and $\eta_t \equiv 1$.

- f is σ -strongly convex if $f'' \succeq \sigma \cdot \mathrm{Id}$
- f'' is L-Lipschitz continuous if $\|f'''\| \leq \mathsf{L}$
- q < 1 if initializer \mathbf{w}_0 is close to \mathbf{w}_* , i.e. $\|f'(\mathbf{w}_0)\|_2 < \frac{2\sigma^2}{L}$

• L-Lipschitz continuity of f'' implies that

$$\|f'(\mathbf{w}_t + \mathbf{z}) - f'(\mathbf{w}_t) - f''(\mathbf{w}_t)\mathbf{z}\|_2 \le \frac{\mathsf{L}}{2}\|\mathbf{z}\|_2^2$$

• Taking
$$\mathbf{z} = -[f''(\mathbf{w}_t)]^{-1} f'(\mathbf{w}_t) =: \mathbf{w}_{t+1} - \mathbf{w}_t$$
 we obtain
 $\|f'(\mathbf{w}_{t+1})\|_2 \leq \frac{\mathbf{L}}{2} \|[f''(\mathbf{w}_t)]^{-1} f'(\mathbf{w}_t)\|_2^2 \leq \frac{\mathbf{L}}{2} \|[f''(\mathbf{w}_t)]^{-1}\|_{sp}^2 \cdot \|f'(\mathbf{w}_t)\|_2^2$
 $\leq \frac{\mathbf{L}}{2\sigma^2} \|f'(\mathbf{w}_t)\|_2^2$

• Therefore, telescoping yields for $t \ge 0$:

$$\frac{L}{2\sigma^2} \|f'(\mathbf{w}_{t+1})\|_2 \le \left(\frac{L}{2\sigma^2} \|f'(\mathbf{w}_t)\|_2\right)^2 \le \dots \le \left(\frac{L}{2\sigma^2} \|f'(\mathbf{w}_0)\|_2\right)^{2^{t+1}}$$

• Lastly, it follows from the strong convexity of f that

$$||f'(\mathbf{w}_t)||_2 = ||f'(\mathbf{w}_t) - f'(\mathbf{w}_*)||_2 \ge \sigma ||\mathbf{w}_t - \mathbf{w}_*||_2$$

Example: Newton may NOT converge faster than linearly

Let us consider the simple univariate function

 $f(w) := |w|^{5/2}.$

• Clearly, we have

$$f'(w) = \frac{5}{2} \operatorname{sign}(w) |w|^{3/2}, \qquad f''(w) = \frac{15}{4} |w|^{1/2}$$

- f'' is not Lipschitz continuous and f is not strongly convex
- The Newton update is:

$$w_{t+1} = w_t - \frac{4}{15} |w_t|^{-1/2} \cdot \frac{5}{2} \operatorname{sign}(w_t) |w_t|^{3/2} = w_t - \frac{2}{3} w_t = \frac{1}{3} w_t$$

• Converges to 0, the unique minimizer, at a linear rate.

Example: Newton may cycle

Consider the simple univariate function

 $f(w) = -\frac{1}{4}w^4 + \frac{5}{2}w^2$, $f'(w) = -w^3 + 5w$, $f''(w) = -3w^2 + 5w$

- Around 0, f is locally (strongly) convex and f'' is locally Lipschitz continuous
- The Newton update is:

$$w_{t+1} = w_t - \frac{-w_t^3 + 5w_t}{-3w_t^2 + 5} = \frac{2w_t^3}{3w_t^2 - 5}$$

$$1 \underbrace{-1}_{t \leftarrow t+1} - 1$$

- With $w_0 = 1$ we enter a cycle:
- Restricted to the unit ball around the origin, L = 6 and $\sigma = 2$, so that $q = \frac{L}{2\sigma^2} \|f'(w_0)\|_2 = 6 \times 4/2^3 = 3 \not< 1$

Example: Newton can be chaotic

Consider the simple univariate function

$$f(w) = \frac{1}{3}w^3 + w, \qquad f'(w) = w^2 + 1, \qquad f''(w) = 2w$$

- f, being nonconvex, tends to $-\infty$ as $w \to -\infty$ while f'' is 2-Lipschitz continuous and vanishes at w = 0
- The Newton update is:

$$w_{t+1} = w_t - \frac{w_t^2 + 1}{2w_t} = \frac{1}{2}(w_t - \frac{1}{w_t})$$

- f' > 0 hence Newton cannot find any root and goes crazy...
- Fixec point of the Newton update is $w^2 = -1$, i.e. $w = \pm i$

Dealing with Degeneracy

$$f(\mathbf{w}) \approx f(\mathbf{w}_t) + \langle \mathbf{w} - \mathbf{w}_t, f'(\mathbf{w}_t) \rangle + \frac{1}{2\eta_t} \langle \mathbf{w} - \mathbf{w}_t, f''(\mathbf{w}_t) (\mathbf{w} - \mathbf{w}_t) \rangle$$

$$f(\mathbf{w}) \leq f(\mathbf{w}_t) + \langle \mathbf{w} - \mathbf{w}_t, f'(\mathbf{w}_t) \rangle + \frac{1}{2\eta_t} \|\mathbf{w} - \mathbf{w}_t\|_2^2$$

• Levenberg-Marquardt Regularization:

 $\min_{\mathbf{w}} f(\mathbf{w}_t) + \langle \mathbf{w} - \mathbf{w}_t, f'(\mathbf{w}_t) \rangle + \frac{1}{2\eta_t} \langle \mathbf{w} - \mathbf{w}_t, f''(\mathbf{w}_t)(\mathbf{w} - \mathbf{w}_t) \rangle + \frac{\alpha_t}{2\eta_t} \|\mathbf{w} - \mathbf{w}_t\|_2^2$

• Interpolation between ideas:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \cdot [f''(\mathbf{w}_t) + \alpha_t \mathrm{Id}]^{-1} f'(\mathbf{w}_t)$$

- $\alpha_t \rightarrow 0$: Newton's update
- $\alpha_t \rightarrow \infty$: gradietn descent (upon normalization)

K. Levenberg. "A method for the solution of certain non-linear problems in least squares". *Quarterly of Applied Mathematics*, vol. 2, no. 2 (1944), pp. 164–168, D. W. Marquardt. "An Algorithm for Least-Squares Estimation of Nonlinear Parameters". *Journal of the Society for Industrial and Applied Mathematics*, vol. 11, no. 2 (1963), pp. 431–441.

Cubic Regularization

$$\underbrace{f(\mathbf{w}_t) + \langle f'(\mathbf{w}_t), \mathbf{w} - \mathbf{w}_t \rangle + \frac{1}{2} \langle f''(\mathbf{w}_t)(\mathbf{w} - \mathbf{w}_t), \mathbf{w} - \mathbf{w}_t \rangle + \frac{1}{6\eta_t} \|\mathbf{w} - \mathbf{w}_t\|_2^3}_{\bar{f}_t(\mathbf{w}) = \bar{f}_{\eta_t}(\mathbf{w}; \mathbf{w}_t)}$$

• Setting derivative to zero:

$$f'(\mathbf{w}_t) + f''(\mathbf{w}_t)(\mathbf{w}_{t+1} - \mathbf{w}_t) + \frac{1}{2\eta_t} \|\mathbf{w}_{t+1} - \mathbf{w}_t\|_2 \cdot (\mathbf{w}_{t+1} - \mathbf{w}_t) = \mathbf{0}$$

• Implicit update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \left[f''(\mathbf{w}_t) + \frac{1}{2\eta_t} \|\mathbf{w}_{t+1} - \mathbf{w}_t\|_2 \cdot \operatorname{Id} \right]^{-1} f'(\mathbf{w}_t)$$

• Essentially Newton's update with adaptive Levenberg-Marquardt regularization • Since $\|\mathbf{w}_{t+1} - \mathbf{w}_t\|_2 \rightarrow 0$ (hopefully), cubic regularization eventually behaves

similarly to Newton's update

Y. Nesterov and B. T. Polyak. "Cubic regularization of Newton method and its global performance". Mathematical Programming, vol. 108 (2006), pp. 177–205.

Theorem:

Suppose f'' is L-Lipschitz continuous (w.r.t. the ℓ_2 norm) and f is bounded from below by f_{\star} . Let $\eta_t \in [0, \frac{3}{2L}]$. The cubic regularization iterates $\{\mathbf{w}_t\}$ satisfy:

$$\sum_{t=0}^{\infty} (\frac{1}{4\eta_t} - \frac{\mathsf{L}}{6}) (\frac{2\eta_t}{1+\eta_t \mathsf{L}})^{3/2} \| f'(\mathbf{w}_{t+1}) \|_2^{3/2} \le \sum_{t=0}^{\infty} (\frac{1}{4\eta_t} - \frac{\mathsf{L}}{6}) \| \mathbf{w}_t - \mathbf{w}_{t+1} \|_2^3 \le f(\mathbf{w}_0) - f_{\star}.$$

- If $\eta_t = \frac{1}{L}$, we have $\sum_t \|\frac{f'(\mathbf{w}_{t+1})}{L}\|_2^{3/2} \le \sum_t \|\mathbf{w}_t \mathbf{w}_{t+1}\|_2^3 \le \frac{12(f_0 f_\star)}{L}$
- Gradient norm $\min_t \|f'(\mathbf{w}_t)\|_2$ converges to 0 at rate $O(t^{-2/3})$
- Descending, hence cannot converge to a local maxima or saddle point!

Theorem:

Suppose f is (star) convex, f'' is L-Lipschitz continuous, and the (sub)level set $[f \leq f(\mathbf{w}_0)]$ is bounded in diameter by ρ . Then, the cubic regularization iterates satisfy:

$$f(\mathbf{w}_{t+1}) - f_{\star} \le \frac{f(\mathbf{w}_{1}) - f_{\star}}{\left(1 + \sqrt{f(\mathbf{w}_{1}) - f_{\star}} \sum_{\tau=1}^{t} \sqrt{\frac{2}{9(\mathsf{L}+1/\eta_{\tau})\varrho^{3}}}\right)^{2}} \le \frac{9\varrho^{3}\mathsf{L}}{2\left(\sum_{\tau=0}^{t} \sqrt{\frac{\eta_{\tau}\mathsf{L}}{1+\eta_{\tau}\mathsf{L}}}\right)^{2}},$$

provided that for all t, $\eta_{t+1} \leq 3\eta_t$ and $\eta_t \leq \frac{1}{L}$.

- For constant step size (say) $\eta_t \equiv \frac{1}{L}$, $f(\mathbf{w}_t) f_\star \leq \frac{9\varrho^3 L}{t^2}$
- Matches the rate of accelerated gradient; can be further accelerated
- Converges for open loop step size: $\eta_t \to 0$ and $\sum_t \sqrt{\eta_t} = \infty$

- Consider σ -strongly convex functions with L-Lipschitz continuous Hessian
- It follows that $\varrho := \inf\{\|\mathbf{w} \mathbf{w}_\star\|_2 : f(\mathbf{w}) \le f(\mathbf{w}_0)\} \le \sqrt{\frac{2[f(\mathbf{w}_0) f_\star]}{\sigma}}$
- We divide the progress of cubic regularization into three stages
- Stage 1: we have

$$f(\mathbf{w}_t) - f_\star \le \frac{9\varrho^3 \mathsf{L}}{t^2}$$

Thus, after $t_1 \leq 3\sqrt{\rho L/\sigma}$ iterations we arrive at:

$$f(\mathbf{w}_{t_1}) - f_\star \le \sigma \varrho^2.$$

• Stage 2: we have

$$\sqrt[4]{f(\mathbf{w}_{t+1}) - f_{\star}} \le \sqrt[4]{f(\mathbf{w}_t) - f_{\star}} - \frac{1}{2} \left(\frac{\sigma}{2}\right)^{3/4} \cdot \sqrt{\frac{1}{L}}.$$

Thus, after another $t_2 \leq 2^{7/4} \sqrt{\rho L/\sigma} \leq 3.4 \sqrt{\rho L/\sigma}$ iterations we arrive at:

$$f(\mathbf{w}_{t_1+t_2}) - f_\star \le \frac{\sigma^3}{8\mathsf{L}^2}$$

• Stage 3: we have (the transition has happened)

$$f(\mathbf{w}_{t+1}) - f_{\star} \leq \frac{L}{3} \left(\frac{2}{\sigma}\right)^{3/2} [f(\mathbf{w}_t) - f_{\star}]^{3/2}.$$

Thus, after another $t_3 \leq \log_{rac{3}{2}} \log_9 rac{9\sigma^3}{8\epsilon \mathsf{L}^2}$ we finally obtain

 $f(\mathbf{w}_{t_1+t_2+t_3}) - f_\star \le \epsilon.$

- The total number of iterations is bounded by $6.4\sqrt{\rho L/\sigma} + \log_{\frac{3}{2}} \log_9 \frac{9\sigma^3}{8\epsilon L^2}$
- In comparison, let $\mathsf{L}^{[1]} = \|f''(\mathbf{w}_{\star})\|_{\mathrm{sp}}$ and we estimate

 $\sigma \cdot \mathrm{Id} \leq f''(\mathbf{w}) \leq (\mathsf{L}^{[1]} + \varrho \mathsf{L}) \cdot \mathrm{Id}.$

• Thus, the accelerated gradient algorithm needs

$$O\left(\sqrt{\frac{\mathsf{L}^{[1]}+\varrho\mathsf{L}}{\sigma}}\log\frac{(\mathsf{L}^{[1]}+\varrho\mathsf{L})\varrho^2}{\epsilon}\right)$$

iterations to get an ϵ -approximate minimizer, which is substantially worse

