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Problem

Smooth minimization:

min f(w)
weRd

e fis a sufficiently smooth and (non)convex function

® Can high-order derivatives improver convergece?



Gradient Descent Recalled

® First-order approximation:

F(w) < f(we) + (W = we, f/(We)) + g ][w — w3

Minimize the upper bound we obtain the familiar GD:

Wil = Wy — Utf/(Wt)

e |f interested in maximizing f, use GA instead:
W1 = Wy - nf (Wy)
® For L-smooth functions, gradient norm converges at rate O(1/+/%)

For convex and L-smooth functions, function value converges at rate O(1/t)



Newton's Algorithm

e \With 2nd order derivative, we have

Fw) & f(we) + (W = wi, (W) + 50 (W = we, /(W) (W — wy))

® Similarly, minimize the approximation we obtain Newton's algorithm:

Wit = W — Ut[f”<wt)]_1f/(wt)

— often n; = 1, at least in later stages

— require the Hessian f” to be nondegenerate

® Backbone of interior-point methods

3/18



Affine Equivariance

Wit = Wi — Ut[f”(wt)]ilf/(wt)

e Consider the change-of-variable w = Az for some invertible A:
(foA)(z) =A"f(Az)
(foA)'(z)= AT f"(Az)A
e Newton update is affine equivalent:
zi11 =2 — AT [ (Az,)] T (AT)TAT f(Azy)

e How about gradient descent?



Affine Invariance

e Consider changing the inner product with a positive definite matrix Q:
(W, 2) = (W, Qz)
® Under the new inner product, we have
Vf—=Q'Vf,  Vf—=Q 'V

e Newton's update remains again the same

f(w) = f(wi) +(w —wy, f'(wi)) + 27, (W —wy, f(wi)(w —wi))
F(w) < f(we) + (W = we, f/(We)) + 50 ][W — w3



Newton's Indifference

Wier = Wy — e[ f7(we)] 7 (W)

Consider scaling f to a.f for a e R\ {0}

Newton's update remains the same:

(f) =af,  (af)"=af"

In other words, minimizing f or maximizing f yields the same Newton update!

Newton only cares to find a root: f/(w) =0



Local Quadratic Convergence

Theorem:

Suppose [ is o-strongly convex and f” is L-Lipschitz continuous (w.r.t. the ¢5 norm),
and ¢ = 55| f/(wo)||2 < 1, then for all ¢:

202

Iwe = wala < 211/ (wo)lle < %4”

where w, is the unique minimizer of f and n; = 1.

® fis o-strongly convex if f” > o -1d

e f"is L-Lipschitz continuous if HJWH <L

® ¢ < 1 if initializer wy is close to w,, i.e. || f'(wo)|l2 < %



L-Lipschitz continuity of f” implies that

1f'(we +2) = f'(we) = f(wo)zll2 < 5213

Taking z = —[f"(wy)] ' f'(w;) =: w1 — Wy we obtain
1 (wer)ll2 < SILF (W)= (w3 < S (W)l 7HIZ - 1L (wa) 15
< a3l f (W)l
Therefore, telescoping yields for ¢t > 0:

Ll W)l < (Eallf (woll)’ < -+ < (Gl F/(wo)ll2)”

Lastly, it follows from the strong convexity of f that

L7 (wolla = 1 (we) = f/(Wa)ll2 = ol we — wall2



Example: Newton may NOT converge faster than linearly

Let us consider the simple univariate function

f(w) == |w]?2.

Clearly, we have

f'(w) = §sign(w)lwl*?, f"(w) = Pluw|'?

f" is not Lipschitz continuous and f is not strongly convex

The Newton update is:
1/2 1

Wt

Wiy = Wy — % (e gsign(wt)\wt’?’/? = w; — %wt _

Converges to 0, the unique minimizer, at a linear rate.



Example: Newton may cycle

Consider the simple univariate function

fw) = —tw* + 3u® f'(w) = —w?+5w, f"(w)=-3w>+5

e Around O, f is locally (strongly) convex and f” is locally Lipschitz continuous
® The Newton update is:

—w? 4 bwy 2w3
w = W+ — =
T T 3w2 45 3w2—5

12— -1
N~ —
t+—t+1

e With wy = 1 we enter a cycle:
® Restricted to the unit ball around the origin, L = 6 and o = 2, so that
q = gz ||/ (wo)ll2 = 6 x 4/2% =3 £ 1



Example: Newton can be chaotic

Consider the simple univariate function

fw) = tw? +w, fl(w) =w? +1, " (w) = 2w

® f, being nonconvex, tends to —oo as w — —oo while f” is 2-Lipschitz continuous
and vanishes at w = 0
® The Newton update is:
2
_ wy +1 1
Wit1 = Wt — o, 3 (we — w—t)
® {7 > ( hence Newton cannot find any root and goes crazy...

e Fixec point of the Newton update is w? = —1, i.e. w = +2






Dealing with Degeneracy

Fw) m f(we) + (W = wi, (W) + 50 (W = wy, (W) (W — wy))
Fw) < f(we) + (W = we, f/(We)) + 5 ][W — w5

® | evenberg-Marquardt Regularization:

in (W) - 0 = Wi, (90} + o (W = w7 (W) (W w)) g w — w
® [nterpolation between ideas:
Wip1 = Wy — ) - [f//(Wt) + OétId]ilf/(Wt)
— ay — 0: Newton's update
— oy — oo: gradietn descent (upon normalization)
K. Levenberg. . Quarterly of Applied Mathematics, vol. 2, no. 2
(1944), pp. 164-168, D. W. Marquardt. . Journal of the Society for

Industrial and Applied Mathematics, vol. 11, no. 2 (1963), pp. 431-441.
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https://www.jstor.org/stable/43633451
https://doi.org/10.1137/0111030

Cubic Regularization

Fwe) + (f'(We), w = W) + 5 (f' (W) (W = We), W — wi) + g w — wilf3

N J/

Fow)=Fog (wiwe)

Setting derivative to zero:

Frwe) + (W) (Weer = we) + 5[ Wi — Wella - (Wi — wi) = 0

Implicit update:

-1
Wit1 = Wi — f”(Wt) + QL,”HWtH - WtH2 -Id fl(Wt)

Essentially Newton's update with Levenberg-Marquardt regularization
Since ||[Wy1 — Wi|l2 — 0 (hopefully), cubic regularization eventually behaves

similarly to Newton's update

Y. Nesterov and B. T. Polyak. . Mathematical Programming, vol. 108
(2006), pp. 177-205.



https://doi.org/10.1007/s10107-006-0706-8

Convergence Guarantee

Theorem:

Suppose f” is L-Lipschitz continuous (w.r.t. the ¢, norm) and f is bounded from
below by f.. Let 7, € [0, 5-]. The cubic regularization iterates {w,} satisfy:

O I (el < Z = Ylwe — weal§ < fwo) — £

o If =, we have 32, [ EOES < 57, [lwy — w3 < 2=
e Gradient norm min, || f/(w;) || converges to 0 at rate O(t~%/3)

® Descending, hence cannot converge to a local maxima or saddle point!



Theorem:

Suppose [ is (star) convex, f” is L-Lipschitz continuous, and the (sub)level set
[f < f(wq)] is bounded in diameter by o. Then, the cubic regularization iterates
satisfy:

f(wl) B f*

F(Wer1) = fu < —2
<1+ \/ Wl j* ZT 1 L+1/777) )

provided that for all ¢, 71 < 31, and 7, < L.

® For constant step size (say) 7; = % flwy) — fo < 993L
® Matches the rate of accelerated gradient; can be further accelerated

® Converges for open loop step size: 7, — 0 and ), /7 = o0



Consider o-strongly convex functions with L-Lipschitz continuous Hessian
It follows that ¢ := inf{||w — w,]||2: f(W) < f(wq)} < —Q[f(wg)—f*]

e \We divide the progress of cubic regularization into three stages

Stage 1: we have

f(we) = fo < 25E.
Thus, after t; < 31/oL/o iterations we arrive at:
f(th) i f* < JQZ'
Stage 2: we have
3/4 1
\/ Wt+1 — fi < \/f Wt — fi— ( ) L
Thus, after another ¢, < 27/4\ /ol /o < 3.41/0L /0 iterations we arrive at:
f(wt1+t2) f* = 8L2



Stage 3: we have (the transition has happened)

fWe) = fi <3 ( )3/2 [f(w) — f*]3/2'

Thus, after another ¢35 < logs log, 896% we finally obtain
2

F(Wiitgtts) — [ S €
The total number of iterations is bounded by 6.41/0L/c + logs log, %
2

In comparison, let LY = || f(w,)||sp and we estimate
o-1d < f"(w) < (LM + pL) - Id.

Thus, the accelerated gradient algorithm needs
o) < L +Q|- log M4ol)p )

iterations to get an e-approximate minimizer, which is substantially worse







