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Problem

Minimax problem:

p⋆ = inf
w∈W

sup
z∈Z

f(w, z)

• Two players w and z, in W ⊆ Rp and Z ⊆ Rd, respectively

• f :W × Z→ R, the payoff function

• w-player aims to minimize the payoff f

• z-player aims to maximize the payoff f , or equivalently to minimize −f
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Understanding Minimax

• Introducing the upper and lower envelope functions:

f(w) := sup
z∈Z

f(w, z), f(z) := inf
w∈W

f(w, z)

• Minimax becomes the familiar minimization problem:

p⋆ = inf
w∈W

f(w)

• “Twin” (or dual) maximin problem:

d⋆ =

[
sup
z∈Z

inf
w∈W

f(w, z)

]
= sup

z∈Z
f(z)

• Even for a smooth payoff f the envelopes f and f may still be nonsmooth!
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Example: p⋆ > d⋆

Consider the simple bilinear problem:

inf
w ̸=0

sup
z ̸=0

wz.

• f(w) =∞ and f(z) = −∞
• p⋆ =∞ and d⋆ = −∞

Example: p⋆ = d⋆

Consider the simple constrained bilinear problem:

inf
w∈[−1,1]

sup
z∈[−1,1]

wz.

• f(w) = |w| and f(z) = −|z|
• p⋆ = 0 and d⋆ = 0
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Saddle Point

Definition: Saddle point

We call the pair (w⋆, z
⋆) ∈W × Z a saddle point of f(w, z) over W × Z if

∀w ∈W, ∀z ∈ Z, f(w⋆, z) ≤ f(w⋆, z
⋆) ≤ f(w, z⋆).

• Fixing w⋆, z⋆ ∈ argmax
z∈Z

f(w⋆, z), as can be seen from the left inequality

• Fixing z⋆, w⋆ ∈ argmin
w∈W

f(w, z⋆), as can be seen from the right inequality

• We will study algorithms that find a saddle point, i.e. solving the primal p⋆ and
dual d⋆ simultaneously
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Weak and Strong Duality

Theorem: Weak duality

Weak duality, i.e. p⋆ ≥ d⋆, always holds.

• When equality holds we say strong duality holds

Definition: Optimal sets

W⋆ := argmin
w∈W

f(w), Z⋆ := argmax
z∈Z

f(z).

Theorem: Strong duality and saddle points

Assuming W⋆ and Z⋆ are nonempty. Then, strong duality holds iff there exists a
saddle point, in which case W⋆ × Z⋆ is the set of all saddle points.
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Stability

Definition: More optimal sets

For w ∈W and z ∈ Z we also define the sets

Zw := Z(w) := argmax
z∈Z

f(w, z), Wz :=W(z) := argmin
w∈W

f(w, z).

• Let (w⋆, z
⋆) be a saddle point of f over W × Z

• Clearly, W⋆ ⊆W(z⋆), Z⋆ ⊆ Z(w⋆)

• The saddle point (w⋆, z
⋆) is stable if equality holds

• If both (w⋆, z
⋆) and (u⋆,v

⋆) are saddle points, then so are (w⋆,v
⋆) and (u⋆, z

⋆)
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Example: p⋆ = d⋆

Consider the simple constrained bilinear problem:

inf
w∈[−1,1]

sup
z∈[−1,1]

wz.

• f(w) = |w| and f(z) = −|z|
• p⋆ = 0 and d⋆ = 0

• W⋆ =

[
argmin
w∈[−1,1]

f(w)

]
= {0} and Z⋆ =

[
argmax
z∈[−1,1]

f(z)

]
= {0}

• W(z⋆) =

[
argmin
w∈[−1,1]

0 · w

]
= [−1, 1] and Z(w⋆) =

[
argmax
z∈[−1,1]

0 · z

]
= [−1, 1]

• W⋆ ⊊W(z⋆) and Z⋆ ⊊ Z(w⋆)

• The unique saddle point (w⋆, z
⋆) = (0, 0) is not stable
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Example: Robust optimization

Learn models that are robust against worst-case perturbations:

inf
w

E
(x,y)∼D

sup
∥z∥≤ϵ

ℓ(y, ⟨x+ z;w⟩) ≡ inf
w

sup
∥z(·)∥≤ϵ

E
(x,y)∼D

ℓ(y, ⟨x+ z(x, y);w⟩)

• Minimizer as a defender that tries to learn a good model w
• Maximizer as an attacker that tries to construct a difficult dataset through

perturbations z
• When the attacker acts first while the defender responds:

sup
∥z(·)∥≤ϵ

inf
w

E
(x,y)∼D

ℓ(y, ⟨x+ z(x, y);w⟩)

• May perturbe distribution D under metric dist (distributionally robust opt):

inf
w

sup
dist(D̃,D)≤ϵ

E
(x,y)∼D̃

ℓ(y, ⟨x;w⟩) ≥ sup
dist(D̃,D)≤ϵ

inf
w

E
(x,y)∼D̃

ℓ(y, ⟨x;w⟩)

A. Ben-Tal et al. “Robust Optimization”. Princeton University Press, 2009.L12 8/35
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Example: Lasso revisited

Let us consider the familiar (square root) linear regression problem:

inf
w
∥Xw − y∥2, where X = [x1, . . . ,xn]

⊤.

Now suppose we perturb each feature, i.e., columns in X, independently, arriving at
the robust linear regression problem:

inf
w

sup
∀j,∥zj∥2≤λ

∥(X + Z)w − y∥2,

where the perturbation matrix Z = [z1, . . . , zd].

Prove that robust linear regression is exactly equivalent to (square-root) Lasso (note
the absence of the square on the ℓ2 norm):

inf
w∈Rd

∥Xw − y∥2 + λ∥w∥1, where ∥w∥1 =
∑
j

|wj|
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Theorem: Minimax
Let f :W × Z→ R be a real-valued function on convex sets W and Z. Suppose
• f(w, ·) : Z→ R is continuous and concave on Z for each w ∈W;
• f(·, z) :W→ R is continuous and convex on W for each z ∈ Z;
• for some finite F ⊆ Z, maxz∈F f(·, z) is inf-compact, i.e.⋂

z∈F

{w ∈W : f(w, z) ≤ α} is compact for all α ∈ R;

then strong duality holds and the minimum of the primal problem is attained:

min
w∈W

sup
z∈Z

f(w, z) = sup
z∈Z

inf
w∈W

f(w, z).

A similar statement holds by swapping the role of w and z.

• W is compact, which is the usual assumption; or
• W is closed and f is strongly convex in w

L12 10/35



Example: Lagrangian duality and Slater’s condition

For the generic constrained minimization problem

inf
w

h(w) s.t. g(w) ≤ 0

we may construct the Lagrangian which implicitly removes the functional constraints:

inf
w

sup
z≥0

h(w) + ⟨g(w), z⟩︸ ︷︷ ︸
f(w,z)

.

• h and g convex =⇒ f convex in w and linear (hence concave) in z
• Slater’s condition: ∃w0 ∈ domh such that g(w0)< 0 =⇒ f sup-compact in z
• Applying the minimax theorem (w and z switched) we obtain strong duality:

inf
w

sup
z≥0

h(w) + ⟨g(w), z⟩︸ ︷︷ ︸
f(w,z)

= max
z≥0

inf
w

h(w) + ⟨g(w), z⟩︸ ︷︷ ︸
f(w,z)

• For any z⋆, W(z⋆) ⊇W⋆, whereas equality holds if (say) h is strictly convex
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Fenchel Conjugate

The Fenchel conjugate of a function f : Rd → R ∪ {∞} is defined as:

f ∗(w∗) = sup
w
⟨w;w∗⟩ − f(w),

which is always closed and convex (even when f is not).

• Fenchel-Young inequality follows from the definition:

f(w) + f ∗(w∗) ≥ ⟨w;w∗⟩ ,

with equality iff w∗ = ∂f(w).

• f ∗∗ = f iff f is (closed) convex
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Example: Fenchel-Rockafellar duality

inf
w

g(Aw) + h(w) = inf
w

sup
z
⟨Aw; z⟩ − g∗(z) + h(w)︸ ︷︷ ︸

f(w,z)

≥ sup
z

inf
w
⟨Aw; z⟩ − g∗(z) + h(w)

= − inf
z
sup
w

〈
w;−A⊤z

〉
+ g∗(z)− h(w)

= − inf
z
g∗(z) + h∗(−A⊤z)

• f is convex in w and concave in z, provided that g and h are both convex

• Conditions for strong duality include:
– 0 ∈ core(dom g −Adomh), i.e. for any d there exists some λ = λ(d) > 0 such that

for any t ∈ [0, λ], there exists w ∈ domh so that Aw + td ∈ dom g

– Adomh ∩ cont(g) ̸= ∅, where cont(g) is the set of points at which g is continuous
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Alternating

• The saddle point definition suggests the following natural alternating algorithm:

Algorithm 1: Alternating Minimax
Input: (w0, z0) ∈W × Z ∩ dom f

1 for t = 0, 1, 2, . . . do
2 wt+1 ← argmin

w∈W
f(w, zt)

3 zt+1 ← argmax
z∈Z

f(wt+1, z) // or zt+1 ← argmax
z∈Z

f(wt, z)

• f is convex in w and concave in z =⇒ each step is a convex Problem
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Example: Alternating does not work!

min
w∈[−1,1]

max
z∈[−1,1]

wz.

It is easy to see that strong duality holds and

f(w) = |w|, f(z) = −|z|,

so that we have a unique saddle point (w⋆, z
⋆) = (0, 0), which is not stable:

W(0) = [−1, 1] ⊋W⋆ = {0} and similarly Z(0) = [−1, 1] ⊋ Z⋆ = {0}.

Applying the alternating algorithm with any z0 ̸= 0 we obtain

z0 ̸= 0 =⇒ w1 = z1 = − sign(z0)

=⇒ w2 = z2 = sign(z0)

=⇒ w3 = z3 = − sign(z0), oscillating!
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Example: Alternating does not work?

min
w∈[−1,1]

max
z∈[−1,1]

z exp(w).

It is easy to see that strong duality holds and

f(w) = exp(w), f(z) = z exp(− sign(z)),

so that we have a unique saddle point (w⋆, z
⋆) = (−1, 1) which is now stable.

Applying the alternating algorithm with any z0 we obtain

w1 = − sign(z0), z1 = 1 =⇒ w2 = −1, z2 = 1 =⇒ w3 = −1, z3 = 1 =⇒ · · · ,

which converges to the unique saddle point in two iterations!
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p⋆ = inf
w∈W

sup
z∈Z

f(w, z) = inf
w∈W

f(w), where f(w) := sup
z∈Z

f(w, z)

• Apply the subgradient algorithm to minimize f(w)

• ∂f(w) = ∂f(w, z⋆) where z⋆ ∈ argmaxz∈Z f(w, z)

Algorithm 2: Uzawa’s algorithm for minimax
Input: (w0, z0) ∈W × Z ∩ dom f

1 for t = 0, 1, . . . do
2 zt = argmaxz∈Z f(wt, z) // solve inner maximization exactly

3 compute subgradient gt = ∂wf(wt, zt) // treating zt as constant
4 choose step size ηt // see ??
5 optional: gt ← gt/∥gt∥ // normalization
6 wt+1 = PW[wt − ηtgt] // subgrad on outer minimization

H. Uzawa. “Iterative methods for concave programming”. In: Studies in linear and non-linear programming. Ed. by K. J. Arrow et al.
Standford University Press, 1958, pp. 154–165, J. M. Danskin. “The theory of max-min and its application to weapons allocation problems”.
Springer, 1967, V. F. Dem’yanov. “On the minimax problem”. Soviet Mathematics Doklady, vol. 187, no. 2 (1969), pp. 255–258.

L12 17/35

https://cs.uwaterloo.ca/~y328yu/classics/Uzawa58.pdf
https://link.springer.com/book/10.1007/978-3-642-46092-0
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• Replace exact inner maximization in Uzawa with a single gradient ascent step

Algorithm 3: Gradient Descent Ascent (GDA) for Minimax
Input: (w0, z0) ∈ dom f ∩W × Z

1 for t = 0, 1, . . . do
2 choose step size ηt > 0
3 wt+1 = PW[wt − ηt∂wf(wt, zt)] // GD on minimization
4 zt+1 = PZ[zt − ηt∂z-f(wt, zt)] // GA on maximization

• Use different step sizes on w and z
• Use wt+1 in the update on z (or vice versa)
• Use stochastic gradients in both steps (more on this later)
• After every update in w, perform k updates in z (or vice versa)

G. W. Brown and J. v. Neumann. “Solutions of Games by Differential Equations”. In: Contributions to the Theory of Games I. ed. by
H. W. Kuhn and A. W. Tucker. Princeton University Press, 1950, pp. 73–79, K. J. Arrow and L. Hurwicz. “Gradient method for concave
programming I: Local results”. In: Studies in linear and non-linear programming. Ed. by K. J. Arrow et al. Standford University Press, 1958,
pp. 117–126.
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Example: Vanilla GDA may never converge for any step size

min
w∈[−1,1]

max
z∈[−1,1]

wz ≡ max
z∈[−1,1]

min
w∈[−1,1]

wz,

which has a unique (non-stable) saddle-point at (w⋆, z
⋆) = (0, 0).

If we run vanilla (projected) GDA with step size ηt ≥ 0, then

wt+1 = [wt − ηtzt]
1
−1, zt+1 = [zt + ηtwt]

1
−1

w2
t+1 + z2t+1 ≥ 1 ∧ [(wt − ηtzt)

2 + (zt + ηtwt)
2]

= 1 ∧ [(1 + η2t )(w
2
t + z2t )]

≥ 1 ∧ (w2
t + z2t ).

Therefore, if we do not initialize at the saddle point (w⋆, z
⋆) = (0, 0), then

∥(wt, zt)∥ ≥ 1 ∧ ∥(w0, z0)∥ > 0 = ∥(w⋆, z
⋆)∥.
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Example: Fenchel conjugate of Jensen-Shannon divergence

f(t) = t log t− (t+ 1) log(t+ 1) + log 4.

We derive its Fenchel conjugate:

f ∗(s) = sup
t

st− f(t) = sup
t

st− t log t+ (t+ 1) log(t+ 1)− log 4.

Taking derivative w.r.t. t we obtain

s− log t− 1 + log(t+ 1) + 1 = 0 ⇐⇒ t = 1
exp(−s)−1

,

and plugging it back we get

f ∗(s) = s
exp(−s)−1

− 1
exp(−s)−1

log 1
exp(−s)−1

+ exp(−s)
exp(−s)−1

log exp(−s)
exp(−s)−1

− log 4

= s
exp(−s)−1

− 1
exp(−s)−1

log 1
exp(−s)−1

+ exp(−s)
exp(−s)−1

log 1
exp(−s)−1

− s exp(−s)
exp(−s)−1

−log 4
= −s− log(exp(−s)− 1)− log 4 = − log(1− exp(s))− log4.

L12 21/35



Definition: Generative adversarial networks (GAN)

inf
θ

JS(X∥Tθ(Z)), where JS(p∥q) = Df (p∥q) = KL(p∥p+q
2
) + KL(p∥p+q

2
)

To circumvent the lack of the density q(x) of Tθ(Z), we expand using duality:

JS(X∥Tθ(Z)) =

∫
x

f
(
p(x)/q(x)

)
q(x) dx =

∫
x

[sup
s

sp(x)/q(x)− f ∗(s)]q(x) dx

=

∫
x

[sup
s

sp(x)− f ∗(s)q(x)] dx

= sup
S:Rd→R

∫
x

S(x)p(x) dx−
∫
x

f ∗(S(x))q(x) dx

= sup
S:Rd→R

ES(X)− Ef ∗(S(Tθ(Z)))

≥ inf
θ

sup
ϕ
ESϕ(X)− Ef ∗(Sϕ(Tθ(Z)))

I. Goodfellow et al. “Generative Adversarial Nets”. In: NIPS. 2014.L12 22/35
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Example: Catch me if you can

Let us consider the game between the generator q(x) (the implicit density of Tθ(Z))
and the discriminator S(x):

inf
q

sup
S

∫
x

S(x)p(x) dx+

∫
x

log
(
1− exp(S(x))

)
q(x) dx+ log 4.

• Fixing the generator q, what is the optimal discriminator S?

• Plugging the optimal discriminator S back in, what is the optimal generator?

• Fixing the discriminator S, what is the optimal generator q?

• Plugging the optimal generator q back in, what is the optimal discriminator?

• Does strong duality hold? Stability?
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Definition: Equilibrium in game theory

Suppose we have n players participating in a game, where the players act simultane-
ously by each choosing a strategy wi and then receiving payoff

fi(w) = fi(w1, . . . , wn), w ∈W, i = 1, . . . , n.

Nash considered the product space W =
∏n

i=1Wi, and proved the existence of an
equilibrium w∗ where

∀i, w∗
i ∈ argmax

wi∈Wi

fi(w
∗
1, . . . , w

∗
i−1, wi, w

∗
i+1, . . . , w

∗
n),

under the assumption that each fi is continuous in w and concave in wi.

• No player unilaterally has motive to deviate from its strategy in equilibrium w∗

• Striking similarity to alternating minimization where fi ≡ −f
• Basically alternating minimax with −f1 = f = f2

J. F. Nash. “Equilibrium Points in N-Person Games”. Proceedings of the National Academy of Sciences, vol. 36, no. 1 (1950), pp. 48–49.
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Algorithm 4: Alternating algorithm for Nash equilibrium
Input: w0 ∈W =

∏n
i=1Wi

1 for t = 0, 1, . . . do
2 for i = 1, . . . , n do
3 wi,t+1 ∈ argmax

wi∈Wi

fi(w1,t, . . . , wi−1,t, wi, wi+1,t, . . . , wn,t) // simultaneously

• Line 3 as a multi-valued mapping T :W⇒W such that wt+1 ∈ T(wt)
• T is compact convex valued and upper semicontinuous
• According to Kakutani’s fixed point theorem there exists a fixed point w∗ ∈ T(w∗)
• Nash did not prove alternating will necessarily converge to any fixed point!
• w 7→ 2w admits a unique fixed point w∗ = 0 but will never converge to it

H. W. Kuhn. “Simplicial approximation of fixed points”. Proceedings of the National Academy of Sciences, vol. 61, no. 4 (1968),
pp. 1238–1242, C. Daskalakis et al. “The Complexity of Computing a Nash Equilibrium”. SIAM Journal on Computing, vol. 39, no. 1 (2009),
pp. 195–259, X. Chen et al. “Settling the complexity of computing two-player Nash equilibria”. Journal of the ACM, vol. 56, no. 3 (2009), p. 14,
K. Etessami and M. Yannakakis. “On the Complexity of Nash Equilibria and Other Fixed Points”. SIAM Journal on Computing, vol. 39, no. 6
(2010), pp. 2531–2597.
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Definition: Reducing n-person game to minimax

Quite remarkably, Nikaidô and Isoda proved the existence of a normalized equilibrium

w⋆ ∈ argmax
z∈Z

f(w⋆, z), where f(w, z) :=
∑
i

fi(w1, . . . , wi−1, zi, wi+1, . . . , wn)

is defined on the product space W × Z with Z =W.

Any normalized equilibrium is an equilibrium while the converse may not hold.

We can now formulate the (normalized) Nash equilibrium in n-person non-cooperative
game as the minimax problem:

0 = min
w∈W

max
z∈Z

f(w, z)− f(w,w),

which is concave in z ∈ Z =W if each fi is concave in in its i-th input.

H. Nikaidô and K. Isoda. “Note on non-cooperative convex games”. Pacific Journal of Mathematics, vol. 5, no. 1 (1955), pp. 807–815.L12 28/35

https://projecteuclid.org/euclid.pjm/1171984836


• Zero-sum: two players (i.e. n = 2) with opposing payoff functions f1 + f2 = 0
• Saddle point is exactly Nash’s equilibrium
• Payoff of either player at any equilibrium remains the same (i.e. ±[p⋆ = d⋆])
• Strong duality implies it does not matter which player moves first
• Set of Nash equilibria enjoys the product/interchangeable structure

Example: Saddle point as Nash equilibrium

Let f1 = −g and f2 = g and consider normalized Nash equilibrium:

w⋆ ∈ argmax
z∈Z

f(w⋆, z), where f(w, z) := g(w1, z2)− g(z1, w2).

Or using the formulation of Nikaidô and Isoda:

0 =

[
min
w∈W

max
z∈W

f(w, z)− f(w,w)

]
=

[
min
w∈W

max
z∈W

g(w1, z2)− g(z1, w2)

]
,

which is a convex problem if g is convex-concave!
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Definition: Equilibrium in general sum games
• General sum: f1 + f2 ̸= c for any c or with n ≥ 3 players
• Minimax: we call w∗ ∈W a minimax equilibrium if

w∗
i ∈ argmax

wi∈Wi

fi(wi), fi(wi) = min
{wj∈Wj}j ̸=i

fi(w1, . . . , wi−1, wi, wi+1, . . . , wn),

– n two-player games: each player i plays against all other players
– minimax equilibrium always exists (under mild conditions)
– different from (normalized) Nash equilibrium, even for zero-sum two-player games,

coincides with Nash equilibrium only when the latter exists
• Pareto: w∗ ∈W a Pareto equilibrium if for any w ∈W,

f(w) ≤ f(w∗) =⇒ f(w) = f(w∗),

i.e., it is not possible to strictly improve any player’s payoff without degrading
some other player’s.

A. W. Starr and Y.-C. Ho. “Nonzero-sum differential games”. Journal of optimization theory and applications, vol. 3, no. 3 (1969),
pp. 184–206.
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Example: Two-player general sum
• Game 1: (a,x) is a NE; player 2 chooses x to “force” player 1 to choose a

• Game 2: no NE but (a,x) is still a minimax equilibrium

• Game 3: NE (a,x) and (b,y), with different costs due to non-zero sum
– player 1 committing to a “forces” player 2 to play x
– in general sum, whoever moves first may gain a significant advantage!

• Game 4: unique NE (b,y) and yet (a,x) gives lower costs to both players!
– (a,x) (also (a,y) and (b,x)) is a Pareto equilibrium
– NE (b,y) is not!
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Definition: Stackelberg equilibrium

Another interesting notion of equilibrium of two players, due to Stackelberg:

w∗ ∈ argmax
w∈W

f1(w, z(w)), z(w) ∈ argmax
z∈Z

f2(w, z), z∗ = z(w∗).

• Player w is the (big market) leader who acts first

• Player z is the follower (e.g. small competitor) who responds

• By acting first the leader has some advantage while the follower could threaten
the leader to make trouble for both players!

H. von Stackelberg. “Market structure and equilibrium”. Springer, 1934.
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Example: Market price
• Leader and follower produce same product with quantity q1 and q2 at no cost

• The payoff for each player is fi(q1, q2) = qi(4− q1 − q2)+, i = 1, 2, where
p := (4− q1 − q2)+ is say the market price for the product

• Given q1, the optimal choice for the follower is q2 = 4−q1
2

, which in turn yields
the optimal choice for the leader q∗1 = 2 hence q∗2 = 1

• By merely acting first the leader gets payoff 2 while the follower gets payoff 1
• Had the two players acted simultaneously, the Nash equilibrium is easily seen to

be q1 = q2 =
4
3

with payoff 16
9

for both players
– leader “rips” off follower!

• However, the follower can threaten the leader by intentionally deviating from its
optimal response, which will hurt both players!

– setting q2 = 4 leads to 0 payoff for both players, which is clearly irrational but perhaps
not uncommon in reality...

L12 33/35



Data Poisoning

• Follower F (i.e., the defender) aims at minimizing f = L(Dtr ∪ Dp,w):

w∗ = w∗(Dp) ∈ argmin
w

L(Dtr ∪ Dp,w)

• Leader L (i.e., the attacker) aims at maximizing a different loss function
ℓ = L(Dv,w∗) on the validation set Dv:

Dp∗ ∈ argmax
Dp

L(Dv,w∗)

• Stackelberg formulation (a.k.a. bilevel optimization):

max
Dp

L(Dv,w∗), s.t. w∗ ∈ argmin
w
L(Dtr ∪ Dp,w).
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