CS794/CO673: Optimization for Data Science Lec 08: Metric Gradient

Yaoliang Yu

October 7, 2022

Problem

Unconstrained minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in \mathbb{R}^{d}} f\left(w_{1}, \ldots, w_{d}\right)
$$

- f : smooth w.r.t. a general norm and possibly nonconvex
- For simplicity, no constraints on

Problem

Unconstrained minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in \mathbb{R}^{d}} f\left(w_{1}, \ldots, w_{d}\right)
$$

- f : smooth w.r.t. a general norm $\|\cdot\|$ and possibly nonconvex
- For simplicity, no constraints on

Problem

Unconstrained minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in \mathbb{R}^{d}} f\left(w_{1}, \ldots, w_{d}\right)
$$

- f : smooth w.r.t. a general norm $\|\cdot\|$ and possibly nonconvex
- For simplicity, no constraints on w

Gradient Compression

Typical problem in ML:

$$
f(\mathbf{w})=\frac{1}{m} \sum_{i=1}^{m} f_{i}\left(\mathbf{w} ; \mathcal{D}_{i}\right)
$$

- Each f_{i} represent a different user/study/processor

$$
f^{\prime}(\mathbf{w})=\frac{1}{m} \sum_{i=1}^{m} f_{i}^{\prime}\left(\mathbf{w} ; \mathcal{D}_{i}\right)
$$

- For large d, communicating and aggregating the individual gradients are expensive
- Compress the gradients by simply taking its sign?
J. Bernstein et al. (2018). "signSGD: Compressed Optimisation for Non-Convex Problems". In: Proceedings of the 35th International Conference on Machine Learning, pp. 560-569; J. Bernstein et al. (2019). "signSGD with Majority Vote is Communication Efficient and Fault L08 Tolerant". In: International Conference on Learning Representations.

Gradient Compression

Typical problem in ML:

$$
f(\mathbf{w})=\frac{1}{m} \sum_{i=1}^{m} f_{i}\left(\mathbf{w} ; \mathcal{D}_{i}\right)
$$

- Each f_{i} represent a different user/study/processor

$$
f^{\prime}(\mathbf{w})=\frac{1}{m} \sum_{i=1}^{m} f_{i}^{\prime}\left(\mathbf{w} ; \mathcal{D}_{i}\right)
$$

- For large d, communicating and aggregating the individual gradients are expensive
- Compress the gradients by simply taking its sign?
J. Bernstein et al. (2018). "signSGD: Compressed Optimisation for Non-Convex Problems". In: Proceedings of the 35th International Conference on Machine Learning, pp. 560-569; J. Bernstein et al. (2019). "signSGD with Majority Vote is Communication Efficient and Fault L08 Tolerant". In: International Conference on Learning Representations.

Gradient Compression

Typical problem in ML:

$$
f(\mathbf{w})=\frac{1}{m} \sum_{i=1}^{m} f_{i}\left(\mathbf{w} ; \mathcal{D}_{i}\right)
$$

- Each f_{i} represent a different user/study/processor

$$
f^{\prime}(\mathbf{w})=\frac{1}{m} \sum_{i=1}^{m} f_{i}^{\prime}\left(\mathbf{w} ; \mathcal{D}_{i}\right)
$$

- For large d, communicating and aggregating the individual gradients are expensive
- Compress the gradients by simply taking its sign?

Gradient Compression

Typical problem in ML:

$$
f(\mathbf{w})=\frac{1}{m} \sum_{i=1}^{m} f_{i}\left(\mathbf{w} ; \mathcal{D}_{i}\right)
$$

- Each f_{i} represent a different user/study/processor

$$
f^{\prime}(\mathbf{w})=\frac{1}{m} \sum_{i=1}^{m} f_{i}^{\prime}\left(\mathbf{w} ; \mathcal{D}_{i}\right)
$$

- For large d, communicating and aggregating the individual gradients are expensive
- Compress the gradients by simply taking its sign?

Definition: Norm

Recall a norm $\|\cdot\|$ satisfies:

- definiteness: $\|\mathrm{x}\| \geq 0$ with 0 attained iff $\mathrm{x}=\mathbf{0}$
- positive homogeneity: $\|\lambda \mathrm{x}\|=|\lambda| \cdot\|\mathrm{x}\|$ for any $\lambda \in \mathbb{R}$
- triangle inequality: $\|\mathrm{x}+\mathrm{z}\| \leq\|\mathrm{x}\|+\|\mathrm{z}\|$

Definition: Dual

The dual norm of a norm

The dual of the ℓ_{p} norm $\|\mathrm{w}\|_{p}:=\left(\sum_{j}\left|w_{j}\right|^{p}\right)^{1 / p}$ is ℓ_{q} norm, where $1 / p+1 / q=1$.

Definition: Norm

Recall a norm $\|\cdot\|$ satisfies:

- definiteness: $\|\mathrm{x}\| \geq 0$ with 0 attained iff $\mathrm{x}=0$
- positive homogeneity: $\|\lambda \mathrm{x}\|=|\lambda| \cdot\|\mathrm{x}\|$ for any $\lambda \in \mathbb{R}$
- triangle inequality: $\|\mathrm{x}+\mathrm{z}\| \leq\|\mathrm{x}\|+\|\mathrm{z}\|$

Definition: Dual

The dual norm of a norm

The dual of the ℓ_{p} norm $\|\mathrm{w}\|_{p}:=\left(\sum_{j}\left|w_{j}\right|^{p}\right)^{1 / p}$ is ℓ_{q} norm, where $1 / p+1 / q=1$.

Definition: Norm

Recall a norm $\|\cdot\|$ satisfies:

- definiteness: $\|\mathrm{x}\| \geq 0$ with 0 attained iff $\mathrm{x}=0$
- positive homogeneity: $\|\lambda \mathrm{x}\|=|\lambda| \cdot\|\mathrm{x}\|$ for any $\lambda \in \mathbb{R}$
- triangle inequality: $\|\mathrm{x}+\mathrm{z}\| \leq\|\mathrm{x}\|+\|\mathrm{z}\|$

Definition: Dual

The dual norm of a norm

The dual of the ℓ_{p} norm $\|\mathrm{w}\|_{p}:=\left(\sum_{j}\left|w_{j}\right|^{p}\right)^{1 / p}$ is ℓ_{q} norm, where $1 / p+1 / q=1$.

Definition: Norm

Recall a norm $\|\cdot\|$ satisfies:

- definiteness: $\|\mathrm{x}\| \geq 0$ with 0 attained iff $\mathrm{x}=0$
- positive homogeneity: $\|\lambda \mathrm{x}\|=|\lambda| \cdot\|\mathrm{x}\|$ for any $\lambda \in \mathbb{R}$
- triangle inequality: $\|x+z\| \leq\|x\|+\|z\|$

Definition: Dual

The dual norm of a norm

The dual of the ℓ_{p} norm $\|\mathrm{w}\|_{p}:=\left(\sum_{j}\left|w_{j}\right|^{p}\right)^{1 / p}$ is ℓ_{q} norm, where $1 / p+1 / q=1$.

Definition: Norm

Recall a norm $\|\cdot\|$ satisfies:

- definiteness: $\|\mathrm{x}\| \geq 0$ with 0 attained iff $\mathrm{x}=0$
- positive homogeneity: $\|\lambda \mathrm{x}\|=|\lambda| \cdot\|\mathrm{x}\|$ for any $\lambda \in \mathbb{R}$
- triangle inequality: $\|x+z\| \leq\|x\|+\|z\|$

Definition: Dual
The dual norm of a norm $\|\cdot\|$ is

$$
\left\|\mathbf{w}^{*}\right\|_{0}:=\max _{\|\mathbf{w}\| \leq 1}\left\langle\mathbf{w} ; \mathbf{w}^{*}\right\rangle
$$

The dual of the ℓ_{p} norm $\|\mathrm{w}\|_{p}:=\left(\sum_{j}\left|w_{j}\right|^{p}\right)^{1 / p}$ is ℓ_{q} norm, where $1 / p+1 / q=1$.

Definition: Norm

Recall a norm $\|\cdot\|$ satisfies:

- definiteness: $\|\mathrm{x}\| \geq 0$ with 0 attained iff $\mathrm{x}=0$
- positive homogeneity: $\|\lambda \mathrm{x}\|=|\lambda| \cdot\|\mathrm{x}\|$ for any $\lambda \in \mathbb{R}$
- triangle inequality: $\|x+z\| \leq\|x\|+\|z\|$

Definition: Dual

The dual norm of a norm $\|\cdot\|$ is

$$
\left\|\mathbf{w}^{*}\right\|_{0}:=\max _{\|\mathbf{w}\| \leq 1}\left\langle\mathbf{w} ; \mathbf{w}^{*}\right\rangle
$$

Example:

The dual of the ℓ_{p} norm $\|\mathrm{w}\|_{p}:=\left(\sum_{j}\left|w_{j}\right|^{p}\right)^{1 / p}$ is ℓ_{q} norm, where $1 / p+1 / q=1$.

Definition: duality mapping
Let $\mathrm{q}:=\frac{1}{2}\|\cdot\|^{2}$ be "quadratic." We define the duality mapping

$$
\mathrm{J}=\partial \mathrm{q}: \mathrm{V} \rightarrow \mathrm{~V}^{*}, \quad \mathrm{j}: \mathrm{V} \rightarrow \mathrm{~V}^{*}, \mathrm{w} \mapsto \mathrm{j}(\mathrm{w}) \in \mathrm{J}(\mathrm{w}),
$$

where j is an arbitrary single-valued selection of J.

Definition: metric gradient w.r.t. a norm
We define the metric gradient w.r.t. a norm as

Definition: duality mapping
Let $\mathrm{q}:=\frac{1}{2}\|\cdot\|^{2}$ be "quadratic." We define the duality mapping

$$
\mathrm{J}=\partial \mathrm{q}: \mathrm{V} \rightarrow \mathrm{~V}^{*}, \quad \mathrm{j}: \mathrm{V} \rightarrow \mathrm{~V}^{*}, \mathrm{w} \mapsto \mathrm{j}(\mathrm{w}) \in \mathrm{J}(\mathrm{w}),
$$

where j is an arbitrary single-valued selection of J.

$$
\langle\mathrm{w} ; \mathrm{j}(\mathrm{w})\rangle=\|\mathrm{w}\|^{2}=\|\mathrm{j}(\mathrm{w})\|_{0}^{2}
$$

Definition: metric gradient w.r.t. a norm
We define the metric gradient w.r.t. a norm

Definition: duality mapping
Let $\mathrm{q}:=\frac{1}{2}\|\cdot\|^{2}$ be "quadratic." We define the duality mapping

$$
\mathrm{J}=\partial \mathbf{q}: \mathrm{V} \rightarrow \mathrm{~V}^{*}, \quad \mathrm{j}: \mathrm{V} \rightarrow \mathrm{~V}^{*}, \mathrm{w} \mapsto \mathrm{j}(\mathrm{w}) \in \mathrm{J}(\mathbf{w}),
$$

where j is an arbitrary single-valued selection of J.

$$
\langle\mathrm{w} ; \mathrm{j}(\mathrm{w})\rangle=\|\mathrm{w}\|^{2}=\|\mathrm{j}(\mathrm{w})\|_{0}^{2}
$$

Definition: metric gradient w.r.t. a norm
We define the metric gradient w.r.t. a norm $\|\cdot\|$ as

$$
\nabla f=\mathrm{J}^{-1}\left(f^{\prime}\right), \quad \nabla f=\mathrm{j}^{-1}\left(f^{\prime}\right): \vee \rightarrow \mathbf{V} .
$$

Steepest Descent

Another way to recognize the metric gradient is through Kantorovich's steepest descent. Fixing the current iterate w_{t}, we look for a direction d such that the univariate function

$$
\eta \mapsto h(\eta):=f\left(\mathbf{w}_{t}-\eta \mathbf{d}\right)
$$

decreases steepest.
Kantorovich (1945) proposed to find the direction d through the subproblem
which is exactly the

Steepest Descent

Another way to recognize the metric gradient is through Kantorovich's steepest descent. Fixing the current iterate w_{t}, we look for a direction d such that the univariate function

$$
\eta \mapsto h(\eta):=f\left(\mathbf{w}_{t}-\eta \mathbf{d}\right)
$$

decreases steepest.

Kantorovich (1945) proposed to find the direction d through the subproblem:

$$
\underset{\mathbf{d} \neq \mathbf{0}}{\operatorname{argmin}} \frac{\left.h^{\prime}(\eta)\right|_{\eta=0}}{\|\mathbf{d}\|}=\frac{-\left\langle\mathbf{d} ; f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle}{\|\mathbf{d}\|} \Longrightarrow \mathbf{d}=\frac{\nabla f\left(\mathbf{w}_{t}\right)}{\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|}=\frac{\nabla f\left(\mathbf{w}_{t}\right)}{\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{0}},
$$

which is exactly the normalized metric gradient!

[^0]```
Algorithm 1: Metric gradient descent for unconstrained smooth minimization
Input: \(\mathrm{w}_{0}\), norm \(\|\cdot\|\)
1 for \(t=0,1, \ldots\) do
\(2 \quad \mathrm{~g}_{t} \leftarrow \nabla f\left(\mathrm{w}_{t}\right) \quad / /\) compute any metric gradient
\(5 \quad\) choose step size \(\eta_{t}>0\)
\(6 \quad \mathrm{w}_{t+1} \leftarrow \mathrm{w}_{t}-\eta_{t} \mathrm{~g}_{t} \quad\) // update
```

3
4

Key insight (note the similarity as before)
i.e. L-smoothness w.r.t. a general norm

Algorithm 2: Metric gradient descent for unconstrained smooth minimization
Input: $\mathrm{w}_{0}$, norm $\|\cdot\|$

1 for $t=0,1, \ldots$ do

```
2 g}\mp@subsup{g}{t}{}\leftarrow\overline{\nabla}f(\mp@subsup{\mathbf{w}}{t}{}
if |g\mp@subsup{g}{t}{}|=0 then
 break
 choose step size \mp@subsup{\eta}{t}{}>0
 \mp@subsup{\textrm{w}}{t+1}{}\leftarrow\mp@subsup{\textrm{w}}{t}{}-\mp@subsup{\eta}{t}{}\mp@subsup{\textrm{g}}{t}{}
```

Key insight (note the similarity as before):

$$
f(\mathbf{w}) \leq f\left(\mathbf{w}_{t}\right)+\left\langle\mathbf{w}-\mathbf{w}_{t} ; f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{2 \eta_{t}}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|^{2},
$$

i.e. L-smoothness w.r.t. a general norm \| • \|.

Apply polar decomposition on the RHS:

$$
\min _{\lambda \geq 0} \min _{\left\|\mathbf{w}-\mathbf{w}_{t}\right\|=\lambda} f\left(\mathbf{w}_{t}\right)+\left\langle\mathbf{w}-\mathbf{w}_{t} ; f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{2 \eta_{t}} \lambda^{2} \equiv \min _{\lambda \geq 0}-\lambda\left\|f^{\prime}\left(\mathbf{w}_{t}\right)\right\|_{\circ}+\frac{1}{2 \eta_{t}} \lambda^{2}
$$

## Thus,

## and

Apply polar decomposition on the RHS:

$$
\min _{\lambda \geq 0} \min _{\left\|\mathbf{w}-\mathbf{w}_{t}\right\|=\lambda} f\left(\mathbf{w}_{t}\right)+\left\langle\mathbf{w}-\mathbf{w}_{t} ; f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{2 \eta_{t}} \lambda^{2} \equiv \min _{\lambda \geq 0}-\lambda\left\|f^{\prime}\left(\mathbf{w}_{t}\right)\right\|_{\circ}+\frac{1}{2 \eta_{t}} \lambda^{2}
$$

Thus, $\lambda=\eta_{t}\left\|f^{\prime}\left(\mathbf{w}_{t}\right)\right\|_{0}$ and

$$
\mathbf{w}-\mathbf{w}_{t}=\lambda \frac{-\bar{\nabla} f\left(\mathbf{w}_{t}\right)}{\left\|f^{\prime}\left(\mathbf{w}_{t}\right)\right\|_{0}}, \quad \text { i.e. } \quad \mathbf{w}_{t+1}=\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)
$$

Theorem: convergence of metric gradient descent for L-smooth functions
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be L-smooth w.r.t. a general norm $\|\cdot\|$ and bounded from below (i.e. $f_{\star}>-\infty$ ). If the step size $\eta_{t} \in\left[\alpha, \frac{2}{L}-\beta\right]$ for some $\alpha, \beta>0$, then the sequence $\left\{\mathrm{w}_{t}\right\}$ generated satisfies $\nabla f\left(\mathrm{w}_{t}\right) \rightarrow 0$. Moreover,

$$
\min _{0 \leq \leq \leq T-1}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\| \leq \sqrt{\frac{f\left(\mathbf{w}_{0}\right)-f_{\star}}{\alpha \beta L T / 2}} .
$$

- The proof is literally the same as that of gradient descent
- Choosing $\alpha=\beta=\frac{1}{L}$, the bound reduces to

Theorem: convergence of metric gradient descent for L-smooth functions
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be L-smooth w.r.t. a general norm $\|\cdot\|$ and bounded from below (i.e. $f_{\star}>-\infty$ ). If the step size $\eta_{t} \in\left[\alpha, \frac{2}{L}-\beta\right]$ for some $\alpha, \beta>0$, then the sequence $\left\{\mathrm{w}_{t}\right\}$ generated satisfies $\nabla f\left(\mathrm{w}_{t}\right) \rightarrow 0$. Moreover,

$$
\min _{0 \leq t \leq T-1}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\| \leq \sqrt{\frac{f\left(\mathbf{w}_{0}\right)-f_{\star}}{\alpha \beta L T / 2}} .
$$

- The proof is literally the same as that of gradient descent
- Choosing $\alpha=\beta=\frac{1}{\pi}$, the bound reduces to
- Obviously, LHS depends on the norm and so does RHS (through $L=L\|\cdot\|$ )

Theorem: convergence of metric gradient descent for L-smooth functions
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be L-smooth w.r.t. a general norm $\|\cdot\|$ and bounded from below (i.e. $f_{\star}>-\infty$ ). If the step size $\eta_{t} \in\left[\alpha, \frac{2}{L}-\beta\right]$ for some $\alpha, \beta>0$, then the sequence $\left\{\mathrm{w}_{t}\right\}$ generated satisfies $\nabla f\left(\mathrm{w}_{t}\right) \rightarrow 0$. Moreover,

$$
\min _{0 \leq t \leq T-1}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\| \leq \sqrt{\frac{f\left(\mathbf{w}_{0}\right)-f_{\star}}{\alpha \beta L T / 2}} .
$$

- The proof is literally the same as that of gradient descent
- Choosing $\alpha=\beta=\frac{1}{\mathrm{~L}}$, the bound reduces to

$$
\min _{0 \leq t \leq T-1}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\| \leq \sqrt{\frac{2 \mathrm{~L}\left[f\left(\mathrm{w}_{0}\right)-f_{\star}\right]}{T}} .
$$

- Obviously, LHS depends on the norm and so does RHS (through $L=L_{\|}$)

Theorem: convergence of metric gradient descent for L-smooth functions
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be L-smooth w.r.t. a general norm $\|\cdot\|$ and bounded from below (i.e. $f_{\star}>-\infty$ ). If the step size $\eta_{t} \in\left[\alpha, \frac{2}{L}-\beta\right]$ for some $\alpha, \beta>0$, then the sequence $\left\{\mathrm{w}_{t}\right\}$ generated satisfies $\nabla f\left(\mathrm{w}_{t}\right) \rightarrow 0$. Moreover,

$$
\min _{0 \leq t \leq T-1}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\| \leq \sqrt{\frac{f\left(\mathbf{w}_{0}\right)-f_{\star}}{\alpha \beta L T / 2}} .
$$

- The proof is literally the same as that of gradient descent
- Choosing $\alpha=\beta=\frac{1}{\mathrm{~L}}$, the bound reduces to

$$
\min _{0 \leq t \leq T-1}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\| \leq \sqrt{\frac{2 \mathrm{~L}\left[f\left(\mathrm{w}_{0}\right)-f_{\star}\right]}{T}} .
$$

- Obviously, LHS depends on the norm and so does RHS (through $L=L_{\| \| \|}$)


## $\ell_{p}$ norm metric gradient

Let $V=\mathbb{R}^{d}$ be equipped with the $\ell_{p}$ norm, whose dual is $\ell_{q}$ norm with $1 / p+1 / q=1$.
$\boldsymbol{\nabla} f(\mathbf{w}):=\left[\underset{\|\mathbf{z}\|_{p} \leq\left\|f^{\prime}(\mathbf{w})\right\|_{q}}{\operatorname{argmax}}\left\langle\mathbf{z} ; f^{\prime}(\mathbf{w})\right\rangle\right]=\left\|f^{\prime}(\mathbf{w})\right\|_{q}^{1-q / p} \cdot \operatorname{sign}\left(f^{\prime}(\mathbf{w})\right) \cdot\left|f^{\prime}(\mathbf{w})\right|^{q / p}$

- When we have $\nabla f$
- When we have
- When we have
$\qquad$


## $\ell_{p}$ norm metric gradient

Let $V=\mathbb{R}^{d}$ be equipped with the $\ell_{p}$ norm, whose dual is $\ell_{q}$ norm with $1 / p+1 / q=1$.
$\boldsymbol{\nabla} f(\mathbf{w}):=\left[\underset{\|\mathbf{z}\|_{p} \leq\left\|f^{\prime}(\mathbf{w})\right\|_{q}}{\operatorname{argmax}}\left\langle\mathbf{z} ; f^{\prime}(\mathbf{w})\right\rangle\right]=\left\|f^{\prime}(\mathbf{w})\right\|_{q}^{1-q / p} \cdot \operatorname{sign}\left(f^{\prime}(\mathbf{w})\right) \cdot\left|f^{\prime}(\mathbf{w})\right|^{q / p}$

- When $p=q=2$, we have $\nabla f=\nabla f$
- When
we have $\nabla$.
- When
we have $\nabla$
$\square$


## $\ell_{p}$ norm metric gradient

Let $V=\mathbb{R}^{d}$ be equipped with the $\ell_{p}$ norm, whose dual is $\ell_{q}$ norm with $1 / p+1 / q=1$.
$\boldsymbol{\nabla} f(\mathbf{w}):=\left[\underset{\|\mathbf{z}\|_{p} \leq\left\|f^{\prime}(\mathbf{w})\right\|_{q}}{\operatorname{argmax}}\left\langle\mathbf{z} ; f^{\prime}(\mathbf{w})\right\rangle\right]=\left\|f^{\prime}(\mathbf{w})\right\|_{q}^{1-q / p} \cdot \operatorname{sign}\left(f^{\prime}(\mathbf{w})\right) \cdot\left|f^{\prime}(\mathbf{w})\right|^{q / p}$

- When $p=q=2$, we have $\boldsymbol{\nabla} f=\nabla f$
- When $p=1, q=\infty$, we have $\nabla f=\operatorname{conv}\left\{\nabla_{j} f \cdot \mathbf{e}_{j}:\left|\nabla_{j} f\right|=\|\nabla f\|_{\infty}\right\}$
- When we have $\nabla$
$\qquad$


## $\ell_{p}$ norm metric gradient

Let $\mathrm{V}=\mathbb{R}^{d}$ be equipped with the $\ell_{p}$ norm, whose dual is $\ell_{q}$ norm with $1 / p+1 / q=1$.
$\boldsymbol{\nabla} f(\mathbf{w}):=\left[\underset{\|z\|_{p} \leq\left\|f^{\prime}(\mathbf{w})\right\|_{q}}{\operatorname{argmax}}\left\langle\mathbf{z} ; f^{\prime}(\mathbf{w})\right\rangle\right]=\left\|f^{\prime}(\mathbf{w})\right\|_{q}^{1-q / p} \cdot \operatorname{sign}\left(f^{\prime}(\mathbf{w})\right) \cdot\left|f^{\prime}(\mathbf{w})\right|^{q / p}$

- When $p=q=2$, we have $\mathbf{\nabla} f=\nabla f$
- When $p=1, q=\infty$, we have $\nabla f=\operatorname{conv}\left\{\nabla_{j} f \cdot \mathbf{e}_{j}:\left|\nabla_{j} f\right|=\|\nabla f\|_{\infty}\right\}$
- When $p=\infty, q=1$, we have $\nabla f=\operatorname{conv}\left\{\|\nabla f\|_{1} \cdot \operatorname{sign}(\nabla f)\right\}$, $\operatorname{sign}(0) \in[-1,1]$
$\square$


## $\ell_{p}$ norm metric gradient

Let $\mathrm{V}=\mathbb{R}^{d}$ be equipped with the $\ell_{p}$ norm, whose dual is $\ell_{q}$ norm with $1 / p+1 / q=1$.
$\boldsymbol{\nabla} f(\mathbf{w}):=\left[\underset{\|z\|_{p} \leq\left\|f^{\prime}(\mathbf{w})\right\|_{q}}{\operatorname{argmax}}\left\langle\mathbf{z} ; f^{\prime}(\mathbf{w})\right\rangle\right]=\left\|f^{\prime}(\mathbf{w})\right\|_{q}^{1-q / p} \cdot \operatorname{sign}\left(f^{\prime}(\mathbf{w})\right) \cdot\left|f^{\prime}(\mathbf{w})\right|^{q / p}$

- When $p=q=2$, we have $\boldsymbol{\nabla} f=\nabla f$
- When $p=1, q=\infty$, we have $\nabla f=\operatorname{conv}\left\{\nabla_{j} f \cdot \mathbf{e}_{j}:\left|\nabla_{j} f\right|=\|\nabla f\|_{\infty}\right\}$
- When $p=\infty, q=1$, we have $\nabla f=\operatorname{conv}\left\{\|\nabla f\|_{1} \cdot \operatorname{sign}(\nabla f)\right\}, \operatorname{sign}(0) \in[-1,1]$
metric gradient indeed depends on the norm


## Sign gradient descent

Let us equip the input space V (where w lives) with the $\ell_{\infty}$ norm, and the gradient space $\mathrm{V}^{*}$ (where $f^{\prime}(\mathrm{w})$ lives) with the corresponding dual $\ell_{1}$ norm.

We obtain the so-called
algorithm, where in each iteration we
only update with the sign of the gradient
which is particularly appealing in distributed and low-resource devices.

Let us equip the input space V (where w lives) with the $\ell_{\infty}$ norm, and the gradient space $\mathrm{V}^{*}$ (where $f^{\prime}(\mathrm{w})$ lives) with the corresponding dual $\ell_{1}$ norm.

We obtain the so-called sign gradient descent algorithm, where in each iteration we only update with the sign of the gradient:

$$
\mathbf{w}_{t+1}=\mathbf{w}_{t}-\eta_{t}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{1} \cdot \operatorname{sign}\left(\nabla f\left(\mathbf{w}_{t}\right)\right),
$$

which is particularly appealing in distributed and low-resource devices.

## Coordinate gradient descent

Let us equip the input space V (where w lives) with the $\ell_{1}$ norm , and the gradient space $\bigvee^{*}$ (where $f^{\prime}(\mathrm{w})$ lives) with the corresponding dual $\ell_{\infty}$ norm.

We obtain the so-called
descent algorithm, where in each iteration we only take a gradient step along one (block of) coordinate(s)

## Coordinate gradient descent

Let us equip the input space $V$ (where $w$ lives) with the $\ell_{1}$ norm, and the gradient space $\mathrm{V}^{*}$ (where $f^{\prime}(\mathrm{w})$ lives) with the corresponding dual $\ell_{\infty}$ norm.

We obtain the so-called greedy coordinate gradient descent algorithm, where in each iteration we only take a gradient step along one (block of) coordinate(s):

$$
w_{j, t+1}=w_{j, t}-\eta_{t} \nabla_{j} f\left(\mathbf{w}_{t}\right), \quad \text { where } \quad\left|\nabla_{j} f\left(\mathbf{w}_{t}\right)\right|=\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{\infty} .
$$

- Compute all derivatives to figure out which one is largest
- Mosi of the computational effort is wasted


## Coordinate gradient descent

Let us equip the input space V (where w lives) with the $\ell_{1}$ norm, and the gradient space $\mathrm{V}^{*}$ (where $f^{\prime}(\mathrm{w})$ lives) with the corresponding dual $\ell_{\infty}$ norm.

We obtain the so-called greedy coordinate gradient descent algorithm, where in each iteration we only take a gradient step along one (block of) coordinate(s):

$$
w_{j, t+1}=w_{j, t}-\eta_{t} \nabla_{j} f\left(\mathbf{w}_{t}\right), \quad \text { where } \quad\left|\nabla_{j} f\left(\mathbf{w}_{t}\right)\right|=\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{\infty}
$$

- Compute all derivatives to figure out which one is largest
- Most of the computational effort is wasted


## Coordinate gradient descent

Let us equip the input space V (where w lives) with the $\ell_{1}$ norm, and the gradient space $\mathrm{V}^{*}$ (where $f^{\prime}(\mathrm{w})$ lives) with the corresponding dual $\ell_{\infty}$ norm.

We obtain the so-called greedy coordinate gradient descent algorithm, where in each iteration we only take a gradient step along one (block of) coordinate(s):

$$
w_{j, t+1}=w_{j, t}-\eta_{t} \nabla_{j} f\left(\mathbf{w}_{t}\right), \quad \text { where } \quad\left|\nabla_{j} f\left(\mathbf{w}_{t}\right)\right|=\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{\infty}
$$

- Compute all derivatives to figure out which one is largest
- Most of the computational effort is wasted...

[^1]
## Alternatives

An obvious alternative is to update the coordinates cyclically:

$$
\text { for } \begin{aligned}
& j=1, \ldots, d \\
& w_{j} \leftarrow w_{j}-\eta \nabla_{j} f(\mathbf{w})
\end{aligned}
$$

- Can randomize our choice of the coordinates (Nesterov 2012)
- Might as well go to the extreme:


## Alternatives

An obvious alternative is to update the coordinates cyclically:

$$
\text { for } \begin{aligned}
& j=1, \ldots, d \\
& w_{j} \leftarrow w_{j}-\eta \nabla_{j} f(\mathbf{w})
\end{aligned}
$$

- computing the gradient $\nabla f$ vs. computing a single component $\nabla_{j} f$ ?
- Can randomize our choice of the coordinates (Nesterov 2012)
- Might as well go to the extreme


## Alternatives

An obvious alternative is to update the coordinates cyclically:

$$
\text { for } \begin{aligned}
& j=1, \ldots, d \\
& w_{j} \leftarrow w_{j}-\eta \nabla_{j} f(\mathbf{w})
\end{aligned}
$$

- computing the gradient $\nabla f$ vs. computing a single component $\nabla_{j} f$ ?
- L-smoothness is w.r.t. different norms!
- Can randomize our choice of the coordinates (Nesterov 2012)
- Might as well go to the extreme:


## Alternatives

An obvious alternative is to update the coordinates cyclically:

$$
\text { for } \begin{aligned}
& j=1, \ldots, d \\
& w_{j} \leftarrow w_{j}-\eta \nabla_{j} f(\mathbf{w})
\end{aligned}
$$

- computing the gradient $\nabla f$ vs. computing a single component $\nabla_{j} f$ ?
- L-smoothness is w.r.t. different norms!
- Can randomize our choice of the coordinates (Nesterov 2012)
- Might as well go to the extreme:


## Alternatives

An obvious alternative is to update the coordinates cyclically:

$$
\text { for } \begin{aligned}
& j=1, \ldots, d \\
& w_{j} \leftarrow w_{j}-\eta \nabla_{j} f(\mathbf{w})
\end{aligned}
$$

- computing the gradient $\nabla f$ vs. computing a single component $\nabla_{j} f$ ?
- L-smoothness is w.r.t. different norms!
- Can randomize our choice of the coordinates (Nesterov 2012)
- Might as well go to the extreme:

$$
w_{j} \leftarrow \underset{w}{\operatorname{argmin}} f\left(w_{1}, \ldots, w_{j-1}, w, w_{j+1}, \ldots, w_{d}\right)
$$

Definition: metric projection
We define the metric projection w.r.t. an arbitrary norm and a closed set $C$ :

$$
\mathrm{P}_{C}(\mathbf{w})=\underset{\mathbf{z} \in C}{\operatorname{argmin}}\|\mathbf{w}-\mathbf{z}\| .
$$

However, the metric projection may no longer be nonexpansive even when $C$ is convex.

Algorithm 3: Metric projected gradient descent
Input:
norm
for
compute any metric gradient // Cauchy's rule
update

Definition: metric projection
We define the metric projection w.r.t. an arbitrary norm and a closed set $C$ :

$$
\mathrm{P}_{C}(\mathbf{w})=\underset{\mathbf{z} \in C}{\operatorname{argmin}}\|\mathbf{w}-\mathbf{z}\| .
$$

However, the metric projection may no longer be nonexpansive even when $C$ is convex.

## Algorithm 4: Metric projected gradient descent

Input: $\mathrm{w}_{0} \in C$, norm $\|\cdot\|$

1 for $t=0,1, \ldots$ do

```
\etatt \leftarrow argmin}\mp@subsup{\eta}{\eta\geq0}{}f(\mp@subsup{\textrm{P}}{C}{}(\mp@subsup{\textrm{w}}{t}{}-\eta\mp@subsup{g}{t}{})))\quad// Cauchy's rule
```

$\mathrm{w}_{t+1} \leftarrow \mathrm{P}_{C}\left(\mathrm{w}_{t}-\eta_{t} \mathrm{~g}_{t}\right)$
// update



[^0]:    L. V. Kantorovich (1945). "On an effective method of solving extremal problems for quadratic functionals". Soviet Mathematics Doklady, vol. 48, no. 7, pp. 595-600.

[^1]:    R. V. Southwell (1935). "Stress-Calculation in Frameworks by the Method of "Systematic Relaxation of Constraints". I and II". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 151, no. 872, pp. 56-95.

