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Problem

Unconstrained minimization:

f⋆ = inf
w∈Rd

f(w1, . . . , wd)

• f : smooth w.r.t. a general norm ∥ · ∥ and possibly nonconvex

• For simplicity, no constraints on w
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Gradient Compression

Typical problem in ML:

f(w) =
1

m

m∑
i=1

fi(w;Di)

• Each fi represent a different user/study/processor

f ′(w) =
1

m

m∑
i=1

f ′
i(w;Di)

• For large d, communicating and aggregating the individual gradients are expensive
• Compress the gradients by simply taking its sign?

J. Bernstein et al. (2018). “signSGD: Compressed Optimisation for Non-Convex Problems”. In: Proceedings of the 35th International
Conference on Machine Learning, pp. 560–569; J. Bernstein et al. (2019). “signSGD with Majority Vote is Communication Efficient and Fault
Tolerant”. In: International Conference on Learning Representations.L08 2/13

http://proceedings.mlr.press/v80/bernstein18a.html
https://openreview.net/forum?id=BJxhijAcY7
https://openreview.net/forum?id=BJxhijAcY7


Definition: Norm
Recall a norm ∥ · ∥ satisfies:
• definiteness: ∥x∥ ≥ 0 with 0 attained iff x = 0
• positive homogeneity: ∥λx∥ = |λ| · ∥x∥ for any λ ∈ R
• triangle inequality: ∥x+ z∥ ≤ ∥x∥+ ∥z∥

Definition: Dual
The dual norm of a norm ∥ · ∥ is

∥w∗∥◦ := max
∥w∥≤1

⟨w;w∗⟩

Example:

The dual of the ℓp norm ∥w∥p := (
∑

j |wj|p)1/p is ℓq norm, where 1/p+ 1/q = 1.
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Definition: duality mapping

Let q := 1
2
∥ · ∥2 be “quadratic.” We define the duality mapping

J = ∂q : V→ V∗, j : V→ V∗,w 7→ j(w) ∈ J(w),

where j is an arbitrary single-valued selection of J.

⟨w; j(w)⟩ = ∥w∥2 = ∥j(w)∥2◦

Definition: metric gradient w.r.t. a norm

We define the metric gradient w.r.t. a norm ∥ · ∥ as

▼f = J−1(f ′), ∨f = j−1(f ′) : V→ V.

M. Golomb and R. A. Tapia (1972). “The metric gradient in normed linear spaces”. Numerische Mathematik, vol. 20, pp. 115–124.
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https://doi.org/10.1007/BF01404401


Steepest Descent

Another way to recognize the metric gradient is through Kantorovich’s steepest
descent. Fixing the current iterate wt, we look for a direction d such that the
univariate function

η 7→ h(η) := f(wt − ηd)

decreases steepest.

Kantorovich (1945) proposed to find the direction d through the subproblem:

argmin
d̸=0

h′(η)|η=0

∥d∥
=
−⟨d; f ′(wt)⟩
∥d∥

=⇒ d =
∨f(wt)

∥ ∨f(wt)∥
=

∨f(wt)

∥∇f(wt)∥◦
,

which is exactly the normalized metric gradient!

L. V. Kantorovich (1945). “On an effective method of solving extremal problems for quadratic functionals”. Soviet Mathematics Doklady,
vol. 48, no. 7, pp. 595–600.
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https://cs.uwaterloo.ca/~y328yu/mypapers/sd.pdf


Algorithm 1: Metric gradient descent for unconstrained smooth minimization
Input: w0, norm ∥ · ∥

1 for t = 0, 1, . . . do
2 gt ← ∨f(wt) // compute any metric gradient
3 if ∥gt∥ = 0 then
4 break

5 choose step size ηt > 0
6 wt+1 ← wt − ηtgt // update

Key insight (note the similarity as before):

f(w) ≤ f(wt) + ⟨w −wt; f
′(wt)⟩+ 1

2ηt
∥w −wt∥2,

i.e. L-smoothness w.r.t. a general norm ∥ · ∥.
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Apply polar decomposition on the RHS:

min
λ≥0

min
∥w−wt∥=λ

f(wt) + ⟨w −wt; f
′(wt)⟩+ 1

2ηt
λ2 ≡ min

λ≥0
−λ∥f ′(wt)∥◦ + 1

2ηt
λ2.

Thus, λ = ηt∥f ′(wt)∥◦ and

w −wt = λ
− ∨f(wt)

∥f ′(wt)∥◦
, i.e. wt+1 = wt − ηt ∨f(wt)
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Theorem: convergence of metric gradient descent for L-smooth functions

Let f : Rd → R be L-smooth w.r.t. a general norm ∥ · ∥ and bounded from below
(i.e. f⋆ > −∞). If the step size ηt ∈ [α, 2

L
−β] for some α, β > 0, then the sequence

{wt} generated satisfies ∨f(wt)→ 0. Moreover,

min
0≤t≤T−1

∥ ∨f(wt)∥ ≤

√
f(w0)− f⋆
αβLT/2

.

• The proof is literally the same as that of gradient descent
• Choosing α = β = 1

L
, the bound reduces to

min
0≤t≤T−1

∥ ∨f(wt)∥ ≤
√

2L[f(w0)− f⋆]

T
.

• Obviously, LHS depends on the norm and so does RHS (through L = L∥·∥)
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ℓp norm metric gradient

Let V = Rd be equipped with the ℓp norm, whose dual is ℓq norm with 1/p+ 1/q = 1.

▼f(w) :=

[
argmax

∥z∥p≤∥f ′(w)∥q
⟨z; f ′(w)⟩

]
= ∥f ′(w)∥1−q/p

q · sign(f ′(w)) · |f ′(w)|q/p

• When p = q = 2, we have ▼f = ∇f

• When p = 1, q =∞, we have ▼f = conv{∇jf · ej : |∇jf | = ∥∇f∥∞}

• When p =∞, q = 1, we have ▼f = conv{∥∇f∥1 · sign(∇f)}, sign(0) ∈ [−1, 1]

metric gradient indeed depends on the norm
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Sign gradient descent

Let us equip the input space V (where w lives) with the ℓ∞ norm , and the gradient
space V∗ (where f ′(w) lives) with the corresponding dual ℓ1 norm.

We obtain the so-called sign gradient descent algorithm, where in each iteration we
only update with the sign of the gradient:

wt+1 = wt − ηt∥∇f(wt)∥1 · sign(∇f(wt)),

which is particularly appealing in distributed and low-resource devices.
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Coordinate gradient descent

Let us equip the input space V (where w lives) with the ℓ1 norm , and the gradient
space V∗ (where f ′(w) lives) with the corresponding dual ℓ∞ norm.

We obtain the so-called greedy coordinate gradient descent algorithm, where in each
iteration we only take a gradient step along one (block of) coordinate(s):

wj,t+1 = wj,t − ηt∇jf(wt), where |∇jf(wt)| = ∥∇f(wt)∥∞.

• Compute all derivatives to figure out which one is largest

• Most of the computational effort is wasted...

R. V. Southwell (1935). “Stress-Calculation in Frameworks by the Method of “Systematic Relaxation of Constraints”. I and II”. Proceedings
of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 151, no. 872, pp. 56–95.
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https://www.jstor.org/stable/96340


Alternatives

An obvious alternative is to update the coordinates cyclically:

for j = 1, . . . , d

wj ← wj − η∇jf(w)

• computing the gradient ∇f vs. computing a single component ∇jf?

• L-smoothness is w.r.t. different norms!

• Can randomize our choice of the coordinates (Nesterov 2012)

• Might as well go to the extreme:

wj ← argmin
w

f(w1, . . . , wj−1, w, wj+1, . . . , wd)

Y. Nesterov (2012). “Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems”. SIAM Journal on Optimization,
vol. 22, no. 2, pp. 341–362.
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https://doi.org/10.1137/100802001


Definition: metric projection

We define the metric projection w.r.t. an arbitrary norm and a closed set C:

PC(w) = argmin
z∈C

∥w − z∥.

However, the metric projection may no longer be nonexpansive even when C is convex.

Algorithm 2: Metric projected gradient descent
Input: w0 ∈ C, norm ∥ · ∥

1 for t = 0, 1, . . . do
2 gt ← ∨f(wt) // compute any metric gradient
3 ηt ← argminη≥0 f(PC(wt − ηgt)) // Cauchy’s rule
4 wt+1 ← PC(wt − ηtgt) // update

G. P. McCormick (1969). “Anti-Zig-Zagging by Bending”. Management Science, vol. 15, no. 5, pp. 315–320.
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https://www.jstor.org/stable/2628138



