CS794/CO673: Optimization for Data Science Lec 08: Metric Gradient

Yaoliang Yu

October 7, 2022

Problem

Unconstrained minimization:

$$f_{\star} = \inf_{\mathbf{w} \in \mathbb{R}^d} f(w_1, \dots, w_d)$$

• f: smooth w.r.t. a general norm $\|\cdot\|$ and possibly nonconvex

• For simplicity, no constraints on w

Gradient Compression

Typical problem in ML:

$$f(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} f_i(\mathbf{w}; \mathcal{D}_i)$$

• Each f_i represent a different user/study/processor

$$f'(\mathbf{w}) = rac{1}{m} \sum_{i=1}^m f'_i(\mathbf{w}; \mathcal{D}_i)$$

For large *d*, communicating and aggregating the individual gradients are expensive
Compress the gradients by simply taking its sign?

J. Bernstein et al. (2018). "signSGD: Compressed Optimisation for Non-Convex Problems". In: Proceedings of the 35th International Conference on Machine Learning, pp. 560–569; J. Bernstein et al. (2019). "signSGD with Majority Vote is Communication Efficient and Fault L08Tolerant". In: International Conference on Learning Representations.

Definition: Norm

Recall a norm $\|\cdot\|$ satisfies:

- definiteness: $\|\mathbf{x}\| \ge 0$ with 0 attained iff $\mathbf{x} = \mathbf{0}$
- positive homogeneity: $\|\lambda \mathbf{x}\| = |\lambda| \cdot \|\mathbf{x}\|$ for any $\lambda \in \mathbb{R}$
- triangle inequality: $\|\mathbf{x} + \mathbf{z}\| \le \|\mathbf{x}\| + \|\mathbf{z}\|$

Definition: Dual

The dual norm of a norm $\|\cdot\|$ is

$$\|\mathbf{w}^*\|_\circ := \max_{\|\mathbf{w}\| \leq 1} \left< \mathbf{w}; \mathbf{w}^* \right>$$

Example:

The dual of the ℓ_p norm $\|\mathbf{w}\|_p := (\sum_j |w_j|^p)^{1/p}$ is ℓ_q norm, where 1/p + 1/q = 1.

Definition: duality mapping

Let $\mathbf{q} := \frac{1}{2} \| \cdot \|^2$ be "quadratic." We define the duality mapping

 $\mathsf{J}=\partial\mathsf{q}:\mathsf{V}\to\mathsf{V}^*,\ j:\mathsf{V}\to\mathsf{V}^*,\mathbf{w}\mapsto j(\mathbf{w})\in\mathsf{J}(\mathbf{w}),$

where j is an arbitrary single-valued selection of J.

 $\langle \mathbf{w}; \mathbf{j}(\mathbf{w}) \rangle = \|\mathbf{w}\|^2 = \|\mathbf{j}(\mathbf{w})\|_{\circ}^2$

Definition: metric gradient w.r.t. a norm

We define the metric gradient w.r.t. a norm $\|\cdot\|$ as

 $\mathbf{\nabla} f = \mathsf{J}^{-1}(f'), \quad \overline{\nabla} f = \mathsf{j}^{-1}(f') : \mathsf{V} \to \mathsf{V}.$

Steepest Descent

Another way to recognize the metric gradient is through Kantorovich's steepest descent. Fixing the current iterate \mathbf{w}_t , we look for a direction \mathbf{d} such that the univariate function

$$\eta \mapsto h(\eta) := f(\mathbf{w}_t - \eta \mathbf{d})$$

decreases steepest.

Kantorovich (1945) proposed to find the direction d through the subproblem:

$$\underset{\mathbf{d}\neq\mathbf{0}}{\operatorname{argmin}} \quad \frac{h'(\eta)|_{\eta=0}}{\|\mathbf{d}\|} = \frac{-\langle \mathbf{d}; f'(\mathbf{w}_t) \rangle}{\|\mathbf{d}\|} \implies \mathbf{d} = \frac{\nabla f(\mathbf{w}_t)}{\|\nabla f(\mathbf{w}_t)\|} = \frac{\nabla f(\mathbf{w}_t)}{\|\nabla f(\mathbf{w}_t)\|_{\circ}},$$

۱۸

L. V. Kantorovich (1945). "On an effective method of solving extremal problems for quadratic functionals". Soviet Mathematics Doklady, vol. 48, no. 7, pp. 595–600.

Algorithm 1: Metric gradient descent for unconstrained smooth minimization **Input:** \mathbf{w}_0 , norm $\|\cdot\|$ 1 for t = 0, 1, ..., do**2** $\mathbf{g}_t \leftarrow \nabla f(\mathbf{w}_t)$ // compute any metric gradient 3 | if $||g_t|| = 0$ then break 4 choose step size $\eta_t > 0$ 5 $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta_t \mathbf{g}_t$ // update 6

Key insight (note the similarity as before):

 $f(\mathbf{w}) \le f(\mathbf{w}_t) + \langle \mathbf{w} - \mathbf{w}_t; f'(\mathbf{w}_t) \rangle + \frac{1}{2\eta_t} \|\mathbf{w} - \mathbf{w}_t\|^2,$

i.e. L-smoothness w.r.t. a general norm $\|\cdot\|$.

Apply polar decomposition on the RHS:

$$\min_{\lambda \ge 0} \min_{\|\mathbf{w} - \mathbf{w}_t\| = \lambda} f(\mathbf{w}_t) + \langle \mathbf{w} - \mathbf{w}_t; f'(\mathbf{w}_t) \rangle + \frac{1}{2\eta_t} \lambda^2 \equiv \min_{\lambda \ge 0} -\lambda \|f'(\mathbf{w}_t)\|_{\circ} + \frac{1}{2\eta_t} \lambda^2.$$

Thus, $\lambda = \eta_t \| f'(\mathbf{w}_t) \|_{\circ}$ and $\mathbf{w} - \mathbf{w}_t = \lambda \frac{-\nabla f(\mathbf{w}_t)}{\| f'(\mathbf{w}_t) \|_{\circ}}, \quad i.e. \quad \mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \nabla f(\mathbf{w}_t)$

Theorem: convergence of metric gradient descent for L-smooth functions

Let $f : \mathbb{R}^d \to \mathbb{R}$ be L-smooth w.r.t. a general norm $\|\cdot\|$ and bounded from below (i.e. $f_* > -\infty$). If the step size $\eta_t \in [\alpha, \frac{2}{L} - \beta]$ for some $\alpha, \beta > 0$, then the sequence $\{\mathbf{w}_t\}$ generated satisfies $\nabla f(\mathbf{w}_t) \to \mathbf{0}$. Moreover,

$$\min_{0 \le t \le T-1} \|\nabla f(\mathbf{w}_t)\| \le \sqrt{\frac{f(\mathbf{w}_0) - f_{\star}}{\alpha\beta \mathsf{L}T/2}}.$$

- The proof is literally the same as that of gradient descent
- Choosing $\alpha = \beta = \frac{1}{\Gamma}$, the bound reduces to

$$\min_{0 \le t \le T-1} \|\nabla f(\mathbf{w}_t)\| \le \sqrt{\frac{2\mathsf{L}[f(\mathbf{w}_0) - f_\star]}{T}}$$

- Obviously, LHS depends on the norm and so does RHS (through $\mathsf{L}=\mathsf{L}_{\|\cdot\|})$

Let $V = \mathbb{R}^d$ be equipped with the ℓ_p norm, whose dual is ℓ_q norm with 1/p + 1/q = 1.

$$\mathbf{\nabla} f(\mathbf{w}) := \begin{bmatrix} \operatorname*{argmax}_{\|\mathbf{z}\|_p \le \|f'(\mathbf{w})\|_q} \ \langle \mathbf{z}; f'(\mathbf{w}) \rangle \end{bmatrix} = \|f'(\mathbf{w})\|_q^{1-q/p} \cdot \operatorname{sign}(f'(\mathbf{w})) \cdot |f'(\mathbf{w})|^{q/p}$$

• When p = q = 2, we have $\mathbf{V}f = \nabla f$

- When $p = 1, q = \infty$, we have $\mathbf{\nabla} f = \operatorname{conv} \{ \nabla_j f \cdot \mathbf{e}_j : |\nabla_j f| = \|\nabla f\|_{\infty} \}$
- When $p = \infty, q = 1$, we have $\forall f = \operatorname{conv}\{\|\nabla f\|_1 \cdot \operatorname{sign}(\nabla f)\}$, $\operatorname{sign}(0) \in [-1, 1]$

metric gradient indeed depends on the norm

Let us equip the input space V (where w lives) with the ℓ_{∞} norm, and the gradient space V^{*} (where f'(w) lives) with the corresponding dual ℓ_1 norm.

We obtain the so-called sign gradient descent algorithm, where in each iteration we only update with the sign of the gradient:

 $\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \|\nabla f(\mathbf{w}_t)\|_1 \cdot \operatorname{sign}(\nabla f(\mathbf{w}_t)),$

which is particularly appealing in distributed and low-resource devices.

Let us equip the input space V (where w lives) with the ℓ_1 norm, and the gradient space V^{*} (where f'(w) lives) with the corresponding dual ℓ_{∞} norm.

We obtain the so-called greedy coordinate gradient descent algorithm, where in each iteration we only take a gradient step along one (block of) coordinate(s):

 $w_{j,t+1} = w_{j,t} - \eta_t \nabla_j f(\mathbf{w}_t), \quad \text{where} \quad |\nabla_j f(\mathbf{w}_t)| = \|\nabla f(\mathbf{w}_t)\|_{\infty}.$

- Compute all derivatives to figure out which one is largest
- Most of the computational effort is wasted...

R. V. Southwell (1935). "Stress-Calculation in Frameworks by the Method of "Systematic Relaxation of Constraints". I and II". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 151, no. 872, pp. 56–95.

Alternatives

An obvious alternative is to update the coordinates cyclically:

for $j = 1, \dots, d$ $w_j \leftarrow w_j - \eta \nabla_j f(\mathbf{w})$

- computing the gradient ∇f vs. computing a single component $\nabla_j f$?
- L-smoothness is w.r.t. different norms!
- Can randomize our choice of the coordinates (Nesterov 2012)
- Might as well go to the extreme:

$$w_j \leftarrow \underset{w}{\operatorname{argmin}} f(w_1, \dots, w_{j-1}, w, w_{j+1}, \dots, w_d)$$

Y. Nesterov (2012). "Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems". SIAM Journal on Optimization, vol. 22, no. 2, pp. 341–362.

Definition: metric projection

We define the metric projection w.r.t. an arbitrary norm and a closed set C:

 $P_C(\mathbf{w}) = \operatorname*{argmin}_{\mathbf{z} \in C} \|\mathbf{w} - \mathbf{z}\|.$

However, the metric projection may no longer be nonexpansive even when C is convex.

Algorithm 2: Metric projected gradient descent

Input: $\mathbf{w}_0 \in C$, norm $\|\cdot\|$

- 1 for t = 0, 1, ... do
- 2 $\mathbf{g}_t \leftarrow \nabla f(\mathbf{w}_t)$
- 3 $\eta_t \leftarrow \operatorname{argmin}_{\eta \ge 0} f(\mathcal{P}_C(\mathbf{w}_t \eta \mathbf{g}_t))$
- 4 $\mathbf{w}_{t+1} \leftarrow \mathbf{P}_C(\mathbf{w}_t \eta_t \mathbf{g}_t)$

// compute any metric gradient // Cauchy's rule // update

G. P. McCormick (1969). "Anti-Zig-Zagging by Bending". Management Science, vol. 15, no. 5, pp. 315-320.

