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Problem

Unconstrained minimization:

® f: smooth w.r.t. a general norm | - || and possibly nonconvex

® For simplicity, no constraints on w



Gradient Compression

Typical problem in ML:

m

f(w) = =3 fiwi D)

® Each f; represent a different user/study/processor

) = 3 AP

® For large d, communicating and aggregating the individual gradients are expensive
e Compress the gradients by simply taking its sign?

J. Bernstein et al. (2018). . In: Proceedings of the 35th International
Conference on Machine Learning, pp. 560-569; J. Bernstein et al. (2019).
. In: International Conference on Learning Representations. 2/13


http://proceedings.mlr.press/v80/bernstein18a.html
https://openreview.net/forum?id=BJxhijAcY7
https://openreview.net/forum?id=BJxhijAcY7

Definition: Norm

Recall a norm satisfies:
e definiteness: with O attained iff
® positive homogeneity: for any
® triangle inequality:

Definition: Dual
The dual norm of a norm

Example:

The dual of the 7/, norm is

norm, where




Definition: duality mapping

be “quadratic.” We define the duality mapping

where | is an arbitrary single-valued selection of

%

(wij(w)) = [[w* = [i(w)lls

Definition: metric gradient w.r.t. a norm

We define the metric gradient w.r.t. a norm



https://doi.org/10.1007/BF01404401

Steepest Descent

Another way to recognize the metric gradient is through Kantorovich's steepest
descent. Fixing the current iterate w;, we look for a direction d such that the
univariate function

n— h(n) = f(w; —nd)
decreases steepest.

Kantorovich (1945) proposed to find the direction d through the subproblem:

1/, ) . .
qrgnlin h (f]) |,]:() _ — <d f/(wl)> 4= \/f (WL) _ \/}L (WL)
d£0 Il Id]] VW) IVF(w)llo
which is exactly the I
L. V. Kantorovich (1945). . Soviet Mathematics Doklady,

vol. 48, no. 7, pp. 595—-600.
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https://cs.uwaterloo.ca/~y328yu/mypapers/sd.pdf
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Algorithm 1: Metric gradient descent for unconstrained smooth minimization

Input: w, norm || - ||
fort =0.1,... do

if ||g:|| = 0 then
| break

choose step size 7, > 0
| Wil & Wy — )8

g < Vf(wy) // compute any metric gradient

// update

Key insight (note the similarity as before):
fw) < f(we) +(w — wis f/(we)) +

i.e. L-smoothness w.r.t. a general norm | - |.
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lw —wel”,



Apply polar decomposition on the RHS:

min ~ min  f(w;) + (w — wy; f'(wy))

A>0  ||lw—w¢||=A

Thus, A = n,|| f'(wy¢)||o and
- Vf(wt)

W— Wy = A\0m—7——=

1" (wi)llo”

1.€.

2n¢

1 42 = o /
Xo= AL (W)l
+ i = Al () |

Wit = Wy — 1)y vf(Wt)

1 42

2n¢
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Theorem: convergence of metric gradient descent for [-smooth functions

be | -smooth w.r.t. a general norm and bounded from below
(i.e. ). If the step size for some , then the sequence
generated satisfies . Moreover,

® The proof is literally the same as that of gradient descent
® Choosing o = J = {, the bound reduces to

min 1 |V f(w,)| < \/2L[.]L‘(Wt)) - f*]

0<t<T— T

® Obviously, LHS depends on the norm and so does RHS (through L = L)



¢, norm metric gradient

Let V = R’ be equipped with the ¢, norm, whose dual is /, norm with 1/p+ 1/q = 1.

Vf(w):= | drmax (z; f/(W)) | = || f(W)]lg~97 - sign(f'(w)) - | f/(w)|9/?

® When p=¢ =2, we have v/ =V/

® When p=1,¢ = 00, we have Vf = conv{V,f-e; : |V;f| = ||V [}
® When p = 00, q = 1, we have ¥ f = conv{||Vf|1 - sign(Vf)}, sign(0) € [—1,1]
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Sign gradient descent

Let us equip the input space V (where w lives) with the /., norm , and the gradient
space V" (where [’(w) lives) with the corresponding dual /; norm.

We obtain the so-called algorithm, where in each iteration we
only update with the sign of the gradient:

Wi =Wy — 1|V f(we) || - sign(V f(we)),

which is particularly appealing in distributed and low-resource devices.



Coordinate gradient descent

Let us equip the input space V (where w lives) with the /; norm , and the gradient
space V" (where [’(w) lives) with the corresponding dual /.. norm.

We obtain the so-called descent algorithm, where in each
iteration we only take a gradient step along one (block of) coordinate(s):

Wip1 = W — N Vif(wy), where |V,f(we)| = ||V f(We)]oo-

e Compute all derivatives to figure out which one is largest

® Most of the computational effort is wasted...

R. V. Southwell (1935). . Proceedings

of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 151, no. 872, pp. 56-95.
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https://www.jstor.org/stable/96340

Alternatives

An obvious alternative is to update the coordinates
for j=1,...,d
W; < Wj — Uvjf(W)

® computing the gradient V f vs. computing a single component V f7
o |

® Can randomize our choice of the coordinates (Nesterov 2012)
® Might as well go to the extreme:
w; < argmin f(wy, ..., Wj_1, W, Wjt1, ..., Wq)
w

Y. Nesterov (2012). “Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems’. SIAM Journal on Optimization,
vol. 22, no. 2, pp. 341-362.
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https://doi.org/10.1137/100802001

Definition: metric projection

We define the metric projection w.r.t. an arbitrary norm and a closed set

However, the metric projection may no longer be nonexpansive even when (' is convex.

Algorithm 2: Metric projected gradient descent

Input: w, € C, norm || - ||
1 fort=20,1,...do
g < Vf(wy) // compute any metric gradient
Ny < argmin, ., f(Po(w; —ng:)) // Cauchy’s rule
w1 Po(wy — )]fgt) // update

A W

G. P. McCormick (1969). . Management Science, vol. 15, no. 5, pp. 315-320


https://www.jstor.org/stable/2628138




