CS794/CO673: Optimization for Data Science
 Lec 07: Mirror Descent

Yaoliang Yu

October 7, 2022

Problem

Constrained minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in C \subseteq V} f(\mathbf{w})
$$

- f : convex and possibly nonsmooth
- C : convex constraint

with Euclidean norm

- When $/$ is L-Lipschitz, (projected) gradient descent yields
- When f is L-Lipschitz, (projected) subgradient yields

Problem

Constrained minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in C \subseteq V} f(\mathbf{w})
$$

- f : convex and possibly nonsmooth
- C: convex constraint

with Euclidean norm

- When $/$ is L-Lipschitz, (projected) gradient descent yields
- When f is L-Lipschitz, (projected) subgradient yields

Problem

Constrained minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in C \subseteq V} f(\mathbf{w})
$$

- f : convex and possibly nonsmooth
- C : convex constraint
- When f^{\prime} is L-Lipschitz, (projected) gradient descent yields
- When f is L-Lipschitz, (projected) subgradient vields

Problem

Constrained minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in C \subseteq V} f(\mathbf{w})
$$

- f : convex and possibly nonsmooth
- C : convex constraint
- V : vector space that w lives in, e.g. \mathbb{R}^{d} with Euclidean norm $\|\cdot\|_{2}$
- When f/ is L-Lipschitz, (projected) gradient descent yields
- When f is L-Lipschitz, (projected) subgradient yields

Problem

Constrained minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in C \subseteq V} f(\mathbf{w})
$$

- f : convex and possibly nonsmooth
- C : convex constraint
- V : vector space that w lives in, e.g. \mathbb{R}^{d} with Euclidean norm $\|\cdot\|_{2}$
- When f^{\prime} is L-Lipschitz, (projected) gradient descent yields $\frac{L\left\|\mathbf{w}_{0}-w\right\|_{2}^{2}}{2 t}$
- When f is L-Lipschitz, (projected) subgradient yields

Problem

Constrained minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in C \subseteq V} f(\mathbf{w})
$$

- f : convex and possibly nonsmooth
- C : convex constraint
- V : vector space that w lives in, e.g. \mathbb{R}^{d} with Euclidean norm $\|\cdot\|_{2}$
- When f^{\prime} is L-Lipschitz, (projected) gradient descent yields $\frac{L\left\|w_{0}-w\right\|_{2}^{2}}{2 t}$
- When f is L-Lipschitz, (projected) subgradient yields $\frac{L\left\|\mathbf{w}_{0}-w\right\|_{2}}{\sqrt{t}}$

$$
\min _{\mathbf{w} \in \Delta} \sum_{j=1}^{d} f_{j}\left(w_{j}\right)
$$

- Each univariate function $f_{j}: \mathbb{R} \rightarrow \mathbb{R}$ is 1 -Lipschitz continuous.
- The sum $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is \sqrt{d}-Lipschitz continuous w.r.t. the Euclidean norm:
- The diameter $\left\|\mathbf{w}_{0}-\mathbf{w}\right\|_{2} \leq \sqrt{2}$.
- Applying subgradient we obtain a convergence rate of
- But, we also have
- The diameter
- Possible to achieve the convergence rate $\frac{2}{\sqrt{2}}$ by changing the norm?

$$
\min _{\mathbf{w} \in \Delta} \sum_{j=1}^{d} f_{j}\left(w_{j}\right),
$$

- Each univariate function $f_{j}: \mathbb{R} \rightarrow \mathbb{R}$ is 1 -Lipschitz continuous.
- The sum
is $\sqrt{ }$ d-Lipschitz continuous w.r.t. the Euclidean norm:
- The diameter
- Applying subgradient we obtain a convergence rate of
- But, we also have
- The diameter
- Possible to achieve the convergence rate $\frac{2}{2}$ by changing the norm?

$$
\min _{\mathbf{w} \in \Delta} \sum_{j=1}^{d} f_{j}\left(w_{j}\right)
$$

- Each univariate function $f_{j}: \mathbb{R} \rightarrow \mathbb{R}$ is 1-Lipschitz continuous.
- The sum $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is \sqrt{d}-Lipschitz continuous w.r.t. the Euclidean norm:

$$
\left\|f^{\prime}\right\|_{2}^{2}=\sum_{j}\left(f_{j}^{\prime}\right)^{2} \leq d .
$$

- The diameter
- Applying subgradient we obtain a convergence rate of
- But, we also have
- The diameter
- Possible to achieve the convergence rate ${ }^{2}$ by changing the norm?

$$
\min _{\mathbf{w} \in \Delta} \sum_{j=1}^{d} f_{j}\left(w_{j}\right)
$$

- Each univariate function $f_{j}: \mathbb{R} \rightarrow \mathbb{R}$ is 1-Lipschitz continuous.
- The sum $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is \sqrt{d}-Lipschitz continuous w.r.t. the Euclidean norm:

$$
\left\|f^{\prime}\right\|_{2}^{2}=\sum_{j}\left(f_{j}^{\prime}\right)^{2} \leq d
$$

- The diameter $\left\|\mathrm{w}_{0}-\mathrm{w}\right\|_{2} \leq \sqrt{2}$.
- Applying subgradient we obtain a convergence rate of
- But, we also have
- The diameter
- Possible to achieve the convergence rate $\frac{2}{\sqrt{D}}$ by changing the norm?

$$
\min _{\mathbf{w} \in \Delta} \sum_{j=1}^{d} f_{j}\left(w_{j}\right)
$$

- Each univariate function $f_{j}: \mathbb{R} \rightarrow \mathbb{R}$ is 1-Lipschitz continuous.
- The sum $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is \sqrt{d}-Lipschitz continuous w.r.t. the Euclidean norm:

$$
\left\|f^{\prime}\right\|_{2}^{2}=\sum_{j}\left(f_{j}^{\prime}\right)^{2} \leq d .
$$

- The diameter $\left\|\mathrm{w}_{0}-\mathrm{w}\right\|_{2} \leq \sqrt{2}$.
- Applying subgradient we obtain a convergence rate of $\sqrt{\frac{2 d}{t}}$
- But, we also have
- The diameter
- Possible to achieve the convergence rate

$$
\min _{\mathbf{w} \in \Delta} \sum_{j=1}^{d} f_{j}\left(w_{j}\right)
$$

- Each univariate function $f_{j}: \mathbb{R} \rightarrow \mathbb{R}$ is 1-Lipschitz continuous.
- The sum $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is \sqrt{d}-Lipschitz continuous w.r.t. the Euclidean norm:

$$
\left\|f^{\prime}\right\|_{2}^{2}=\sum_{j}\left(f_{j}^{\prime}\right)^{2} \leq d .
$$

- The diameter $\left\|\mathrm{w}_{0}-\mathrm{w}\right\|_{2} \leq \sqrt{2}$.
- Applying subgradient we obtain a convergence rate of $\sqrt{\frac{2 d}{t}}$
- But, we also have $\left\|f^{\prime}\right\|_{\infty}=\max _{j}\left|f_{j}^{\prime}\right| \leq 1$
- The diameter
- Possible to achieve the convergence rate $\frac{2}{\sqrt{~}}$ by changing the norm?

$$
\min _{\mathbf{w} \in \Delta} \sum_{j=1}^{d} f_{j}\left(w_{j}\right)
$$

- Each univariate function $f_{j}: \mathbb{R} \rightarrow \mathbb{R}$ is 1-Lipschitz continuous.
- The sum $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is \sqrt{d}-Lipschitz continuous w.r.t. the Euclidean norm:

$$
\left\|f^{\prime}\right\|_{2}^{2}=\sum_{j}\left(f_{j}^{\prime}\right)^{2} \leq d .
$$

- The diameter $\left\|\mathrm{w}_{0}-\mathrm{w}\right\|_{2} \leq \sqrt{2}$.
- Applying subgradient we obtain a convergence rate of $\sqrt{\frac{2 d}{t}}$
- But, we also have $\left\|f^{\prime}\right\|_{\infty}=\max _{j}\left|f_{j}^{\prime}\right| \leq 1$
- The diameter $\left\|\mathrm{w}_{0}-\mathrm{w}\right\|_{1}=\left\|\mathrm{w}_{0}-\mathrm{w}\right\|_{\infty}^{\infty} \leq 2$
- Possible to achieve the convergence rate $\frac{2}{\sqrt{t}}$ by changing the norm?

$$
\min _{\mathbf{w} \in \Delta} \sum_{j=1}^{d} f_{j}\left(w_{j}\right)
$$

- Each univariate function $f_{j}: \mathbb{R} \rightarrow \mathbb{R}$ is 1-Lipschitz continuous.
- The sum $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is \sqrt{d}-Lipschitz continuous w.r.t. the Euclidean norm:

$$
\left\|f^{\prime}\right\|_{2}^{2}=\sum_{j}\left(f_{j}^{\prime}\right)^{2} \leq d .
$$

- The diameter $\left\|\mathrm{w}_{0}-\mathrm{w}\right\|_{2} \leq \sqrt{2}$.
- Applying subgradient we obtain a convergence rate of $\sqrt{\frac{2 d}{t}}$
- But, we also have $\left\|f^{\prime}\right\|_{\infty}=\max _{j}\left|f_{j}^{\prime}\right| \leq 1$
- The diameter $\left\|\mathrm{w}_{0}-\mathrm{w}\right\|_{1}=\left\|\mathrm{w}_{0}-\mathrm{w}\right\|_{\infty}^{0} \leq 2$
- Possible to achieve the convergence rate $\frac{2}{\sqrt{t}}$ by changing the norm?

What Makes Incremental Update Possible?

So far, all of our updates are of the following (additive) incremental form:

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta \cdot \mathbf{g},
$$

which is so natural that we often forget what makes it even mathematically possible:

- The
of the step size η to g
- The
- And
of w with
These operations are possible because w and g are from the
- From now on $f^{\prime}(w)$ lives in a
- Necd a way to pull things back and forth: J:V $\rightarrow V:$ Jui : V
- With the Euclidean norm
we may simply take

What Makes Incremental Update Possible?

So far, all of our updates are of the following (additive) incremental form:

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta \cdot \mathbf{g},
$$

which is so natural that we often forget what makes it even mathematically possible:

- The scalar multiplication of the step size η to g
- The
- And of w with

These operations are possible because w and g are from the vector space

- From now on $f^{\prime}(w)$ lives in a
- Need a way to pull things back and forth: J:V $\rightarrow V:$ Jui : V
- With the Euclidean norm
we may simply take

What Makes Incremental Update Possible?

So far, all of our updates are of the following (additive) incremental form:

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta \cdot \mathbf{g},
$$

which is so natural that we often forget what makes it even mathematically possible:

- The scalar multiplication of the step size η to g
- The negation -
- And the addition of w with

These operations are possible because w and g are from the

- From now on $f^{\prime}(w)$ lives in a
- Need a way to pull things back and forth: J:V $\rightarrow V: J=-1: V$
- With the Euclidean norm
we may simply take

What Makes Incremental Update Possible?

So far, all of our updates are of the following (additive) incremental form:

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta \cdot \mathbf{g},
$$

which is so natural that we often forget what makes it even mathematically possible:

- The scalar multiplication of the step size η to g
- The negation -
- And the addition of w with $-\eta \cdot \mathrm{g}$

These operations are possible because w and g are from the same vector space

- From now on $f^{\prime}(w)$ lives in a
- Need a way to pull things back and forth: $J: V \rightarrow V^{*}, J^{-1}: V+V$
- With the Euclidean norm || | |2, we may simply take

What Makes Incremental Update Possible?

So far, all of our updates are of the following (additive) incremental form:

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta \cdot \mathbf{g},
$$

which is so natural that we often forget what makes it even mathematically possible:

- The scalar multiplication of the step size η to g
- The negation -
- And the addition of w with $-\eta \cdot \mathrm{g}$

These operations are possible because w and g are from the same vector space

- From now on $f^{\prime}(w)$ lives in a
- Need a way to pull things back and forth.
- With the Euclidean norm
we may simply take

What Makes Incremental Update Possible?

So far, all of our updates are of the following (additive) incremental form:

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta \cdot \mathbf{g},
$$

which is so natural that we often forget what makes it even mathematically possible:

- The scalar multiplication of the step size η to g
- The negation -
- And the addition of w with $-\eta \cdot \mathrm{g}$

These operations are possible because w and g are from the same vector space

- From now on $f^{\prime}(\mathbf{w})$ lives in a dual space V^{*}
- Need a way to pull things back and forth:
- With the Euclidean norm
we may simply take

What Makes Incremental Update Possible?

So far, all of our updates are of the following (additive) incremental form:

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta \cdot \mathbf{g},
$$

which is so natural that we often forget what makes it even mathematically possible:

- The scalar multiplication of the step size η to g
- The negation -
- And the addition of w with $-\eta \cdot \mathrm{g}$

These operations are possible because w and g are from the same vector space

- From now on $f^{\prime}(\mathbf{w})$ lives in a dual space V^{*}
- Need a way to pull things back and forth: $\mathrm{J}: \mathrm{V} \rightarrow \mathrm{V}^{*}, \mathrm{~J}^{-1}: \mathrm{V}^{*} \rightarrow \mathrm{~V}$
- With the Euclidean norm we may simply take

What Makes Incremental Update Possible?

So far, all of our updates are of the following (additive) incremental form:

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta \cdot \mathbf{g},
$$

which is so natural that we often forget what makes it even mathematically possible:

- The scalar multiplication of the step size η to g
- The negation -
- And the addition of w with $-\eta \cdot \mathrm{g}$

These operations are possible because w and g are from the same vector space

- From now on $f^{\prime}(\mathbf{w})$ lives in a dual space V^{*}
- Need a way to pull things back and forth: J: V $\rightarrow \mathrm{V}^{*}$, $\mathrm{J}^{-1}: \mathrm{V}^{*} \rightarrow \mathrm{~V}$
- With the Euclidean norm $\|\cdot\|_{2}$, we may simply take $\mathrm{J}=\mathrm{J}^{*}=\mathrm{Id}$

Algorithm 1: Winnow

Input: $\mathbf{A}=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right] \in \mathbb{R}^{\mathrm{p} \times \mathrm{n}}$, threshold $\delta \geq 0$, step size $\eta>0$, initialize $\mathrm{w} \in \operatorname{int} \Delta_{\mathrm{p}-1}$
Output: approximate solution w
1 for $t=1,2, \ldots$ do
2 receive training example index $I_{t} \in\{1, \ldots, n\} \quad / /$ index I_{t} can be random
if $\left\langle\mathbf{a}_{I_{t}}, \mathbf{w}\right\rangle \leq \delta$ then
$\mathbf{w} \leftarrow \mathbf{w} \odot \exp \left(\eta \mathbf{a}_{I_{t}}\right) \quad / /$ update only when making a mistake
$\mathrm{w} \leftarrow \mathrm{w} /\|\mathrm{w}\|_{1} \quad$ // normalize

```
Algorithm 2: Winnow
Input: A}=[\mp@subsup{\mathbf{a}}{1}{},\ldots,\mp@subsup{\mathbf{a}}{n}{}]\in\mp@subsup{\mathbb{R}}{}{p\timesn}\mathrm{ , threshold }\delta\geq0\mathrm{ , step size }\eta>0\mathrm{ , initialize
w}\in\operatorname{int}\mp@subsup{\Delta}{p-1}{
Output: approximate solution w
1 for }t=1,2,\ldots\mathrm{ do
2 receive training example index }\mp@subsup{I}{t}{}\in{1,\ldots,n} // index I It can be random
    if }\langle\mp@subsup{\mathbf{a}}{\mp@subsup{I}{t}{}}{},\mathbf{w}\rangle\leq\delta the
    w}\leftarrow\mathbf{w}\odot\operatorname{exp}(\eta\mp@subsup{\mathbf{a}}{\mp@subsup{I}{t}{}}{})\quad// update only when making a mistak
    w}\leftarrow\mathbf{w}/|\mathbf{w}\mp@subsup{|}{1}{}\quad// normaliz
```

$\ln \mathbf{w} \leftarrow \ln \mathbf{w}+\eta \cdot \mathbf{a}_{I_{t}}, \quad$ where $\quad \mathrm{J}(\mathbf{w})=\ln (\mathbf{w})$

[^0]
Online Prediction

- n experts, each of whom provides a prediction x_{i}, collectively as $\mathrm{x} \in \mathbb{R}^{7}$
- Form our own opinion by averaging
- Suffer a loss, say the square loss $\ell(w$
- Repeat the game for $t=1, \ldots, T$ rounds

Online Prediction

- n experts, each of whom provides a prediction x_{i}, collectively as $\mathrm{x} \in \mathbb{R}^{n}$
- Form our own opinion by averaging
- Suffer a loss, say the square loss
- Repeat the game for rounds

Online Prediction

- n experts, each of whom provides a prediction x_{i}, collectively as $\mathrm{x} \in \mathbb{R}^{n}$
- Form our own opinion by averaging $\hat{y}=\langle\mathbf{w}, \mathbf{x}\rangle, \mathrm{w} \in \Delta$
- Suffer a loss, say the square loss
- Repeat the game for rounds

Regret

Online Prediction

- n experts, each of whom provides a prediction x_{i}, collectively as $\mathrm{x} \in \mathbb{R}^{n}$
- Form our own opinion by averaging $\hat{y}=\langle\mathbf{w}, \mathbf{x}\rangle, \mathrm{w} \in \Delta$
- Suffer a loss, say the square loss $\ell(\mathbf{w} ; \mathbf{x}, y)=(y-\hat{y})^{2}$
- Repeat the game for rounds

Regret

Online Prediction

- n experts, each of whom provides a prediction x_{i}, collectively as $\mathrm{x} \in \mathbb{R}^{n}$
- Form our own opinion by averaging $\hat{y}=\langle\mathbf{w}, \mathbf{x}\rangle, \mathrm{w} \in \Delta$
- Suffer a loss, say the square loss $\ell(\mathbf{w} ; \mathbf{x}, y)=(y-\hat{y})^{2}$
- Repeat the game for $t=1, \ldots, T$ rounds

$$
\text { Regret }:=\frac{1}{T} \sum_{t=1}^{T}\left(y_{t}-\hat{y}_{t}\right)^{2}-\min _{\mathbf{w} \in \Delta} \frac{1}{T} \sum_{t=1}^{T}\left(y_{t}-\left\langle\mathbf{w}, \mathbf{x}_{t}\right\rangle\right)^{2}, \quad \text { where } \quad \hat{y}_{t}=\left\langle\mathbf{w}_{t}, \mathbf{x}_{t}\right\rangle .
$$

Exponentiated Gradient (EG)

$$
\begin{aligned}
& \tilde{\mathbf{w}}_{t+1}=\mathbf{w}_{t} \odot \exp \left(-\eta_{t} \cdot \ell^{\prime}\left(\hat{y}_{t}-y_{t}\right) \mathbf{x}_{t}\right) \\
& \mathbf{w}_{t+1}=\frac{\tilde{\mathbf{w}}_{t+1}}{\left\langle\mathbf{1}, \tilde{\mathbf{w}}_{t+1}\right\rangle}
\end{aligned}
$$

- Diminishing regret on the order of $O\left(\sqrt{\frac{\ln n}{T}}\right)$, assuming $\left\|\mathbf{x}_{t}\right\|_{\infty} \leq 1$ and $y_{t} \in[0,1]$
- No assumption on how the sequence $\left(\mathrm{x}_{+} u_{+}\right)$is generated; can even be adversarial
- Setting $w=e_{i}: E G$ performs no worse than the best expert in hindsight for big
- Can consult a large number of experts: dependence on n is only logarithmic
- Gradient descent achieves $O\left(\frac{1}{\sim}\right)$ under the assumption $\left\|\mathbf{x}_{+}\right\|_{0}<1$

Exponentiated Gradient (EG)

$$
\begin{aligned}
& \tilde{\mathbf{w}}_{t+1}=\mathbf{w}_{t} \odot \exp \left(-\eta_{t} \cdot \ell^{\prime}\left(\hat{y}_{t}-y_{t}\right) \mathbf{x}_{t}\right) \\
& \mathbf{w}_{t+1}=\frac{\tilde{\mathbf{w}}_{t+1}}{\left\langle\mathbf{1}, \tilde{\mathbf{w}}_{t+1}\right\rangle}
\end{aligned}
$$

- Diminishing regret on the order of $O\left(\sqrt{\frac{\ln n}{T}}\right)$, assuming $\left\|\mathrm{x}_{t}\right\|_{\infty} \leq 1$ and $y_{t} \in[0,1]$
- No assumption on how the sequence $\left(x_{t}, y_{t}\right)$ is generated; can even be adversarial
- Setting $w=e_{i}$: EG performs no worse than the best expert in hindsight for big
- Can consult a large number of experts: dependence on n is onlv logarithmic
- Gradient descent achieves $O\left(\frac{1}{\sqrt{T}}\right)$ under the

Exponentiated Gradient (EG)

$$
\begin{aligned}
& \tilde{\mathbf{w}}_{t+1}=\mathbf{w}_{t} \odot \exp \left(-\eta_{t} \cdot \ell^{\prime}\left(\hat{y}_{t}-y_{t}\right) \mathbf{x}_{t}\right) \\
& \mathbf{w}_{t+1}=\frac{\tilde{\mathbf{w}}_{t+1}}{\left\langle\mathbf{1}, \tilde{\mathbf{w}}_{t+1}\right\rangle}
\end{aligned}
$$

- Diminishing regret on the order of $O\left(\sqrt{\frac{\ln n}{T}}\right)$, assuming $\left\|\mathrm{x}_{t}\right\|_{\infty} \leq 1$ and $y_{t} \in[0,1]$
- No assumption on how the sequence $\left(\mathrm{x}_{t}, y_{t}\right)$ is generated; can even be adversarial
- Setting $w=e_{i}: E G$ performs no worse than the best expert in hindsight for big
- Can consult a large number of experts: dependence on n is only logarithmic
- Gradient descent achieves $O(\xrightarrow{1})$ under the

Exponentiated Gradient (EG)

$$
\begin{aligned}
& \tilde{\mathbf{w}}_{t+1}=\mathbf{w}_{t} \odot \exp \left(-\eta_{t} \cdot \ell^{\prime}\left(\hat{y}_{t}-y_{t}\right) \mathbf{x}_{t}\right) \\
& \mathbf{w}_{t+1}=\frac{\tilde{\mathbf{w}}_{t+1}}{\left\langle\mathbf{1}, \tilde{\mathbf{w}}_{t+1}\right\rangle}
\end{aligned}
$$

- Diminishing regret on the order of $O\left(\sqrt{\frac{\ln n}{T}}\right)$, assuming $\left\|\mathbf{x}_{t}\right\|_{\infty} \leq 1$ and $y_{t} \in[0,1]$
- No assumption on how the sequence (x_{t}, y_{t}) is generated; can even be adversarial
- Setting $\mathrm{w}=\mathrm{e}_{i}$: EG performs no worse than the best expert in hindsight for big T
- Can consult a large number of experts:
- Gradient descent achieves $O\left(\frac{1}{\sqrt{T}}\right)$ under the

Exponentiated Gradient (EG)

$$
\begin{aligned}
& \tilde{\mathbf{w}}_{t+1}=\mathbf{w}_{t} \odot \exp \left(-\eta_{t} \cdot \ell^{\prime}\left(\hat{y}_{t}-y_{t}\right) \mathbf{x}_{t}\right) \\
& \mathbf{w}_{t+1}=\frac{\tilde{\mathbf{w}}_{t+1}}{\left\langle\mathbf{1}, \tilde{\mathbf{w}}_{t+1}\right\rangle}
\end{aligned}
$$

- Diminishing regret on the order of $O\left(\sqrt{\frac{\ln n}{T}}\right)$, assuming $\left\|\mathbf{x}_{t}\right\|_{\infty} \leq 1$ and $y_{t} \in[0,1]$
- No assumption on how the sequence (x_{t}, y_{t}) is generated; can even be adversarial
- Setting $\mathrm{w}=\mathrm{e}_{i}$: EG performs no worse than the best expert in hindsight for big T
- Can consult a large number of experts: dependence on n is only logarithmic
- Gradient descent achieves
under the

Exponentiated Gradient (EG)

$$
\begin{aligned}
& \tilde{\mathbf{w}}_{t+1}=\mathbf{w}_{t} \odot \exp \left(-\eta_{t} \cdot \ell^{\prime}\left(\hat{y}_{t}-y_{t}\right) \mathbf{x}_{t}\right) \\
& \mathbf{w}_{t+1}=\frac{\tilde{\mathbf{w}}_{t+1}}{\left\langle 1, \tilde{\mathbf{w}}_{t+1}\right\rangle}
\end{aligned}
$$

- Diminishing regret on the order of $O\left(\sqrt{\frac{\ln n}{T}}\right)$, assuming $\left\|\mathrm{x}_{t}\right\|_{\infty} \leq 1$ and $y_{t} \in[0,1]$
- No assumption on how the sequence (x_{t}, y_{t}) is generated; can even be adversarial
- Setting $\mathrm{w}=\mathrm{e}_{i}$: EG performs no worse than the best expert in hindsight for big T
- Can consult a large number of experts: dependence on n is only logarithmic
- Gradient descent achieves $O\left(\frac{1}{\sqrt{T}}\right)$ under the assumption $\left\|\mathrm{x}_{t}\right\|_{2} \leq 1$

Two Choices

- We have a mismatch between $\mathrm{w} \in \mathrm{V}$ and $f^{\prime}(\mathrm{w}) \in \mathrm{V}$
- We use a duality (mirror) map '

Two Choices

- We have a mismatch between $\mathrm{w} \in \mathrm{V}$ and $f^{\prime}(\mathrm{w}) \in \mathrm{V}^{*}$
- We use a duality (mirror) map

Two Choices

- We have a mismatch between $\mathrm{w} \in \mathrm{V}$ and $f^{\prime}(\mathrm{w}) \in \mathrm{V}^{*}$
- We use a duality (mirror) map $\mathrm{J}: \mathrm{V} \rightarrow \mathrm{V}^{*}, \mathrm{~J}^{-1}: \mathrm{V}^{*} \rightarrow \mathrm{~V}$

Two Choices

- We have a mismatch between $\mathrm{w} \in \mathrm{V}$ and $f^{\prime}(\mathrm{w}) \in \mathrm{V}^{*}$
- We use a duality (mirror) map $\mathrm{J}: \mathrm{V} \rightarrow \mathrm{V}^{*}, \mathrm{~J}^{-1}: \mathrm{V}^{*} \rightarrow \mathrm{~V}$

1. Update in the gradient space V^{*} and pull the update back to the input space V :

$$
\begin{aligned}
& \mathbf{w}_{t+1}=\mathrm{J}^{-1}\left[\mathrm{~J}\left(\mathbf{w}_{t}\right)-\eta_{t} \cdot f^{\prime}\left(\mathbf{w}_{t}\right)\right] \\
& \mathrm{w}_{t+1}^{*}=\mathrm{w}_{t}^{*}-\eta_{t} \cdot f^{\prime}\left(\mathrm{J}^{-1} \mathbf{w}_{t}^{*}\right), \quad \text { where } \quad \mathrm{w}_{t}^{*}:=\mathrm{J}\left(\mathbf{w}_{t}\right), \mathbf{w}_{t}=\mathrm{J}^{-1}\left(\mathbf{w}_{t}^{*}\right)
\end{aligned}
$$

2. Pull the gradient back to the input space V and do the update there directly:

- We have a mismatch between $\mathrm{w} \in \mathrm{V}$ and $f^{\prime}(\mathrm{w}) \in \mathrm{V}^{*}$
- We use a duality (mirror) map $\mathrm{J}: \mathrm{V} \rightarrow \mathrm{V}^{*}, \mathrm{~J}^{-1}: \mathrm{V}^{*} \rightarrow \mathrm{~V}$

1. Update in the gradient space V^{*} and pull the update back to the input space V :

$$
\begin{aligned}
& \mathbf{w}_{t+1}=\mathrm{J}^{-1}\left[\mathrm{~J}\left(\mathbf{w}_{t}\right)-\eta_{t} \cdot f^{\prime}\left(\mathbf{w}_{t}\right)\right] \\
& \mathrm{w}_{t+1}^{*}=\mathrm{w}_{t}^{*}-\eta_{t} \cdot f^{\prime}\left(\mathrm{J}^{-1} \mathbf{w}_{t}^{*}\right), \quad \text { where } \quad \mathrm{w}_{t}^{*}:=\mathrm{J}\left(\mathbf{w}_{t}\right), \mathbf{w}_{t}=\mathrm{J}^{-1}\left(\mathbf{w}_{t}^{*}\right)
\end{aligned}
$$

2. Pull the gradient back to the input space V and do the update there directly:

$$
\mathbf{w}_{t+1}=\mathbf{w}_{t}-\eta_{t} \cdot \mathbf{J}^{-1}\left(f^{\prime}\left(\mathbf{w}_{t}\right)\right)
$$

Legendre function

We call a continuous convex function h Legendre if

- Its domain has nonempty interior, i.e., int $($ domh $h \neq 0$
- h is differentiable on int $(\mathrm{dom} h)$
- $\left\|h^{\prime}(\mathbb{w})\right\| \rightarrow \infty$ as $w \rightarrow \lambda$ त $\rightarrow m h$
- h is strictly convex on int (dom h

Theorem: $J=h^{\prime}$
is a topological isomorphism, i.e. it is continuous and its inverse is also continuous.

Below, we will choose a norm || . || and a Legendre function h that is 1 -strongly convex w.r.t.

Legendre function

We call a continuous convex function h Legendre if

- Its domain has nonempty interior, i.e., int $(\operatorname{dom} h) \neq \emptyset$
- h is differentiable on
- h is strictly convex on $\operatorname{int}(\operatorname{dom} h)$

Theorem: $\mathrm{J}=h^{\prime}$

is a topological isomorphism, i.e. it is continuous and its inverse is also continuous.
Below, we will choose a norm
and a Legendre function h that is 1 -strongly convex
w.r.t.

Legendre function

We call a continuous convex function h Legendre if

- Its domain has nonempty interior, i.e., $\operatorname{int}(\operatorname{dom} h) \neq \emptyset$
- h is differentiable on $\operatorname{int}(\operatorname{dom} h)$
- h is strictly convex on $\operatorname{int}(\operatorname{dom} h$

Theorem: $J=h^{\prime}$

is a topological isomorphism, i.e. it is continuous and its inverse is also continuous.

Below, we will choose a norm and a Legendre function h that is 1 -strongly convex w.r.t.

Legendre function

We call a continuous convex function h Legendre if

- Its domain has nonempty interior, i.e., $\operatorname{int}(\operatorname{dom} h) \neq \emptyset$
- h is differentiable on int(dom h)
- $\left\|h^{\prime}(\mathbf{w})\right\| \rightarrow \infty$ as $\mathbf{w} \rightarrow \partial \operatorname{dom} h$
- h is strictly convex on int (dom h)

Theorem: $\mathrm{J}=h^{\prime}$
 is a topological isomorphism, i.e. it is continuous and its inverse is also continuous.

Below, we will choose a norm and a Legendre function h that is 1 -strongly convex w.r.t.

Legendre function

We call a continuous convex function h Legendre if

- Its domain has nonempty interior, i.e., $\operatorname{int}(\operatorname{dom} h) \neq \emptyset$
- h is differentiable on $\operatorname{int}(\operatorname{dom} h)$
- $\left\|h^{\prime}(\mathbf{w})\right\| \rightarrow \infty$ as $\mathbf{w} \rightarrow \partial \operatorname{dom} h$
- h is strictly convex on $\operatorname{int}(\operatorname{dom} h)$

Theorem: $\mathrm{J}=h^{\prime}$

is a topological isomorphism, i.e. it is continuous and its inverse is also continuous.
Below, we will choose a norm and a Legendre function h that is 1 -strongly convex w.r.t.

Legendre function

We call a continuous convex function h Legendre if

- Its domain has nonempty interior, i.e., $\operatorname{int}(\operatorname{dom} h) \neq \emptyset$
- h is differentiable on $\operatorname{int}(\operatorname{dom} h)$
- $\left\|h^{\prime}(\mathbf{w})\right\| \rightarrow \infty$ as $\mathbf{w} \rightarrow \partial \operatorname{dom} h$
- h is strictly convex on $\operatorname{int}(\operatorname{dom} h)$

Theorem: $\mathbf{J}=h^{\prime}$

h^{\prime} is a topological isomorphism, i.e. it is continuous and its inverse is also continuous.

Below, we will choose a norm
and a Legendre function h that is 1 -strongly convex

Legendre function

We call a continuous convex function h Legendre if

- Its domain has nonempty interior, i.e., $\operatorname{int}(\operatorname{dom} h) \neq \emptyset$
- h is differentiable on $\operatorname{int}(\operatorname{dom} h)$
- $\left\|h^{\prime}(\mathbf{w})\right\| \rightarrow \infty$ as $\mathbf{w} \rightarrow \partial \operatorname{dom} h$
- h is strictly convex on $\operatorname{int}(\operatorname{dom} h)$

Theorem: $\mathbf{J}=h^{\prime}$

h^{\prime} is a topological isomorphism, i.e. it is continuous and its inverse is also continuous.

Below, we will choose a norm $\|\cdot\|$ and a Legendre function h that is 1-strongly convex w.r.t. \|f • \|, i.e.

$$
\mathrm{D}_{h}(\mathbf{w}, \mathbf{z}):=h(\mathbf{w})-h(\mathbf{z})-\langle\mathbf{w}-\mathbf{z} ; \nabla h(\mathbf{z})\rangle \geq \frac{1}{2}\|\mathbf{w}-\mathbf{z}\|^{2} .
$$

Example: (Squared) Euclidean distance
Let $h(\mathrm{w})=\frac{1}{2}\|\mathrm{w}\|_{2}^{2}$. Then, h is Legendre and its induced Bregman divergence
$\mathrm{D}_{h}(\mathrm{w}, \mathrm{z})=\frac{1}{2}\|\mathrm{w}-\mathrm{z}\|_{2}^{2}$ is the (square) Euclidean distance. We have $\mathrm{J}(\mathrm{w})=h^{\prime}(\mathrm{w})=$ w and of course $\mathrm{J}^{-1}=\mathrm{J}$.

Consider the KL function $h(\mathbf{w})=\sum_{j} w_{j} \ln w_{j}-w_{j}$, where $0 \ln 0:=0$. It is Legendre and its induced Bregman divergence D_{h} is known as the KL divergence:

$$
\forall \mathrm{w}, \mathrm{z} \geq 0, \quad \mathrm{KL}(\mathbf{w}, \mathbf{z})=\sum_{j} w_{j} \ln \frac{w_{j}}{z_{j}}-w_{j}+z_{j}
$$

which is 1 -strongly convex w.r.t. the ℓ_{1} norm (restricted to the simplex):

$$
\forall w, z \in \Delta, \quad K L(\mathbf{w}, \mathbf{z}) \geq \frac{1}{2}\|w \quad z\| \|_{1}^{2},
$$

also known as Pinsker's inequality in information theory.

Example: (Squared) Euclidean distance

Let $h(\mathrm{w})=\frac{1}{2}\|\mathrm{w}\|_{2}^{2}$. Then, h is Legendre and its induced Bregman divergence $\mathrm{D}_{h}(\mathrm{w}, \mathrm{z})=\frac{1}{2}\|\mathrm{w}-\mathrm{z}\|_{2}^{2}$ is the (square) Euclidean distance. We have $\mathrm{J}(\mathrm{w})=h^{\prime}(\mathrm{w})=$ w and of course $J^{-1}=J$.

Example: KL and Pinsker

Consider the KL function $h(\mathrm{w})=\sum_{j} w_{j} \ln w_{j}-w_{j}$, where $0 \ln 0:=0$. It is Legendre and its induced Bregman divergence D_{h} is known as the KL divergence:

$$
\forall \mathbf{w}, \mathbf{z} \geq \mathbf{0}, \quad \mathrm{KL}(\mathbf{w}, \mathbf{z})=\sum_{j} w_{j} \ln \frac{w_{j}}{z_{j}}-w_{j}+z_{j},
$$

which is 1 -strongly convex w.r.t. the ℓ_{1} norm (restricted to the simplex):

$$
\forall \mathbf{w}, \mathbf{z} \in \Delta, \quad \mathrm{KL}(\mathbf{w}, \mathbf{z}) \geq \frac{1}{2}\|\mathbf{w}-\mathbf{z}\|_{1}^{2},
$$

also known as Pinsker's inequality in information theory.
Algorithm 3: Mirror descent Input: $\mathrm{w}_{0} \in C$, Legendre function h
1 for }t=0,1,···\mathrm{ do
1 for }t=0,1,···\mathrm{ do
2 compute (sub)gradient $f^{\prime}\left(w_{t}\right)$
$3 \quad$ choose step size $\eta_{t}>0$
$4 \quad h^{\prime}\left(\mathbf{z}_{t+1}\right)=h^{\prime}\left(\mathbf{w}_{t}\right)-\eta_{t} \cdot f^{\prime}\left(\mathbf{w}_{t}\right) \quad / /$ update in the gradient space
$5 \quad \mathbf{w}_{t+1} \leftarrow \operatorname{argmin} D_{h}\left(\mathbf{w}, \mathbb{Z}_{t+1}\right) \quad / /$ projecting back to the constraint

Algorithm 4: Mirror descent

Input: $\mathrm{w}_{0} \in C$, Legendre function h
1 for $t=0,1, \ldots$ do
2 compute (sub)gradient $f^{\prime}\left(\mathrm{w}_{t}\right)$ choose step size $\eta_{t}>0$

$$
\begin{aligned}
& h^{\prime}\left(\mathbf{z}_{t+1}\right)=h^{\prime}\left(\mathbf{w}_{t}\right)-\eta_{t} \cdot f^{\prime}\left(\mathbf{w}_{t}\right) \quad \text { // update in the gradient space } \\
& \mathbf{w}_{t+1} \leftarrow \operatorname{argmin} \mathrm{D}_{h}\left(\mathrm{w}, \mathbf{z}_{t+1}\right) \quad \text { // projecting back to the constraint }
\end{aligned}
$$

Key insight (note the similarity as before):

$$
\begin{aligned}
\mathbf{w}_{t+1}= & \underset{\mathbf{w} \in C}{\operatorname{argmin}} f\left(\mathbf{w}_{t}\right)+\left\langle\mathbf{w}-\mathbf{w}_{t} ; f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t}\right) \\
& \geq f\left(\mathbf{w}_{t}\right)+\left\langle\mathbf{w}-\mathbf{w}_{t} ; f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{2 \eta_{t}}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|^{2} \\
= & \operatorname{argmin} \mathrm{D}_{h}\left(\mathbf{w}, \mathbf{z}_{t+1}\right), \quad \text { where } \quad h^{\prime}\left(\mathbf{z}_{t+1}\right)=h^{\prime}\left(\mathbf{w}_{t}\right)-\eta_{t} \cdot f^{\prime}\left(\mathbf{w}_{t}\right),
\end{aligned}
$$

$$
\mathbf{w} \in C
$$

[^1]$E G \in M D$

- Let $C=\Delta$ and h be KL
- We compute the Bregman projection:
- $h^{\prime}(\mathrm{w})=\ln \mathrm{w}$ while $\left(h^{\prime}\right)^{-1}(\mathrm{~g})=\exp (\mathrm{g})$, all component-wise
- The mirror descent step reduces to:
\qquad
$E G \in M D$
- Let $C=\Delta$ and h be KL
- We compute the Bregman projection:
- $h^{\prime}(\mathrm{w})=\ln$ w while $\left(h^{\prime}\right)^{-1}(\mathrm{~g})=\exp (\mathrm{g})$, all component-wise
- The mirror descent step reduces to:
$E G \in M D$
- Let $C=\Delta$ and h be KL
- We compute the Bregman projection:

$$
\begin{aligned}
\underset{\mathbf{w} \in \Delta}{\operatorname{argmin}} \mathrm{KL}(\mathbf{w}, \mathbf{z}) & =\sum_{j} w_{j} \log \frac{w_{j}}{z_{j}}-w_{j}+z_{j} \\
& =\sum_{j} w_{j} \log \frac{w_{j}}{z_{j} /\langle\mathbf{1}, \mathbf{z}\rangle}-\log \langle\mathbf{1}, \mathbf{z}\rangle-1+\langle\mathbf{1}, \mathbf{z}\rangle \\
& \equiv \mathrm{KL}\left(\mathbf{w}, \frac{\mathbf{z}}{\langle\mathbf{1}, \mathbf{z}\rangle}\right)
\end{aligned}
$$

- $h^{\prime}(\mathrm{w})=\ln \mathrm{w}$ while $\left(h^{\prime}\right)^{-1}(\mathrm{~g})=\exp (\mathrm{g})$, all component-wise
- The mirror descent step reduces to:

$E G \in M D$

- Let $C=\triangle$ and h be KL
- We compute the Bregman projection:

$$
\begin{aligned}
\underset{\mathbf{w} \in \Delta}{\operatorname{argmin}} \mathrm{KL}(\mathbf{w}, \mathbf{z}) & =\sum_{j} w_{j} \log \frac{w_{j}}{z_{j}}-w_{j}+z_{j} \\
& =\sum_{j} w_{j} \log \frac{w_{j}}{z_{j} /\langle\mathbf{1}, \mathbf{z}\rangle}-\log \langle\mathbf{1}, \mathbf{z}\rangle-1+\langle\mathbf{1}, \mathbf{z}\rangle \\
& \equiv \mathrm{KL}\left(\mathbf{w}, \frac{\mathbf{z}}{\langle\mathbf{1}, \mathbf{z}\rangle}\right)
\end{aligned}
$$

- $h^{\prime}(\mathbf{w})=\ln w$ while $\left(h^{\prime}\right)^{-1}(\mathbf{g})=\exp (\mathbf{g})$, all component-wise
- The mirror descent step reduces to:

$E G \in M D$

- Let $C=\triangle$ and h be KL
- We compute the Bregman projection:

$$
\begin{aligned}
\underset{\mathbf{w} \in \Delta}{\operatorname{argmin}} \mathrm{KL}(\mathbf{w}, \mathbf{z}) & =\sum_{j} w_{j} \log \frac{w_{j}}{z_{j}}-w_{j}+z_{j} \\
& =\sum_{j} w_{j} \log \frac{w_{j}}{z_{j} /\langle\mathbf{1}, \mathbf{z}\rangle}-\log \langle\mathbf{1}, \mathbf{z}\rangle-1+\langle\mathbf{1}, \mathbf{z}\rangle \\
& \equiv \mathrm{KL}\left(\mathbf{w}, \frac{\mathbf{z}}{\langle\mathbf{1}, \mathbf{z}\rangle}\right)
\end{aligned}
$$

- $h^{\prime}(\mathbf{w})=\ln \mathbf{w}$ while $\left(h^{\prime}\right)^{-1}(\mathbf{g})=\exp (\mathbf{g})$, all component-wise
- The mirror descent step reduces to:

$$
\mathbf{z}_{t+1}=\left(h^{\prime}\right)^{-1}\left(h^{\prime}\left(\mathbf{w}_{t}\right)-\eta_{t} \cdot f^{\prime}\left(\mathbf{w}_{t}\right)\right)=\mathbf{w}_{t} \odot \exp \left(-\eta_{t} f^{\prime}\left(\mathbf{w}_{t}\right)\right), \quad \mathbf{w}_{t+1}=\frac{\mathbf{z}_{t+1}}{\left\langle 1, \mathbf{z}_{t+1}\right\rangle}
$$

choose a Legendre function h that matches the "geometry" (i.e. norm) of the constraint set C, so that projection is trivial

Theorem: convergence of mirror descent for smooth function
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be convex and L-smooth (w.r.t. some norm $\|\cdot\|$), $C \subseteq \mathbb{R}^{d}$ be closed convex, and η_{t} is chosen suitably, then for all $\mathbf{w} \in C$ and $t \geq 1$, the mirror descent iterates $\left\{\mathrm{w}_{t}\right\} \subseteq C$ satisfy:

$$
f\left(\mathbf{w}_{t}\right) \leq f(\mathbf{w})+\frac{\mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{0}\right)}{t \bar{\eta}_{t}}, \quad \text { where } \quad \bar{\eta}_{t}:=\frac{1}{t} \sum_{s=0}^{t-1} \eta_{s},
$$

$\mathrm{D}_{h}\left(\mathrm{w}, \mathrm{w}_{0}\right) \geq \frac{1}{2}\left\|\mathrm{w}-\mathrm{w}_{0}\right\|^{2}$ for some 1-strongly convex Legendre function h.

- Droof is literally the same as that of projected gradient
- Choosing
- As before, the dependence on I and wo makes intuitive sense

Theorem: convergence of mirror descent for smooth function
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be convex and L-smooth (w.r.t. some norm $\|\cdot\|$), $C \subseteq \mathbb{R}^{d}$ be closed convex, and η_{t} is chosen suitably, then for all $\mathbf{w} \in C$ and $t \geq 1$, the mirror descent iterates $\left\{\mathrm{w}_{t}\right\} \subseteq C$ satisfy:

$$
f\left(\mathbf{w}_{t}\right) \leq f(\mathbf{w})+\frac{\mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{0}\right)}{t \bar{\eta}_{t}}, \quad \text { where } \quad \bar{\eta}_{t}:=\frac{1}{t} \sum_{s=0}^{t-1} \eta_{s},
$$

$\mathrm{D}_{h}\left(\mathrm{w}, \mathrm{w}_{0}\right) \geq \frac{1}{2}\left\|\mathrm{w}-\mathrm{w}_{0}\right\|^{2}$ for some 1-strongly convex Legendre function h.

- Again, the rate of convergence does not depend on d, the dimension!
- Proof is literally the same as that of projected gradient
- Choosing
- As before, the dependence on I and wo makes intuitive sense

Theorem: convergence of mirror descent for smooth function
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be convex and L-smooth (w.r.t. some norm $\|\cdot\|$), $C \subseteq \mathbb{R}^{d}$ be closed convex, and η_{t} is chosen suitably, then for all $\mathbf{w} \in C$ and $t \geq 1$, the mirror descent iterates $\left\{\mathrm{w}_{t}\right\} \subseteq C$ satisfy:

$$
f\left(\mathbf{w}_{t}\right) \leq f(\mathbf{w})+\frac{\mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{0}\right)}{t \bar{\eta}_{t}}, \quad \text { where } \quad \bar{\eta}_{t}:=\frac{1}{t} \sum_{s=0}^{t-1} \eta_{s},
$$

$\mathrm{D}_{h}\left(\mathrm{w}, \mathrm{w}_{0}\right) \geq \frac{1}{2}\left\|\mathrm{w}-\mathrm{w}_{0}\right\|^{2}$ for some 1-strongly convex Legendre function h.

- Again, the rate of convergence does not depend on d, the dimension!
- Proof is literally the same as that of projected gradient
- Choosing $\eta_{t} \equiv 1 / L$ we obtain
- As before, the dependence on L and \mathbf{w}_{0} makes intuitive sense.

Theorem: convergence of mirror descent for smooth function
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be convex and L-smooth (w.r.t. some norm $\|\cdot\|$), $C \subseteq \mathbb{R}^{d}$ be closed convex, and η_{t} is chosen suitably, then for all $\mathbf{w} \in C$ and $t \geq 1$, the mirror descent iterates $\left\{\mathrm{w}_{t}\right\} \subseteq C$ satisfy:

$$
f\left(\mathbf{w}_{t}\right) \leq f(\mathbf{w})+\frac{\mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{0}\right)}{t \bar{\eta}_{t}}, \quad \text { where } \quad \bar{\eta}_{t}:=\frac{1}{t} \sum_{s=0}^{t-1} \eta_{s},
$$

$\mathrm{D}_{h}\left(\mathrm{w}, \mathrm{w}_{0}\right) \geq \frac{1}{2}\left\|\mathrm{w}-\mathrm{w}_{0}\right\|^{2}$ for some 1-strongly convex Legendre function h.

- Again, the rate of convergence does not depend on d, the dimension!
- Proof is literally the same as that of projected gradient
- Choosing $\eta_{t} \equiv 1 / \mathrm{L}$ we obtain $f\left(\mathrm{w}_{t}\right)-f(\mathrm{w}) \leq \frac{\mathrm{LD}_{h}\left(\mathrm{w}, \mathrm{w}_{0}\right)}{t}$
- As before, the dependence on L and Wo makes intuitive sense.

Theorem: convergence of mirror descent for smooth function
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be convex and L-smooth (w.r.t. some norm $\|\cdot\|$), $C \subseteq \mathbb{R}^{d}$ be closed convex, and η_{t} is chosen suitably, then for all $\mathbf{w} \in C$ and $t \geq 1$, the mirror descent iterates $\left\{\mathrm{w}_{t}\right\} \subseteq C$ satisfy:

$$
f\left(\mathbf{w}_{t}\right) \leq f(\mathbf{w})+\frac{\mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{0}\right)}{t \bar{\eta}_{t}}, \quad \text { where } \quad \bar{\eta}_{t}:=\frac{1}{t} \sum_{s=0}^{t-1} \eta_{s},
$$

$\mathrm{D}_{h}\left(\mathrm{w}, \mathrm{w}_{0}\right) \geq \frac{1}{2}\left\|\mathrm{w}-\mathrm{w}_{0}\right\|^{2}$ for some 1-strongly convex Legendre function h.

- Again, the rate of convergence does not depend on d, the dimension!
- Proof is literally the same as that of projected gradient
- Choosing $\eta_{t} \equiv 1 / \mathrm{L}$ we obtain $f\left(\mathrm{w}_{t}\right)-f(\mathrm{w}) \leq \frac{\mathrm{LD}_{h}\left(\mathrm{w}, \mathrm{w}_{0}\right)}{t}$
- As before, the dependence on L and w_{0} makes intuitive sense.

$$
\begin{aligned}
f\left(\mathbf{w}_{t+1}\right) & \leq f\left(\mathbf{w}_{t}\right)+\left\langle\mathbf{w}_{t+1}-\mathbf{w}_{t} ; f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}_{t+1}, \mathbf{w}_{t}\right) \\
& \leq f\left(\mathbf{w}_{t}\right)+\left\langle\mathbf{w}-\mathbf{w}_{t} ; f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t}\right)-\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t+1}\right) \\
& \leq f(\mathbf{w})+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t}\right)-\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t+1}\right)
\end{aligned}
$$

where the second inequality follows from w_{t+1} being the Bregman projection to the convex set C, and the last inequality is due to the convexity of f.

$$
\begin{aligned}
f\left(\mathbf{w}_{t+1}\right) & \leq f\left(\mathbf{w}_{t}\right)+\left\langle\mathbf{w}_{t+1}-\mathbf{w}_{t} ; f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{\eta_{t}} \mathrm{D}_{h}\left(\mathbf{w}_{t+1}, \mathbf{w}_{t}\right) \\
& \leq f\left(\mathbf{w}_{t}\right)+\left\langle\mathbf{w}-\mathbf{w}_{t} ; f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t}\right)-\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t+1}\right) \\
& \leq f(\mathbf{w})+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t}\right)-\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t+1}\right)
\end{aligned}
$$

where the second inequality follows from w_{t+1} being the Bregman projection to the convex set C, and the last inequality is due to the convexity of f.

Take $\mathrm{w}=\mathrm{w}_{t}$ we see that

$$
f\left(\mathbf{w}_{t+1}\right) \leq f\left(\mathbf{w}_{t}\right),
$$

i.e., the algorithm is descending. Summing from $t=0$ to $t=T-1$:

$$
T \bar{\eta}_{T} \cdot\left[f\left(\mathbf{w}_{T}\right)-f(\mathbf{w})\right] \leq \sum_{t=0}^{T-1} \eta_{t}\left[f\left(\mathbf{w}_{t+1}\right)-f(\mathbf{w})\right] \leq \mathrm{D}_{h}\left(\mathbf{w}, \mathbf{w}_{0}\right) .
$$

Dividing both sides by $T \bar{\eta}_{T}$ completes the proof.

Theorem: convergence of mirror descent for nonsmooth function
Let $C \subseteq \mathbb{R}^{d}$ be closed convex and $f: C \rightarrow \mathbb{R}$ be L-Lipschitz continuous convex (w.r.t. some norm $\|\cdot\|$). Start with $w_{0} \in C$, for any $w \in C$, we have:

where $\mathrm{D}_{h}\left(\mathrm{w}, \mathrm{w}_{0}\right) \geq \frac{1}{2}\left\|\mathrm{w}-\mathrm{w}_{0}\right\|^{2}$ for some 1 -strongly convex Legendre function h.

- The bound on the right-hand side vanishes iff $\sum_{t} \eta_{t} \rightarrow \infty$ and
- If we fix a tolerance beforehand, then setting
- The same claim holds for \bar{w}_{T}

Theorem: convergence of mirror descent for nonsmooth function
Let $C \subseteq \mathbb{R}^{d}$ be closed convex and $f: C \rightarrow \mathbb{R}$ be L-Lipschitz continuous convex (w.r.t. some norm $\|\cdot\|$). Start with $w_{0} \in C$, for any $w \in C$, we have:
$\min _{0 \leq t \leq T-1} f\left(\mathrm{w}_{t}\right)-f(\mathrm{w}) \leq \sum_{t=0}^{T-1} \frac{\eta_{t}}{\sum_{s=0}^{T-1} \eta_{s}}\left(f\left(\mathrm{w}_{t}\right)-f(\mathrm{w})\right) \leq \frac{2 \mathrm{D}_{h}\left(\mathrm{w}, \mathrm{w}_{0}\right)+\mathrm{L}^{2} \sum_{t=0}^{T-1} \eta_{t}^{2}}{2 \sum_{s=0}^{T-1} \eta_{s}}$
where $\mathrm{D}_{h}\left(\mathrm{w}, \mathrm{w}_{0}\right) \geq \frac{1}{2}\left\|\mathrm{w}-\mathrm{w}_{0}\right\|^{2}$ for some 1 -strongly convex Legendre function h.

- The bound on the right-hand side vanishes iff $\sum_{t} \eta_{t} \rightarrow \infty$ and $\eta_{t} \rightarrow 0$
- If we fix a tolerance
beforehand, then setting
for some constant
leads to $\min _{0 \leq t \leq T-1} f\left(\mathbf{w}_{t}\right)-f(\mathbf{w}) \leq \epsilon$, as long as
- The same claim holds for w

Theorem: convergence of mirror descent for nonsmooth function
Let $C \subseteq \mathbb{R}^{d}$ be closed convex and $f: C \rightarrow \mathbb{R}$ be L-Lipschitz continuous convex (w.r.t. some norm $\|\cdot\|$). Start with $w_{0} \in C$, for any $w \in C$, we have:
$\min _{0 \leq t \leq T-1} f\left(\mathrm{w}_{t}\right)-f(\mathrm{w}) \leq \sum_{t=0}^{T-1} \frac{\eta_{t}}{\sum_{s=0}^{T-1} \eta_{s}}\left(f\left(\mathrm{w}_{t}\right)-f(\mathrm{w})\right) \leq \frac{2 \mathrm{D}_{h}\left(\mathrm{w}, \mathrm{w}_{0}\right)+\mathrm{L}^{2} \sum_{t=0}^{T-1} \eta_{t}^{2}}{2 \sum_{s=0}^{T-1} \eta_{s}}$ where $\mathrm{D}_{h}\left(\mathrm{w}, \mathrm{w}_{0}\right) \geq \frac{1}{2}\left\|\mathrm{w}-\mathrm{w}_{0}\right\|^{2}$ for some 1 -strongly convex Legendre function h.

- The bound on the right-hand side vanishes iff $\sum_{t} \eta_{t} \rightarrow \infty$ and $\eta_{t} \rightarrow 0$
- If we fix a tolerance $\epsilon>0$ beforehand, then setting $\eta_{t}=c / L^{2} \cdot \epsilon$ for some constant $c \in] 0,2$ [leads to $\min _{0 \leq t \leq T-1} f\left(\mathrm{w}_{t}\right)-f(\mathrm{w}) \leq \epsilon$, as long as $T \geq \frac{2 \mathrm{~L}^{2} \mathrm{D}_{h}\left(\mathrm{w}, \mathrm{w}_{0}\right)}{c(2-c)} \cdot \frac{1}{\epsilon^{2}}$
- The same claim holds for w

Theorem: convergence of mirror descent for nonsmooth function
Let $C \subseteq \mathbb{R}^{d}$ be closed convex and $f: C \rightarrow \mathbb{R}$ be L-Lipschitz continuous convex (w.r.t. some norm $\|\cdot\|$). Start with $w_{0} \in C$, for any $w \in C$, we have:
$\min _{0 \leq t \leq T-1} f\left(\mathrm{w}_{t}\right)-f(\mathrm{w}) \leq \sum_{t=0}^{T-1} \frac{\eta_{t}}{\sum_{s=0}^{T-1} \eta_{s}}\left(f\left(\mathrm{w}_{t}\right)-f(\mathrm{w})\right) \leq \frac{2 \mathrm{D}_{h}\left(\mathrm{w}, \mathrm{w}_{0}\right)+\mathrm{L}^{2} \sum_{t=0}^{T-1} \eta_{t}^{2}}{2 \sum_{s=0}^{T-1} \eta_{s}}$ where $\mathrm{D}_{h}\left(\mathrm{w}, \mathrm{w}_{0}\right) \geq \frac{1}{2}\left\|\mathrm{w}-\mathrm{w}_{0}\right\|^{2}$ for some 1 -strongly convex Legendre function h.

- The bound on the right-hand side vanishes iff $\sum_{t} \eta_{t} \rightarrow \infty$ and $\eta_{t} \rightarrow 0$
- If we fix a tolerance $\epsilon>0$ beforehand, then setting $\eta_{t}=c / L^{2} \cdot \epsilon$ for some constant $c \in] 0,2$ [leads to $\min _{0 \leq t \leq T-1} f\left(\mathrm{w}_{t}\right)-f(\mathrm{w}) \leq \epsilon$, as long as $T \geq \frac{2 \mathrm{~L}^{2} \mathrm{D}_{h}\left(\mathrm{w}, \mathrm{w}_{0}\right)}{c(2-c)} \cdot \frac{1}{\epsilon^{2}}$
- The same claim holds for $\overline{\mathbf{w}}_{T}:=\sum_{t=0}^{T-1} \frac{\eta_{t}}{\sum_{s=0}^{T_{1}} \eta_{s}} \mathrm{w}_{t}$

As in the previous proof, since w_{t+1} is the Bregman projection, we have

$$
\begin{aligned}
\left\langle\mathbf{w} ; f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t}\right) & \geq\left\langle\mathbf{w}_{t+1} ; f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}_{t+1}, \mathbf{w}_{t}\right)+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t+1}\right) \\
\left\langle\mathbf{w}-\mathbf{w}_{t} ; f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t}\right) & \geq\left\langle\mathbf{w}_{t+1}-\mathbf{w}_{t} ; f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}_{t+1}, \mathbf{w}_{t}\right)+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t+1}\right) \\
f(\mathbf{w})-f\left(\mathbf{w}_{t}\right)+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t}\right) & \geq-\left\|\mathbf{w}_{t+1}-\mathbf{w}_{t}\right\| \cdot\left\|f^{\prime}\left(\mathbf{w}_{t}\right)\right\|_{\circ}+\frac{1}{2 \eta_{t}}\left\|\mathbf{w}_{t+1}-\mathbf{w}_{t}\right\|^{2}+\frac{1}{\eta_{t}} D_{h}\left(\mathbf{w}^{\prime}\right. \\
f(\mathbf{w})-f\left(\mathbf{w}_{t}\right)+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t}\right) & \geq \eta_{t}\left\|f^{\prime}\left(\mathbf{w}_{t}\right)\right\|_{\circ}^{2} / 2+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t+1}\right) .
\end{aligned}
$$

Telescoping we obtain

Thus,

As in the previous proof, since w_{t+1} is the Bregman projection, we have

$$
\begin{aligned}
& \left\langle\mathbf{W} ; f^{\prime}\left(\mathbf{W}_{t}\right)\right\rangle+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{W}, \mathbf{W}_{t}\right) \geq\left\langle\mathbf{W}_{t+1} ; f^{\prime}\left(\mathbf{W}_{t}\right)\right\rangle+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{W}_{t+1}, \mathbf{W}_{t}\right)+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{W}_{,} \mathbf{W}_{t}+1\right) \\
& \left\langle\mathbf{W}-\mathbf{W}_{t} ; f^{\prime}\left(\mathbf{W}_{t}\right)\right\rangle+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{W}, \mathbf{W}_{t}\right) \geq\left\langle\mathbf{W}_{t+1}-\mathbf{W}_{t} ; f^{\prime}\left(\mathbf{W}_{t}\right)\right\rangle+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{W}_{t+1}, \mathbf{W}_{t}\right)+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{W}_{,} \mathbf{W}_{t+1}\right) \\
& f(\mathbf{W})-f\left(\mathbf{W}_{t}\right)+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{W}, \mathbf{W}_{t}\right) \geq-\left\|\mathbf{W}_{t+1}-\mathbf{W}_{t}\right\| \cdot\left\|f^{\prime}\left(\mathbf{W}_{t}\right)\right\|_{0}+\frac{1}{2 \eta_{t}}\left\|\mathbf{W}_{t+1}-\mathbf{W}_{t}\right\|^{2}+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{W}^{\prime}\right. \\
& f(\mathbf{W})-f\left(\mathbf{W}_{t}\right)+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{W}, \mathbf{W}_{t}\right) \geq \eta_{t}\left\|f^{\prime}\left(\mathbf{W}_{t}\right)\right\|_{o}^{2} / 2+\frac{1}{\eta_{t}} D_{h}\left(\mathbf{W}_{,}, \mathbf{W}_{t+1}\right)
\end{aligned}
$$

Telescoping we obtain
$\mathrm{D}_{h}\left(\mathrm{w}, \mathbf{w}_{T}\right) \leq \mathrm{D}_{h}\left(\mathrm{w}, \mathbf{w}_{0}\right)+\sum_{t=0}^{T-1} \eta_{t}^{2}\left\|f^{\prime}\left(\mathbf{w}_{t}\right)\right\|_{0}^{2} / 2+\sum_{t=0}^{T-1} \frac{\eta_{t}}{\sum_{s=0}^{T-1} \eta_{s}}\left(f(\mathrm{w})-f\left(\mathbf{w}_{t}\right)\right) \cdot \sum_{s=0}^{T-1} \eta_{s}$.

Thus,

min

As in the previous proof, since w_{t+1} is the Bregman projection, we have

$$
\begin{aligned}
\left\langle\mathbf{w} ; f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t}\right) & \geq\left\langle\mathbf{w}_{t+1} ; f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}_{t+1}, \mathbf{w}_{t}\right)+\frac{1}{\eta_{t}} \mathrm{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t+1}\right) \\
\left\langle\mathbf{w}-\mathbf{w}_{t} ; f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{\eta_{t}} \mathrm{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t}\right) & \geq\left\langle\mathbf{w}_{t+1}-\mathbf{w}_{t} ; f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{\eta_{t}} \mathrm{D}_{h}\left(\mathbf{w}_{t+1}, \mathbf{w}_{t}\right)+\frac{1}{\eta_{t}} \mathrm{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t+1}\right) \\
f(\mathbf{w})-f\left(\mathbf{w}_{t}\right)+\frac{1}{\eta_{t}} \mathrm{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t}\right) & \geq-\left\|\mathbf{w}_{t+1}-\mathbf{w}_{t}\right\| \cdot\left\|f^{\prime}\left(\mathbf{w}_{t}\right)\right\|_{\circ}+\frac{1}{2 \eta_{t}}\left\|\mathbf{w}_{t+1}-\mathbf{w}_{t}\right\|^{2}+\frac{1}{\eta_{t}} \mathbf{D}_{h}(\mathbf{w}, \\
f(\mathbf{w})-f\left(\mathbf{w}_{t}\right)+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t}\right) & \geq \eta_{t}\left\|f^{\prime}\left(\mathbf{w}_{t}\right)\right\|_{0}^{2} / 2+\frac{1}{\eta_{t}} \mathbf{D}_{h}\left(\mathbf{w}, \mathbf{w}_{t+1}\right) .
\end{aligned}
$$

Telescoping we obtain

$$
\mathrm{D}_{h}\left(\mathbf{w}, \mathbf{w}_{T}\right) \leq \mathrm{D}_{h}\left(\mathbf{w}, \mathbf{w}_{0}\right)+\sum_{t=0}^{T-1} \eta_{t}^{2}\left\|f^{\prime}\left(\mathbf{w}_{t}\right)\right\|_{0}^{2} / 2+\sum_{t=0}^{T-1} \frac{\eta_{t}}{\sum_{s=0}^{T-1} \eta_{s}}\left(f(\mathbf{w})-f\left(\mathbf{w}_{t}\right)\right) \cdot \sum_{s=0}^{T-1} \eta_{s} .
$$

Thus,

$$
\min _{0 \leq t \leq T-1} f\left(\mathrm{w}_{t}\right)-f(\mathbf{w}) \leq \sum_{t=0}^{T-1} \frac{\eta_{t}}{\sum_{s=0}^{T-1} \eta_{s}}\left(f\left(\mathbf{w}_{t}\right)-f(\mathbf{w})\right) \leq \frac{2 \mathrm{D}_{h}\left(\mathbf{w}, \mathbf{w}_{0}\right)+\mathrm{L}^{2} \sum_{t=0}^{T-1} \eta_{t}^{2}}{2 \sum_{s=0}^{T-1} \eta_{s}}
$$

Extending to Composite

$$
\min _{\mathbf{w}} f(\mathbf{w}), \text { where } f(\mathbf{w})=\ell(\mathbf{w})+r(\mathbf{w})
$$

Algorithm 5: Composite mirror descent
Input: ${ }_{0}$, functions ℓ and r, Legendre function h

1 for $t=0,1, \ldots$ do
2 compute (sub)gradient $\ell^{\prime}\left(\mathbf{w}_{t}\right)$
// can be stochastic choose step size $\eta_{t}>0$

```
h'(\mp@subsup{\mathbf{z}}{t+1}{})=\mp@subsup{h}{}{\prime}(\mp@subsup{\mathbf{w}}{t}{})-\mp@subsup{\eta}{t}{}\cdot\mp@subsup{\ell}{}{\prime}(\mp@subsup{\mathbf{w}}{t}{})
// gradient step w.r.t. \ell
\mp@subsup{\mathbf{w}}{t+1}{}\leftarrow\underset{\mathbf{w}}{\operatorname{argmin}}\frac{1}{\mp@subsup{\eta}{t}{}}\mp@subsup{\textrm{D}}{h}{}(\mathbf{w},\mp@subsup{\mathbf{z}}{t+1}{})+r(\mathbf{w})\quad// proximal step w.r.t. r
```


[^0]: N. Littlestone (1988). "Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm". Machine Learning, vol. 2, pp. 285-318.

[^1]: A. Nemirovski and D. B. Yudin (1979). "Efficient methods for solving large-scale convex programming problems". Ekonomika i matematicheskie metody, vol. 15, no. 1, pp. 133-152; A. Beck and M. Teboulle (2003). "Mirror descent and nonlinear projected subgradient methods for convex optimization". Operations Research Letters, vol. 31, no. 3, pp. 167-175.

