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Problem

Constrained minimization:

f⋆ = inf
w∈C⊆V

f(w)

• f : convex and possibly nonsmooth
• C: convex constraint
• V: vector space that w lives in, e.g. Rd with Euclidean norm ∥ · ∥2
• When f ′ is L-Lipschitz, (projected) gradient descent yields L∥w0−w∥22

2t

• When f is L-Lipschitz, (projected) subgradient yields L∥w0−w∥2√
t
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How We Measure Things Matters

min
w∈∆

d∑
j=1

fj(wj),

• Each univariate function fj : R→ R is 1-Lipschitz continuous.
• The sum f : Rd → R is

√
d-Lipschitz continuous w.r.t. the Euclidean norm:

∥f ′∥22 =
∑
j

(f ′
j)

2 ≤ d.

• The diameter ∥w0 −w∥2 ≤
√
2.

• Applying subgradient we obtain a convergence rate of
√

2d
t

• But, we also have ∥f ′∥∞ = maxj |f ′
j| ≤ 1

• The diameter ∥w0 −w∥1 = ∥w0 −w∥◦∞ ≤ 2
• Possible to achieve the convergence rate 2√

t
by changing the norm?
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What Makes Incremental Update Possible?

So far, all of our updates are of the following (additive) incremental form:

w← w − η · g,

which is so natural that we often forget what makes it even mathematically possible:
• The scalar multiplication of the step size η to g

• The negation −
• And the addition of w with −η · g

These operations are possible because w and g are from the same vector space

• From now on f ′(w) lives in a dual space V∗

• Need a way to pull things back and forth: J : V→ V∗, J−1 : V∗ → V

• With the Euclidean norm ∥ · ∥2, we may simply take J = J∗ = Id
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Algorithm 1: Winnow
Input: A = [a1, . . . , an] ∈ Rp×n, threshold δ ≥ 0, step size η > 0, initialize

w ∈ int∆p−1

Output: approximate solution w
1 for t = 1, 2, . . . do
2 receive training example index It ∈ {1, . . . , n} // index It can be random
3 if ⟨aIt ,w⟩ ≤ δ then
4 w← w ⊙ exp(ηaIt) // update only when making a mistake
5 w← w/∥w∥1 // normalize

lnw← lnw + η · aIt , where J(w) = ln(w)

N. Littlestone (1988). “Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm”. Machine Learning, vol. 2,
pp. 285–318.

L07 4/17
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Online Prediction

• n experts, each of whom provides a prediction xi, collectively as x ∈ Rn

• Form our own opinion by averaging ŷ = ⟨w,x⟩, w ∈ ∆

• Suffer a loss, say the square loss ℓ(w;x, y) = (y − ŷ)2

• Repeat the game for t = 1, . . . , T rounds

Regret :=
1

T

T∑
t=1

(yt − ŷt)
2 −min

w∈∆

1

T

T∑
t=1

(yt − ⟨w,xt⟩)2, where ŷt = ⟨wt,xt⟩ .
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Exponentiated Gradient (EG)

w̃t+1 = wt ⊙ exp(−ηt · ℓ′(ŷt − yt)xt)

wt+1 =
w̃t+1

⟨1, w̃t+1⟩

• Diminishing regret on the order of O(
√

lnn
T
), assuming ∥xt∥∞ ≤ 1 and yt ∈ [0, 1]

• No assumption on how the sequence (xt, yt) is generated; can even be adversarial
• Setting w = ei: EG performs no worse than the best expert in hindsight for big T

• Can consult a large number of experts: dependence on n is only logarithmic
• Gradient descent achieves O( 1√

T
) under the assumption ∥xt∥2 ≤ 1

J. Kivinen and M. K. Warmuth (1997). “Exponentiated Gradient versus Gradient Descent for Linear Predictors”. Information and
Computation, vol. 132, no. 1, pp. 1–63.

L07 6/17

https://doi.org/10.1006/inco.1996.2612


Exponentiated Gradient (EG)

w̃t+1 = wt ⊙ exp(−ηt · ℓ′(ŷt − yt)xt)
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Two Choices

• We have a mismatch between w ∈ V and f ′(w) ∈ V∗

• We use a duality (mirror) map J : V→ V∗, J−1 : V∗ → V

1. Update in the gradient space V∗ and pull the update back to the input space V:

wt+1 = J−1[J(wt)− ηt · f ′(wt)]

w∗
t+1 = w∗

t − ηt · f ′(J−1w∗
t ), where w∗

t := J(wt), wt = J−1(w∗
t )

2. Pull the gradient back to the input space V and do the update there directly:

wt+1 = wt − ηt · J−1(f ′(wt)).
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Legendre function

We call a continuous convex function h Legendre if
• Its domain has nonempty interior, i.e., int(domh) ̸= ∅
• h is differentiable on int(domh)
• ∥h′(w)∥ → ∞ as w→ ∂ domh
• h is strictly convex on int(domh)

Theorem: J = h′

h′ is a topological isomorphism, i.e. it is continuous and its inverse is also continuous.

Below, we will choose a norm ∥ · ∥ and a Legendre function h that is 1-strongly convex
w.r.t. ∥ · ∥, i.e.

Dh(w, z) := h(w)− h(z)− ⟨w − z;∇h(z)⟩ ≥ 1
2
∥w − z∥2.
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Example: (Squared) Euclidean distance

Let h(w) = 1
2
∥w∥22. Then, h is Legendre and its induced Bregman divergence

Dh(w, z) = 1
2
∥w−z∥22 is the (square) Euclidean distance. We have J(w) = h′(w) =

w and of course J−1 = J.

Example: KL and Pinsker

Consider the KL function h(w) =
∑

j wj lnwj−wj, where 0 ln 0 := 0. It is Legendre
and its induced Bregman divergence Dh is known as the KL divergence:

∀w, z ≥ 0, KL(w, z) =
∑

j
wj ln

wj

zj
− wj + zj,

which is 1-strongly convex w.r.t. the ℓ1 norm (restricted to the simplex):

∀w, z ∈ ∆, KL(w, z) ≥ 1
2
∥w − z∥21,

also known as Pinsker’s inequality in information theory.
L07 9/17
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Algorithm 3: Mirror descent
Input: w0 ∈ C, Legendre function h

1 for t = 0, 1, . . . do
2 compute (sub)gradient f ′(wt)
3 choose step size ηt > 0
4 h′(zt+1) = h′(wt)− ηt · f ′(wt) // update in the gradient space
5 wt+1 ← argmin

w∈C
Dh(w, zt+1) // projecting back to the constraint

Key insight (note the similarity as before):

wt+1 = argmin
w∈C

f(wt) + ⟨w −wt; f
′(wt)⟩+ 1

ηt
Dh(w,wt)

≥ f(wt) + ⟨w −wt; f
′(wt)⟩+ 1

2ηt
∥w −wt∥2

= argmin
w∈C

Dh(w, zt+1), where h′(zt+1) = h′(wt)− ηt · f ′(wt),

A. Nemirovski and D. B. Yudin (1979). “Efficient methods for solving large-scale convex programming problems”. Ekonomika i
matematicheskie metody, vol. 15, no. 1, pp. 133–152; A. Beck and M. Teboulle (2003). “Mirror descent and nonlinear projected subgradient
methods for convex optimization”. Operations Research Letters, vol. 31, no. 3, pp. 167–175.
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EG ∈ MD
• Let C = ∆ and h be KL
• We compute the Bregman projection:

argmin
w∈∆

KL(w, z) =
∑
j

wj log
wj

zj
− wj + zj

=
∑
j

wj log
wj

zj/ ⟨1, z⟩
− log ⟨1, z⟩ − 1 + ⟨1, z⟩

≡ KL(w, z
⟨1,z⟩)

• h′(w) = lnw while (h′)−1(g) = exp(g), all component-wise
• The mirror descent step reduces to:

zt+1 = (h′)−1(h′(wt)− ηt · f ′(wt)) = wt ⊙ exp(−ηtf ′(wt)), wt+1 =
zt+1

⟨1,zt+1⟩
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choose a Legendre function h that matches
the “geometry” (i.e. norm) of the constraint
set C, so that projection is trivial

L07 12/17



Theorem: convergence of mirror descent for smooth function

Let f : Rd → R be convex and L-smooth (w.r.t. some norm ∥ ·∥), C ⊆ Rd be closed
convex, and ηt is chosen suitably, then for all w ∈ C and t ≥ 1, the mirror descent
iterates {wt} ⊆ C satisfy:

f(wt) ≤ f(w) +
Dh(w,w0)

tη̄t
, where η̄t :=

1

t

t−1∑
s=0

ηs,

Dh(w,w0) ≥ 1
2
∥w −w0∥2 for some 1-strongly convex Legendre function h.

• Again, the rate of convergence does not depend on d, the dimension!
• Proof is literally the same as that of projected gradient
• Choosing ηt ≡ 1/L we obtain f(wt)− f(w) ≤ LDh(w,w0)

t

• As before, the dependence on L and w0 makes intuitive sense.
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Using L-smoothness we have for all w ∈ C:

f(wt+1) ≤ f(wt) + ⟨wt+1 −wt; f
′(wt)⟩+ 1

ηt
Dh(wt+1,wt)

≤ f(wt) + ⟨w −wt; f
′(wt)⟩+ 1

ηt
Dh(w,wt)− 1

ηt
Dh(w,wt+1)

≤ f(w) + 1
ηt
Dh(w,wt)− 1

ηt
Dh(w,wt+1),

where the second inequality follows from wt+1 being the Bregman projection to the
convex set C, and the last inequality is due to the convexity of f .

Take w = wt we see that

f(wt+1) ≤ f(wt),

i.e., the algorithm is descending. Summing from t = 0 to t = T − 1:

T η̄T · [f(wT )− f(w)] ≤
T−1∑
t=0

ηt[f(wt+1)− f(w)] ≤ Dh(w,w0).

Dividing both sides by T η̄T completes the proof.
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Theorem: convergence of mirror descent for nonsmooth function

Let C ⊆ Rd be closed convex and f : C → R be L-Lipschitz continuous convex
(w.r.t. some norm ∥ · ∥). Start with w0 ∈ C, for any w ∈ C, we have:

min
0≤t≤T−1

f(wt)− f(w) ≤
T−1∑
t=0

ηt∑T−1
s=0 ηs

(f(wt)− f(w)) ≤ 2Dh(w,w0) + L2
∑T−1

t=0 η2t

2
∑T−1

s=0 ηs
,

where Dh(w,w0) ≥ 1
2
∥w −w0∥2 for some 1-strongly convex Legendre function h.

• The bound on the right-hand side vanishes iff
∑

t ηt →∞ and ηt → 0

• If we fix a tolerance ϵ > 0 beforehand, then setting ηt = c/L2 · ϵ for some constant
c ∈]0, 2[ leads to min0≤t≤T−1 f(wt)− f(w) ≤ ϵ, as long as T ≥ 2L2Dh(w,w0)

c(2−c)
· 1
ϵ2

• The same claim holds for w̄T :=
∑T−1

t=0
ηt∑T−1

s=0 ηs
wt
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c ∈]0, 2[ leads to min0≤t≤T−1 f(wt)− f(w) ≤ ϵ, as long as T ≥ 2L2Dh(w,w0)

c(2−c)
· 1
ϵ2

• The same claim holds for w̄T :=
∑T−1

t=0
ηt∑T−1

s=0 ηs
wt
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As in the previous proof, since wt+1 is the Bregman projection, we have

⟨w; f ′(wt)⟩+ 1
ηt
Dh(w,wt) ≥ ⟨wt+1; f

′(wt)⟩+ 1
ηt
Dh(wt+1,wt) +

1
ηt
Dh(w,wt+1)

⟨w−wt; f
′(wt)⟩+ 1

ηt
Dh(w,wt) ≥ ⟨wt+1−wt; f

′(wt)⟩+ 1
ηt
Dh(wt+1,wt)+

1
ηt
Dh(w,wt+1)

f(w)−f(wt) +
1
ηt
Dh(w,wt) ≥ −∥wt+1−wt∥ · ∥f ′(wt)∥◦+ 1

2ηt
∥wt+1−wt∥2+ 1

ηt
Dh(w,wt+1)

f(w)− f(wt) +
1
ηt
Dh(w,wt) ≥ ηt∥f ′(wt)∥2◦/2 + 1

ηt
Dh(w,wt+1).

Telescoping we obtain

Dh(w,wT ) ≤ Dh(w,w0) +
T−1∑
t=0

η2t ∥f ′(wt)∥2◦/2 +
T−1∑
t=0

ηt∑T−1
s=0 ηs

(f(w)− f(wt)) ·
T−1∑
s=0

ηs.
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Extending to Composite

min
w

f(w), where f(w) = ℓ(w) + r(w)

Algorithm 5: Composite mirror descent
Input: w0, functions ℓ and r, Legendre function h

1 for t = 0, 1, . . . do
2 compute (sub)gradient ℓ′(wt) // can be stochastic
3 choose step size ηt > 0
4 h′(zt+1) = h′(wt)− ηt · ℓ′(wt) // gradient step w.r.t. ℓ
5 wt+1 ← argmin

w

1
ηt
Dh(w, zt+1) + r(w) // proximal step w.r.t. r

J. C. Duchi et al. (2010). “Composite Objective Mirror Descent”. In: Proceedings of the 23rd Annual Conference on Learning Theory;
J. C. Duchi et al. (2012). “Ergodic Mirror Descent”. SIAM Journal on Optimization, vol. 22, no. 4, pp. 1549–1578.
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