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IN OPTIMIZATION
INTRODUCTION
TO
OPTIMIZATION Lectures
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EvyY [ F (]
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Machine Learning is Everywhere

® Everyone uses ML everyday

B NETELIY BEREEY . |

® |ots of cool applications

® Excellent for job-hunting



At the Core is Optimization

LoO

Optimization
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What You Will Learn

® [earn the basic theory and algorithms
® Gain some implementation experience
® Know when to use which algorithm with what guarantees

® Start to formulate problems with algorithms in mind
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Date

Topic

Slides

Comments

Applications

Sep 09, 2022

Introduction

pdf

pdf

perceptron

Sep 09, 2022

Linear System

pdf

linear regression

Sep 16, 2022

Gradient Descent

logistic regression

Sep 16, 2022

Projection

white-box attack

Sep 23, 2022

Sep 23, 2022 |

Sep 30, 2022
Sep 30, 2022
Oct 07, 2022
Oct 07, 2022

Proximal Gradient
Subgradient
Conditional Gradient
Fictitious Play
Mirror Descent
Metric Gradient

Oct 14, 2022 |

Oct 14, 2022

lasso
svm
recommendation
poker
sparsity

compression
reading week
reading week

Oct 21, 2022

Acceleration

total variation

Oct 21, 2022

Smoothing

robustness

Oct 28, 2022

Alternating

expectation-maximization

Oct 28, 2022
Nov 04, 2022
Nov 04, 2022
Nov 11, 2022
Nov 11, 2022
Nov 18, 2022
Nov 18, 2022
| Nov 25, 2022
Nov 25, 2022

Coordinate Gradient
Minimax
Averaging
Extragradient
Splitting
Stochastic Gradient
Variance Reduction

| Randomized Smoothing

Search

covariance estimation
adversarial training
GAN
max entropy
federated learning
neural nets
boosting
certification
black-box attack

Dec 02, 2022

Newton

data poisoning

Dec 02, 2022

Quasi-Newton

page rank




Let the Journey Begin
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What a Dataset Looks Like

0 1 1 1 (1
0 0 1 0|1
1 0 O A |

® cach column is a data point:

in total; each has « features

® bottom vy is the label vector; binary in this case

® 2 and % are test samples whose labels need to be predicted
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The Early Hype in Al...

NEW NAVY DEVIGE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

‘WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be .con-
scious of its existence,

The embryo _the
Bureau's $2,000,000 704"
puter—learned to differentiate
between right and left after
fifty attempts in the Navy's
demonstration for newsmen.,

The service said it would use
this principle to build the first

of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be

finished in about a year at &
cost of $100,000.

Frank Rosenblatt, de-
signer of the Perceptron, con-
|ducted the demonstration, He
said the machine would be the
first device to think as the hu-

rain. As do human be-

weanm

wiser as it gains experience, he
said,
Dr. Rosenblatt, a research

falo, saiq Perceptrons might be
fired to the planets as mechani-
cal space explorers,

‘Without Human Controls

The Navy said the perceptron
would be the. first non-living
mechanism “capable of receiv-
ing, recognizing and identifying
its surroundingg without -any
human training or control.”

The “brain” is designed to

remember images and informa-

tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape.

Later Perceptrons will be able
to recognize people and call out
‘their names and instantly trans-
late speech in one language to
speech or writing in another
language, it was predicted.

Mr. Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly
line and which would be con-
scious of their existence,

In todays demonstration, the
“704" was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learns by Doing
In the first fifty trials, the
machine made no dlstmctlon be-:
tween them. It then started
registering a “Q” for the left
squares and “O” for the right

squares.
Dr. Rosenblatt said he could
explain why the machine'

learned only in highly téchnical
terms. But he said the computer
had undergone a '‘self-induced
change in the wiring diagram.” i
The first Perceptron will
have about 1,000 electronic
“association cells” recelving
electrical impulses from an eye-

'like scanning device with 400

photo-cells, The human brain
has 10,000,000,000 responsive
cells, mcludmg 100 000,000 con-
nections with the eyes.



http://search.proquest.com.proxy.lib.uwaterloo.ca/historical-newspapers/new-navy-device-learns-doing/docview/114558973/se-2?accountid=14906

...due to Perceptron

FIG. 1 — Organization of a biological brain. (Red areas indicate
active cells, responding to the letter X.)

Association
System Response
(A-units) i

Topographic
Connections

—

Frank Rosenblatt
FIG. 2 — Organization of a perceptron. (1928 _ 1971)

—_—
e
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Perceptron as an Optimization Problem

o Affine function: , where

® Perceptron solves the above problem!

— it is iterative: going through the data one by one
— it converges faster if the problem is easier

— it

® Abstract a bit more:

— we often can only describe
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Algorithm 1: Perceptron

Input: Dataset

initialization and , threshold
Output: approximate solution w and

1 for do
p) receive index // can be random
k] if < then
4 // update after a ‘mistake”
L

e Typically and ,

F. Rosenblatt (1958).
. Psychological Review, vol. 65, no. 6, pp. 386—408.


http://psycnet.apa.org/record/1959-09865-001
http://psycnet.apa.org/record/1959-09865-001

Algorithm 2: Perceptron

Input: Dataset
initialization and
Output: approximate solution

1 for do

2
K}
4
L}

receive index
if < 0 then

. threshold

and

//

can be random

L // update after a ‘mistake”

e Typically and

F. Rosenblatt (1958).
. Psychological Review, vol. 65, no. 6, pp. 386—408.

, where
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Algorithm 3: Perceptron

Input: Dataset

initialization and , threshold
Output: approximate solution w and

1 for do
) receive index // can be random
3 if < 0 then
4 // update after a ‘mistake”
5

e Typically and :

- VS. VS. , where
° update: “if it ain't broke, don't fix it"

F. Rosenblatt (1958).
. Psychological Review, vol. 65, no. 6, pp. 386—408.


http://psycnet.apa.org/record/1959-09865-001
http://psycnet.apa.org/record/1959-09865-001
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e \What happens if we run Perceptron regardless?



Perceptron and the 15t Al Winter

;‘, :
Marvin Minsky Seymour Papert
(1927 - 2016) (1928 — 2016)

M. L. Minsky and S. A. Papert (1969). “Perceptron”. MIT press.
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find w € R b € R such that Vi, y;((x;,w) +b) >0
find w = [w;b] € R*™ such that Vi, (a;,w) <¢;, a; =
find w € R? such that A'w <c¢

—Yi [Xz'; 1]
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Projection Algorithms

Algorithm 7: Projection Algorithm for Linear Inequalities

Input: , initialization , relaxation parameter
1 for do
y) select index // index can be random
3
T. S. Motzkin and I. J. Schoenberg (1954). . Canadian

Journal of Mathematics, vol. 6, pp. 393—404; S. Agmon (1954).
Canadian Journal of Mathematics, vol. 6, pp. 382—392.


https://cms.math.ca/10.4153/CJM-1954-038-x
https://cms.math.ca/10.4153/CJM-1954-037-2
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Support Vector Machines: Primal

Vi,7;y: >0
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Support Vector Machines: Dual

E i X5 — E ViX;

1y, =+ ==

min min
HEAL veEA_
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Empirical Risk Minimization

zero-one
hinge
—— square hinge
— logistic,
—— exponential
—— Perceptron
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Regularization




Regression

square
-insensitive
absolute
Huber
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Plan |: Basic

® | ec04:
® | ec05:
® |eclO:
® |ecll:
® |ecl2:
® |ecl3:
® |ecl8:
® | ec22:
® |ec23:

Proximal Gradient: smooth / + nonsmooth
Subgradient: nonsmooth / 4+ nonsmooth
Acceleration: optimal algorithm under smoothness
Smoothing: nonsmooth —> smooth

Alternating: divide and conquer

Coordinate Gradient: large model

Stochastic Gradient: large dataset

Newton: even faster under smoothness

Quasi-Newton: Newton made economical
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Denoising

min éHX—ZHﬁ + A |zfly
z S——

fidelity regularization

® )\ controls the trade-off
® regularization encodes prior knowledge
® crucial to not over-smooth

30/41



Adversarial Examples

Hidden
layer 1

Hidden
layer 2

31/41



Adversarial Examples

Hidden
layer 1

Input

Hidden
layer 2

® PUepsysS

31/41



Adversarial Examples

Hidden
layer 1

Input

Hidden
layer 2

@ °![|°D

31/41



32/41



Adversarial Attacks

©
c
)
s}
(]
=
0p)]




Adversarial Attacks

©
c
)
s}
(]
=
0p)]

e Mathematically, a neural network is a function



Adversarial Attacks

©
c
)
s}
(]
=
0p)]

e Mathematically, a neural network is a function

e Typically, input x is given and network weights w optimized



Adversarial Attacks

©
c
)
s}
(]
=
0p)]

e Mathematically, a neural network is a function

e Typically, input x is given and network weights

optimized
e Could also freeze weights

and optimize x, !



Adversarial Attacks

©
c
)
s}
(]
=
0p)]

Mathematically, a neural network is a function

Typically, input = is given and network weights
Could also freeze weights w and optimize

optimized
!

® More generally:



dual projection

e =0.005,y =102

X

dual LMO
€ =0.01,7 =10

©
c
8
)
(O]
-
(Vp]

Shetland

projected Sinkhorn

Shetland

e=0.01,y=10"*
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Robustness as Optimization

® Empirical risk minimization recalled:

e Adversarial attack perturbs while fixing

® Robustness by anticipating the worst-case:

® The game continues by anticipating the anticipation:
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Plan |l: Game-theoretic

® | ecO7:

Lecl4:

Leclb:

Lecl6:

Lecl7:

Lec20:

Fictitious Play: playing against oneself

Minimax: understanding duality

Averaging: projected gradient descent ascent

Extragradient: faster under smoothness

Splitting: exploiting structure

Randomized Smoothing: simulating gradient



Generative Adversarial Networks

I. Goodfellow et al. (2014). . In: NIPS.


https://papers.nips.cc/paper/5423-generative-adversarial-nets

Generative Adversarial Networks

I. Goodfellow et al. (2014). . In: NIPS.


https://papers.nips.cc/paper/5423-generative-adversarial-nets
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Plan I1l: Exotic

v

® Lec06: Conditional Gradient: model weights quantization
® [ec09: Metric Gradient: model gradient quantization

® Lec08: Mirror Descent: gradient under non-Euclidean geometry
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“Nothing in the world takes place without optimization,
and there is no doubt that all aspects of the world that have
a rational basis can be explained by optimization methods.”

— , 1744


https://en.wikipedia.org/wiki/Leonhard_Euler
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History Goes A Long Way Back

“Nothing in the world takes place without optimization,
and there is no doubt that all aspects of the world that have
a rational basis can be explained by optimization methods.”

— , 1744

“Every year | meet Ph.D. students of different special-
izations who ask me for advice on reasonable numerical
schemes for their optimization models. And very often they
seem to have come too late. In my experience, if an opti-
mization model is created without taking into account the
abilities of numerical schemes, the chances that it will be
possible to find an acceptable numerical solution are close
to zero. In any field of human activity, if we create some-
thing, we know in advance why we are doing so and what
we are going to do with the result.” —


https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Yurii_Nesterov

No Free Lunch

. , no algorithm is better than any other

D. H. Wolpert and W. G. Macready (1997). . IEEE Transactions
on Evolutionary Computation, vol. 1, no. 1, pp. 67—82.
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J , no algorithm is better than any other’

° , optimization problems are unsolvable”

1D. H. Wolpert and W. G. Macready (1997). “No free lunch theorems for optimization”. IEEE Transactions
on Evolutionary Computation, vol. 1, no. 1, pp. 67—82.

2K. G. Murty and S. N. Kabadi (1987). “Some NP-complete problems in quadratic and nonlinear
programming’’. Mathematical Programming, vol. 39, no. 2, pp. 117-129.
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“There are no stupid questions, only stupid answers."”
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don't try to solve all problems; one (class) at a time!
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“There are no inferior algorithms, only inferior engineers.”
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