CS794/CO673: Optimization for Data Science
Lec 00: Introduction

Yaoliang Yu

W UNIVERSITY OF FACULTY OF MATHEMATICS
N

DAVID R. CHERITON SCHOOL
@ WATERLOO OF COMPUTER SCIENCE

September 9, 2022

Course Information

e Instructor: Yao-Liang Yu ()

1/41

yaoliang.yu@uwaterloo.ca
zeou.hu@uwaterloo.ca
http://cs.uwaterloo.ca/~y328yu/mycourses/794
http://piazza.com/uwaterloo.ca/fall2022/co673cs794
https://learn.uwaterloo.ca/d2l/home/825963

Course Information

e Instructor: Yao-Liang Yu ()

e Office hours: Friday 4-5pm (DC3617) or by email appointment

yaoliang.yu@uwaterloo.ca
zeou.hu@uwaterloo.ca
http://cs.uwaterloo.ca/~y328yu/mycourses/794
http://piazza.com/uwaterloo.ca/fall2022/co673cs794
https://learn.uwaterloo.ca/d2l/home/825963

Course Information

® |Instructor: Yao-Liang Yu ()
e Office hours: Friday 4-5pm (DC3617) or by email appointment

e TA: Zeou Hu ()

yaoliang.yu@uwaterloo.ca
zeou.hu@uwaterloo.ca
http://cs.uwaterloo.ca/~y328yu/mycourses/794
http://piazza.com/uwaterloo.ca/fall2022/co673cs794
https://learn.uwaterloo.ca/d2l/home/825963

Course Information

® |Instructor: Yao-Liang Yu ()
e Office hours: Friday 4-5pm (DC3617) or by email appointment
e TA: Zeou Hu ()

e Website:
slides, notes, videos, assignments, policy, etc.

1/41

yaoliang.yu@uwaterloo.ca
zeou.hu@uwaterloo.ca
http://cs.uwaterloo.ca/~y328yu/mycourses/794
http://piazza.com/uwaterloo.ca/fall2022/co673cs794
https://learn.uwaterloo.ca/d2l/home/825963

Course Information

® Instructor: Yao-Liang Yu (yaoliang.yu@uwaterloo.ca)

Office hours: Friday 4-5pm (DC3617) or by email appointment

TA: Zeou Hu (zeou.huGuwaterloo.ca)

Website: cs.uwaterloo.ca/~y328yu/mycourses/794
slides, notes, videos, assignments, policy, etc.

Piazza: piazza.com/uwaterloo.ca/fall2022/co673cs794
announcements, questions, discussions, etc.

1/41

yaoliang.yu@uwaterloo.ca
zeou.hu@uwaterloo.ca
http://cs.uwaterloo.ca/~y328yu/mycourses/794
http://piazza.com/uwaterloo.ca/fall2022/co673cs794
https://learn.uwaterloo.ca/d2l/home/825963

Course Information

Instructor: Yao-Liang Yu (yaoliang.yu@uwaterloo.ca)
Office hours: Friday 4-5pm (DC3617) or by email appointment
TA: Zeou Hu (zeou.huGuwaterloo.ca)

Website: cs.uwaterloo.ca/~y328yu/mycourses/794
slides, notes, videos, assignments, policy, etc.

Piazza: piazza.com/uwaterloo.ca/fall2022/co673cs794
announcements, questions, discussions, etc.

Learn: learn.uwaterloo.ca/d21/home/825963
assignments, solutions, grades, etc.

1/41

yaoliang.yu@uwaterloo.ca
zeou.hu@uwaterloo.ca
http://cs.uwaterloo.ca/~y328yu/mycourses/794
http://piazza.com/uwaterloo.ca/fall2022/co673cs794
https://learn.uwaterloo.ca/d2l/home/825963

Prerequisites

® Basic linear algebra, calculus, probability, algorithm

http://cs.uwaterloo.ca/~y328yu/mycourses/794/book.html
https://www.python.org/
https://julialang.org/
https://youtu.be/rkZzg7Vowao
https://en.wikipedia.org/wiki/Leslie_Lamport

Prerequisites

® Basic linear algebra, calculus, probability, algorithm

® Some relevant books on

http://cs.uwaterloo.ca/~y328yu/mycourses/794/book.html
https://www.python.org/
https://julialang.org/
https://youtu.be/rkZzg7Vowao
https://en.wikipedia.org/wiki/Leslie_Lamport

Prerequisites

® Basic linear algebra, calculus, probability, algorithm
® Some relevant books on

¢ Coding

@ julia

http://cs.uwaterloo.ca/~y328yu/mycourses/794/book.html
https://www.python.org/
https://julialang.org/
https://youtu.be/rkZzg7Vowao
https://en.wikipedia.org/wiki/Leslie_Lamport

Prerequisites

® Basic linear algebra, calculus, probability, algorithm
® Some relevant books on

¢ Coding

@ julia

http://cs.uwaterloo.ca/~y328yu/mycourses/794/book.html
https://www.python.org/
https://julialang.org/
https://youtu.be/rkZzg7Vowao
https://en.wikipedia.org/wiki/Leslie_Lamport

Prerequisites

® Basic linear algebra, calculus, probability, algorithm
® Some relevant books on

¢ Coding

@ julia

http://cs.uwaterloo.ca/~y328yu/mycourses/794/book.html
https://www.python.org/
https://julialang.org/
https://youtu.be/rkZzg7Vowao
https://en.wikipedia.org/wiki/Leslie_Lamport

Textbooks

. required textbook

links available on the

3/41

http://cs.uwaterloo.ca/~y328yu/mycourses/794
http://cs.uwaterloo.ca/~y328yu/mycourses/794/book.html

Textbooks

. required textbook

® Notes, slides, and code will be posted on the

links available on the

3/41

http://cs.uwaterloo.ca/~y328yu/mycourses/794
http://cs.uwaterloo.ca/~y328yu/mycourses/794/book.html

Textbooks

. required textbook
® Notes, slides, and code will be posted on the

® Some fine textbooks for the ambitious ones:

FIRST-ORDER IMIETHODS pous T ol
IN OPTIMIZATION
INTRODUCTION
TO
OPTIMIZATION Lectures
on Convex
Optimization
) Amir Beck
Stephen J. Wright
Benjamin Recht
EvyY [F (]

links available on the

3/41

http://cs.uwaterloo.ca/~y328yu/mycourses/794
http://cs.uwaterloo.ca/~y328yu/mycourses/794/book.html

Workload

® Roughly 24 lectures, each lasting 80 mins (I hope)

https://learn.uwaterloo.ca/d2l/home/825963
https://www.latex-project.org/

Workload

® Roughly 24 lectures, each lasting 80 mins (I hope)

® Expect 5 assignments, approx. 1 bi-weekly

https://learn.uwaterloo.ca/d2l/home/825963
https://www.latex-project.org/

Workload

® Roughly 24 lectures, each lasting 80 mins (I hope)

® Expect 5 assignments, approx. 1 bi-weekly

— 20 points each; total: 100

https://learn.uwaterloo.ca/d2l/home/825963
https://www.latex-project.org/

Workload

® Roughly 24 lectures, each lasting 80 mins (I hope)

® Expect 5 assignments, approx. 1 bi-weekly

— 20 points each; total: 100

- , may substitute 1 assignment with a course project

4/41

https://learn.uwaterloo.ca/d2l/home/825963
https://www.latex-project.org/

Workload

® Roughly 24 lectures, each lasting 80 mins (I hope)

® Expect 5 assignments, approx. 1 bi-weekly

— 20 points each; total: 100

- , may substitute 1 assignment with a course project

® Small, constant progress every week

4/41

https://learn.uwaterloo.ca/d2l/home/825963
https://www.latex-project.org/

Workload

Roughly 24 lectures, each lasting 80 mins (I hope)

Expect 5 assignments, approx. 1 bi-weekly

— 20 points each; total: 100

- , may substitute 1 assignment with a course project

Small, constant progress every week

Submit on

4/41

https://learn.uwaterloo.ca/d2l/home/825963
https://www.latex-project.org/

Workload

® Roughly 24 lectures, each lasting 80 mins (I hope)

® Expect 5 assignments, approx. 1 bi-weekly

— 20 points each; total: 100

- , may substitute 1 assignment with a course project
® Small, constant progress every week
® Submit on

— typeset using is recommended

4/41

https://learn.uwaterloo.ca/d2l/home/825963
https://www.latex-project.org/

Policy

® Do your work

5/41

https://uwaterloo.ca/math/academic-matters/academic-integrity
https://cs.uwaterloo.ca/~y328yu/mycourses/794/policy.html

Policy

e Do your work

— discussion is fine, but no sharing of text or code

5/41

https://uwaterloo.ca/math/academic-matters/academic-integrity
https://cs.uwaterloo.ca/~y328yu/mycourses/794/policy.html

Policy

e Do your work

— discussion is fine, but no sharing of text or code

- any source that helped you

5/41

https://uwaterloo.ca/math/academic-matters/academic-integrity
https://cs.uwaterloo.ca/~y328yu/mycourses/794/policy.html

Policy

e Do your work

— discussion is fine, but no sharing of text or code

- any source that helped you

® |gnorance is no excuse

5/41

https://uwaterloo.ca/math/academic-matters/academic-integrity
https://cs.uwaterloo.ca/~y328yu/mycourses/794/policy.html

Policy

e Do your work

— discussion is fine, but no sharing of text or code

- any source that helped you
® |gnorance is no excuse

— good online discussion, more on course website

5/41

https://uwaterloo.ca/math/academic-matters/academic-integrity
https://cs.uwaterloo.ca/~y328yu/mycourses/794/policy.html

Policy

e Do your work

— discussion is fine, but no sharing of text or code

- any source that helped you
® |gnorance is no excuse

— good online discussion, more on course website

® Serious offense will result in expulsion. . .

5/41

https://uwaterloo.ca/math/academic-matters/academic-integrity
https://cs.uwaterloo.ca/~y328yu/mycourses/794/policy.html

Policy

e Do your work

— discussion is fine, but no sharing of text or code

- any source that helped you
® |gnorance is no excuse

— good online discussion, more on course website

® Serious offense will result in expulsion. . .

5/41

https://uwaterloo.ca/math/academic-matters/academic-integrity
https://cs.uwaterloo.ca/~y328yu/mycourses/794/policy.html

Policy

e Do your work

— discussion is fine, but no sharing of text or code

- any source that helped you

® |gnorance is no excuse

— good online discussion, more on course website

® Serious offense will result in expulsion. . .

— except hospitalization, family urgency, . ..

notify beforehand

5/41

https://uwaterloo.ca/math/academic-matters/academic-integrity
https://cs.uwaterloo.ca/~y328yu/mycourses/794/policy.html

Policy

e Do your work

— discussion is fine, but no sharing of text or code

- any source that helped you

Ignorance is no excuse

— good online discussion, more on course website

Serious offense will result in expulsion. . .

— except hospitalization, family urgency, . ..

notify beforehand

5/41

https://uwaterloo.ca/math/academic-matters/academic-integrity
https://cs.uwaterloo.ca/~y328yu/mycourses/794/policy.html

Machine Learning is Everywhere

® Everyone uses ML everyday

B NETELYN R

Machine Learning is Everywhere

® Everyone uses ML everyday

B NETELIY BEREEY . |

® |ots of cool applications

Machine Learning is Everywhere

® Everyone uses ML everyday

B NETELIY BEREEY . |

® |ots of cool applications

® Excellent for job-hunting

At the Core is Optimization

LoO

Optimization

7/41

What You Will Learn

® [earn the basic theory and algorithms

Set the

tage Ry

8/41

What You Will Learn

® Learn the basic theory and algorithms

® Gain some implementation experience

IT WORK....... WHYZ

8/41

What You Will Learn

® Learn the basic theory and algorithms
® Gain some implementation experience

® Know when to use which algorithm with what guarantees

Set the

Stage

IT WORK....... WHYZ

* CERTIFIED *

—

8/41

What You Will Learn

® [earn the basic theory and algorithms
® Gain some implementation experience
® Know when to use which algorithm with what guarantees

® Start to formulate problems with algorithms in mind

Set the

tage

8/41

Date

Topic

Slides

Comments

Applications

Sep 09, 2022

Introduction

pdf

pdf

perceptron

Sep 09, 2022

Linear System

pdf

linear regression

Sep 16, 2022

Gradient Descent

logistic regression

Sep 16, 2022

Projection

white-box attack

Sep 23, 2022

Sep 23, 2022 |

Sep 30, 2022
Sep 30, 2022
Oct 07, 2022
Oct 07, 2022

Proximal Gradient
Subgradient
Conditional Gradient
Fictitious Play
Mirror Descent
Metric Gradient

Oct 14, 2022 |

Oct 14, 2022

lasso
svm
recommendation
poker
sparsity

compression
reading week
reading week

Oct 21, 2022

Acceleration

total variation

Oct 21, 2022

Smoothing

robustness

Oct 28, 2022

Alternating

expectation-maximization

Oct 28, 2022
Nov 04, 2022
Nov 04, 2022
Nov 11, 2022
Nov 11, 2022
Nov 18, 2022
Nov 18, 2022
| Nov 25, 2022
Nov 25, 2022

Coordinate Gradient
Minimax
Averaging
Extragradient
Splitting
Stochastic Gradient
Variance Reduction

| Randomized Smoothing

Search

covariance estimation
adversarial training
GAN
max entropy
federated learning
neural nets
boosting
certification
black-box attack

Dec 02, 2022

Newton

data poisoning

Dec 02, 2022

Quasi-Newton

page rank

Let the Journey Begin

What a Dataset Looks Like

0 1 0 1 1|1
0 0 1 1 0|1
1 0 1 0 11
+ + -+ -

10/41

What a Dataset Looks Like

0o 1 0 1 --- 1]1
o 0 1 1 --- 0]1
1 0 1 0 - 1]1

® cach column is a data point: 7 in total; each has « features

What a Dataset Looks Like

0 1 1 1 (1
0 0 1 0|1
1 0 O A |

® cach column is a data point:

® bottom

in total; each has

is the label vector; binary in this case

features

What a Dataset Looks Like

0 1 1 1 (1
0 0 1 0|1
1 0 O A |

® cach column is a data point:

in total; each has « features

® bottom vy is the label vector; binary in this case

® 2 and % are test samples whose labels need to be predicted

OR Dataset

+ + +

OR Dataset

®

11/41

OR Dataset

11/41

OR Dataset

11/41

OR Dataset

11/41

The Early Hype in Al...

NEW NAVY DEVIGE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

‘WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be .con-
scious of its existence,

The embryo _the
Bureau's $2,000,000 704"
puter—learned to differentiate
between right and left after
fifty attempts in the Navy's
demonstration for newsmen.,

The service said it would use
this principle to build the first

of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be

finished in about a year at &
cost of $100,000.

Frank Rosenblatt, de-
signer of the Perceptron, con-
|ducted the demonstration, He
said the machine would be the
first device to think as the hu-

rain. As do human be-

weanm

wiser as it gains experience, he
said,
Dr. Rosenblatt, a research

falo, saiq Perceptrons might be
fired to the planets as mechani-
cal space explorers,

‘Without Human Controls

The Navy said the perceptron
would be the. first non-living
mechanism “capable of receiv-
ing, recognizing and identifying
its surroundingg without -any
human training or control.”

The “brain” is designed to

remember images and informa-

tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape.

Later Perceptrons will be able
to recognize people and call out
‘their names and instantly trans-
late speech in one language to
speech or writing in another
language, it was predicted.

Mr. Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly
line and which would be con-
scious of their existence,

In todays demonstration, the
“704" was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learns by Doing
In the first fifty trials, the
machine made no dlstmctlon be-:
tween them. It then started
registering a “Q” for the left
squares and “O” for the right

squares.
Dr. Rosenblatt said he could
explain why the machine'

learned only in highly téchnical
terms. But he said the computer
had undergone a '‘self-induced
change in the wiring diagram.” i
The first Perceptron will
have about 1,000 electronic
“association cells” recelving
electrical impulses from an eye-

'like scanning device with 400

photo-cells, The human brain
has 10,000,000,000 responsive
cells, mcludmg 100 000,000 con-
nections with the eyes.

http://search.proquest.com.proxy.lib.uwaterloo.ca/historical-newspapers/new-navy-device-learns-doing/docview/114558973/se-2?accountid=14906

...due to Perceptron

FIG. 1 — Organization of a biological brain. (Red areas indicate
active cells, responding to the letter X.)

Association
System Response
(A-units) i

Topographic
Connections

—

Frank Rosenblatt
FIG. 2 — Organization of a perceptron. (1928 _ 1971)

—_—
e

13/41

Perceptron as an Optimization Problem

o Affine function: , where

14/41

Perceptron as an Optimization Problem

o Affine function: , where

® Perceptron solves the above problem!

14/41

Perceptron as an Optimization Problem

o Affine function: , where

® Perceptron solves the above problem!

— it is iterative: going through the data one by one

14/41

Perceptron as an Optimization Problem

o Affine function: , where

® Perceptron solves the above problem!

— it is iterative: going through the data one by one

— it converges faster if the problem is easier

14/41

Perceptron as an Optimization Problem

o Affine function: , where

® Perceptron solves the above problem!

— it is iterative: going through the data one by one
— it converges faster if the problem is easier

— it

14/41

Perceptron as an Optimization Problem

o Affine function: , where

® Perceptron solves the above problem!

— it is iterative: going through the data one by one
— it converges faster if the problem is easier

— it

® Abstract a bit more:

14/41

Perceptron as an Optimization Problem

o Affine function: , where

® Perceptron solves the above problem!

— it is iterative: going through the data one by one
— it converges faster if the problem is easier

— it

® Abstract a bit more:

— we often can only describe

14/41

Geometrically

15/41

Geometrically

15/41

Algorithm 1: Perceptron

Input: Dataset

initialization and , threshold
Output: approximate solution w and

1 for do
p) receive index // can be random
k] if < then
4 // update after a ‘mistake”
L

e Typically and ,

F. Rosenblatt (1958).
. Psychological Review, vol. 65, no. 6, pp. 386—408.

http://psycnet.apa.org/record/1959-09865-001
http://psycnet.apa.org/record/1959-09865-001

Algorithm 2: Perceptron

Input: Dataset
initialization and
Output: approximate solution

1 for do

2
K}
4
L}

receive index
if < 0 then

. threshold

and

//

can be random

L // update after a ‘mistake”

e Typically and

F. Rosenblatt (1958).
. Psychological Review, vol. 65, no. 6, pp. 386—408.

, where

http://psycnet.apa.org/record/1959-09865-001
http://psycnet.apa.org/record/1959-09865-001

Algorithm 3: Perceptron

Input: Dataset

initialization and , threshold
Output: approximate solution w and

1 for do
) receive index // can be random
3 if < 0 then
4 // update after a ‘mistake”
5

e Typically and :

- VS. VS. , where
° update: “if it ain't broke, don't fix it"

F. Rosenblatt (1958).
. Psychological Review, vol. 65, no. 6, pp. 386—408.

http://psycnet.apa.org/record/1959-09865-001
http://psycnet.apa.org/record/1959-09865-001

Does it work? =

([]

where is undefined (i.e., always counted as a mistake).

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

w = [0,0], b=0, y=sign((x,w)+b),

where sign(0) is undefined (i.e., always counted as a mistake).

L0oO 17/41

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

w = [0,0], b=0, y=sign((x,w)+b),

where sign(0) is undefined (i.e., always counted as a mistake).

Loo 17/41

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? =

([]

where is undefined (i.e., always counted as a mistake).

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? =

L
L/

where is undefined (i.e., always counted as a mistake).

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

w=[1,0], b=0, y=sign({x,w)+b),

where sign(0) is undefined (i.e., always counted as a mistake).

Loo 17/41

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

w=[1,0], b=0, y=sign({x,w)+b),

where sign(0) is undefined (i.e., always counted as a mistake).

Loo 17/41

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? =

where is undefined (i.e., always counted as a mistake).

17/41

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? =

where is undefined (i.e., always counted as a mistake).

17/41

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

w=[1,1], b=0, y=sign({x,w)+b),

where sign(0) is undefined (i.e., always counted as a mistake).

Loo 17/41

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

w=[1,1], b=0, y=sign({x,w)+b),

where sign(0) is undefined (i.e., always counted as a mistake).

Loo 17/41

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

w=[1,1], b= -1, y=sign((x,w) +b),

where sig11(0)) is undefined (i.e., always counted as a mistake).

Loo 17/41

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

w=[1,1], b= -1, y=sign((x,w) +b),

where sig11(0)) is undefined (i.e., always counted as a mistake).

Loo 17/41

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

w=[21], b=0, y=sign({x,w)+b),

where sign(0) is undefined (i.e., always counted as a mistake).

Loo 17/41

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

w=[21], b=0, y=sign({x,w)+b),

where sign(0) is undefined (i.e., always counted as a mistake).

Loo 17/41

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

w=1[2,1], b=—1, y=sign((x,w) +b),

where sig11(0)) is undefined (i.e., always counted as a mistake).

Loo 17/41

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

w=1[2,1], b=—1, y=sign((x,w) +b),

where sign(0) is undefined (i.e., always counted as a mistake).

Loo 17/41

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

w=1[22], b=0, y=sign({x,w)+b),

where sign(0) is undefined (i.e., always counted as a mistake).

Loo 17/41

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

w=1[22], b=0, y=sign({x,w)+b),

where sign(0) is undefined (i.e., always counted as a mistake).

Loo 17/41

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

w=1[2,2], b=—1, y=sign((x,w)+b),

where sign(0) is undefined (i.e., always counted as a mistake).

Loo 17/41

https://github.com/watml/CS794/tree/master/lec-perceptron

OR Dataset

18/41

OR Dataset

® Prove that no line can separate + from —

OR Dataset

® Prove that no line can separate + from —

e \What happens if we run Perceptron regardless?

Perceptron and the 15t Al Winter

;‘, :
Marvin Minsky Seymour Papert
(1927 - 2016) (1928 — 2016)

M. L. Minsky and S. A. Papert (1969). “Perceptron”. MIT press.

19/41

https://mitpress.mit.edu/books/perceptrons-reissue-1988-expanded-edition-new-foreword-leon-bottou

Projection Algorithms

20/41

https://cms.math.ca/10.4153/CJM-1954-038-x
https://cms.math.ca/10.4153/CJM-1954-037-2

Projection Algorithms

find w € R b € R such that Vi, y;((x;, w) + b)
find w = [w;b] € R*™™! such that Vi, (a;,w) < ¢;, a; = —y;[x;; 1]

20/41

https://cms.math.ca/10.4153/CJM-1954-038-x
https://cms.math.ca/10.4153/CJM-1954-037-2

Projection Algorithms

find w € R b € R such that Vi, y;((x;,w) +b) >0
find w = [w;b] € R*™ such that Vi, (a;,w) <¢;, a; =
find w € R? such that A'w <c¢

—Yi [Xz'; 1]

20/41

https://cms.math.ca/10.4153/CJM-1954-038-x
https://cms.math.ca/10.4153/CJM-1954-037-2

Projection Algorithms

Algorithm 7: Projection Algorithm for Linear Inequalities

Input: , initialization , relaxation parameter
1 for do
y) select index // index can be random
3
T. S. Motzkin and I. J. Schoenberg (1954). . Canadian

Journal of Mathematics, vol. 6, pp. 393—404; S. Agmon (1954).
Canadian Journal of Mathematics, vol. 6, pp. 382—392.

https://cms.math.ca/10.4153/CJM-1954-038-x
https://cms.math.ca/10.4153/CJM-1954-037-2

Interpreting Perceptron

Theorem:
int cone* A # () <= int cone* A N cone A # ().

Interpreting Perceptron

Theorem:
int cone* A # () <= int cone* A N cone A # ().

f:.cone A

Interpreting Perceptron

Theorem:
int cone* A # () <= int cone* A N cone A # ().

a9

int cone*A

Interpreting Perceptron

Theorem:
int cone* A # () <= int cone* A N cone A # ().

aq

Interpreting Perceptron

Theorem:
int cone* A # () <= int cone* A N cone A # ().

f:.cone A

..int cone*A

Interpreting Perceptron

Theorem:
int cone* A # () <= int cone* A N cone A # ().

f:cone A

..int cone*A

|s Perceptron Unique?

22/41

|s Perceptron Unique?

22/41

Support Vector Machines: Primal

23/41

Support Vector Machines: Primal

®

23/41

Support Vector Machines: Primal

23/41

Support Vector Machines: Primal

23/41

Support Vector Machines: Primal

s

23/41

Support Vector Machines: Primal

23/41

Support Vector Machines: Primal

23/41

Support Vector Machines: Primal

23/41

Support Vector Machines: Primal

Vi,7;y: >0

23/41

Support Vector Machines: Dual

[]
L

24/41

Support Vector Machines: Dual

Loo 24/41

Support Vector Machines: Dual

(@)

24/41

Support Vector Machines: Dual

0.5 " ()\I 1.
—0.51

24/41

Support Vector Machines: Dual

E i X5 — E ViX;

1y, =+ ==

min min
HEAL veEA_

24/41

Beyond Separability

25/41

Beyond Separability

(@

(@)

25/41

Beyond Separability

25/41

Beyond Separability

25/41

Empirical Risk Minimization

zero-one
hinge
—— square hinge
— logistic,
—— exponential
—— Perceptron

26/41

Regularization

Regression

square
-insensitive
absolute
Huber

28/41

Plan |: Basic

® | ec04: Proximal Gradient: smooth / + nonsmooth

Plan |: Basic

® | ec04: Proximal Gradient: smooth / + nonsmooth

® Lec05: Subgradient: nonsmooth / 4+ nonsmooth

Plan |: Basic

® [ec04: Proximal Gradient: smooth / 4+ nonsmooth
® Lec05: Subgradient: nonsmooth / 4+ nonsmooth

® [ecl0: Acceleration: optimal algorithm under smoothness

Plan |: Basic

Lec04: Proximal Gradient: smooth / + nonsmooth

Lec05: Subgradient: nonsmooth / 4+ nonsmooth

Lec10: Acceleration: optimal algorithm under smoothness

Lecll: Smoothing: nonsmooth —> smooth

Plan |: Basic

Lec04:
Lec05:
Lecl0:
Lecll:

Lecl2:

Proximal Gradient: smooth / + nonsmooth
Subgradient: nonsmooth / 4+ nonsmooth
Acceleration: optimal algorithm under smoothness
Smoothing: nonsmooth —> smooth

Alternating: divide and conquer

Plan |: Basic

® | ec04:

Lec05:
Lecl0:
Lecll:
Lecl2:
Lecl3:

Proximal Gradient: smooth / + nonsmooth
Subgradient: nonsmooth / 4+ nonsmooth
Acceleration: optimal algorithm under smoothness
Smoothing: nonsmooth —> smooth

Alternating: divide and conquer

Coordinate Gradient: large model

Plan |: Basic

® | ec04:
® | ec05:
® |eclO:
® |ecll:
® |ecl2:
® |ecl3:
® |ecl8:

Proximal Gradient: smooth / 4+ nonsmooth
Subgradient: nonsmooth / 4+ nonsmooth
Acceleration: optimal algorithm under smoothness
Smoothing: nonsmooth —> smooth

Alternating: divide and conquer

Coordinate Gradient: large model

Stochastic Gradient: large dataset

Plan |: Basic

® Lec04: Proximal Gradient: smooth / + nonsmooth

® [ec05: Subgradient: nonsmooth /' 4+ nonsmooth

® [ecl0: Acceleration: optimal algorithm under smoothness
® Lecll: Smoothing: nonsmooth —> smooth

® [ecl2: Alternating: divide and conquer

® Lecl3: Coordinate Gradient: large model

® | ecl8: Stochastic Gradient: large dataset

® | ec22: Newton: even faster under smoothness

Plan |: Basic

® | ec04:
® | ec05:
® |eclO:
® |ecll:
® |ecl2:
® |ecl3:
® |ecl8:
® | ec22:
® |ec23:

Proximal Gradient: smooth / + nonsmooth
Subgradient: nonsmooth / 4+ nonsmooth
Acceleration: optimal algorithm under smoothness
Smoothing: nonsmooth —> smooth

Alternating: divide and conquer

Coordinate Gradient: large model

Stochastic Gradient: large dataset

Newton: even faster under smoothness

Quasi-Newton: Newton made economical

Denoising

min %HX—Z‘B + A |zfly
z S——

fidelity regularization

30/41

Denoising

min éHX—ZHﬁ + A |zfly
z S——

fidelity regularization

®)\ controls the trade-off

30/41

Denoising

min éHX—ZHﬁ + A |zfly
z S——

fidelity regularization

® .\ controls the trade-off
® regularization encodes prior knowledge

Loo 30/41

Denoising

min éHX—ZHﬁ + A |zfly
z S——

fidelity regularization

®)\ controls the trade-off
® regularization encodes prior knowledge
® crucial to not over-smooth

30/41

Adversarial Examples

Hidden
layer 1

Hidden
layer 2

31/41

Adversarial Examples

Hidden
layer 1

Input

Hidden
layer 2

® PUepsysS

31/41

Adversarial Examples

Hidden
layer 1

Input

Hidden
layer 2

@ °![|°D

31/41

32/41

Adversarial Attacks

©
c
)
s}
(]
=
0p)]

Adversarial Attacks

©
c
)
s}
(]
=
0p)]

e Mathematically, a neural network is a function

Adversarial Attacks

©
c
)
s}
(]
=
0p)]

e Mathematically, a neural network is a function

e Typically, input x is given and network weights w optimized

Adversarial Attacks

©
c
)
s}
(]
=
0p)]

e Mathematically, a neural network is a function

e Typically, input x is given and network weights

optimized
e Could also freeze weights

and optimize x, !

Adversarial Attacks

©
c
)
s}
(]
=
0p)]

Mathematically, a neural network is a function

Typically, input = is given and network weights
Could also freeze weights w and optimize

optimized
!

® More generally:

dual projection

e =0.005,y =102

X

dual LMO
€ =0.01,7 =10

©
c
8
)
(O]
-
(Vp]

Shetland

projected Sinkhorn

Shetland

e=0.01,y=10"*

Robustness as Optimization

® Empirical risk minimization recalled:

35/41

Robustness as Optimization

® Empirical risk minimization recalled:

e Adversarial attack perturbs while fixing

Robustness as Optimization

® Empirical risk minimization recalled:

e Adversarial attack perturbs while fixing

® Robustness by anticipating the worst-case:

Robustness as Optimization

® Empirical risk minimization recalled:

e Adversarial attack perturbs while fixing

® Robustness by anticipating the worst-case:

® The game continues by anticipating the anticipation:

Plan |l: Game-theoretic

® Lec07: Fictitious Play: playing against oneself

Plan |l: Game-theoretic

® Lec07: Fictitious Play: playing against oneself

® Lecl4: Minimax: understanding duality

Plan |l: Game-theoretic

® [ecO7: Fictitious Play: playing against oneself

® Lecl4: Minimax: understanding duality

® Leclb: Averaging: projected gradient descent ascent

Plan |l: Game-theoretic

® [ecO7: Fictitious Play: playing against oneself

® Lecl4: Minimax: understanding duality

® Leclb: Averaging: projected gradient descent ascent

® |Lecl6: Extragradient: faster under smoothness

Plan |l: Game-theoretic

LecO7:

Lecl4:

Leclb:

Lecl6:

Lecl7:

Fictitious Play: playing against oneself

Minimax: understanding duality

Averaging: projected gradient descent ascent

Extragradient: faster under smoothness

Splitting: exploiting structure

Plan |l: Game-theoretic

® | ecO7:

Lecl4:

Leclb:

Lecl6:

Lecl7:

Lec20:

Fictitious Play: playing against oneself

Minimax: understanding duality

Averaging: projected gradient descent ascent

Extragradient: faster under smoothness

Splitting: exploiting structure

Randomized Smoothing: simulating gradient

Generative Adversarial Networks

I. Goodfellow et al. (2014). . In: NIPS.

https://papers.nips.cc/paper/5423-generative-adversarial-nets

Generative Adversarial Networks

I. Goodfellow et al. (2014). . In: NIPS.

https://papers.nips.cc/paper/5423-generative-adversarial-nets

38/41

LoO

Plan I1l: Exotic

A

® Lec06: Conditional Gradient: model weights quantization

39/41

Plan I1l: Exotic

v

® Lec06: Conditional Gradient: model weights quantization
® [ec09: Metric Gradient: model gradient quantization

Plan I1l: Exotic

v

® Lec06: Conditional Gradient: model weights quantization
® [ec09: Metric Gradient: model gradient quantization

® Lec08: Mirror Descent: gradient under non-Euclidean geometry

History Goes A Long Way Back

“Nothing in the world takes place without optimization,
and there is no doubt that all aspects of the world that have
a rational basis can be explained by optimization methods.”

— , 1744

https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Yurii_Nesterov

History Goes A Long Way Back

“Nothing in the world takes place without optimization,
and there is no doubt that all aspects of the world that have
a rational basis can be explained by optimization methods.”

— , 1744

“Every year | meet Ph.D. students of different special-
izations who ask me for advice on reasonable numerical
schemes for their optimization models. And very often they
seem to have come too late. In my experience, if an opti-
mization model is created without taking into account the
abilities of numerical schemes, the chances that it will be
possible to find an acceptable numerical solution are close
to zero. In any field of human activity, if we create some-
thing, we know in advance why we are doing so and what
we are going to do with the result.” —

https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Yurii_Nesterov

No Free Lunch

. , no algorithm is better than any other

D. H. Wolpert and W. G. Macready (1997). . IEEE Transactions
on Evolutionary Computation, vol. 1, no. 1, pp. 67—82.

41/41

https://ieeexplore.ieee.org/document/585893
https://doi.org/10.1007/BF02592948
https://doi.org/10.1007/BF02592948

No Free Lunch

J , no algorithm is better than any other’

° , optimization problems are unsolvable”

1D. H. Wolpert and W. G. Macready (1997). “No free lunch theorems for optimization”. IEEE Transactions
on Evolutionary Computation, vol. 1, no. 1, pp. 67—82.

2K. G. Murty and S. N. Kabadi (1987). “Some NP-complete problems in quadratic and nonlinear
programming’’. Mathematical Programming, vol. 39, no. 2, pp. 117-129.

L0oO 41/41

https://ieeexplore.ieee.org/document/585893
https://doi.org/10.1007/BF02592948
https://doi.org/10.1007/BF02592948

No Free Lunch

. , no algorithm is better than any other

° , optimization problems are unsolvable

® |mplications:

D. H. Wolpert and W. G. Macready (1997). . IEEE Transactions
on Evolutionary Computation, vol. 1, no. 1, pp. 67—82.

K. G. Murty and S. N. Kabadi (1987).
. Mathematical Programming, vol. 39, no. 2, pp. 117-129.

41/41

https://ieeexplore.ieee.org/document/585893
https://doi.org/10.1007/BF02592948
https://doi.org/10.1007/BF02592948

No Free Lunch

J , no algorithm is better than any other’

° , optimization problems are unsolvable”
® |mplications:

— don't try to solve all problems; one (class) at a time!

1D. H. Wolpert and W. G. Macready (1997). “No free lunch theorems for optimization”. IEEE Transactions
on Evolutionary Computation, vol. 1, no. 1, pp. 67—82.

2K. G. Murty and S. N. Kabadi (1987). “Some NP-complete problems in quadratic and nonlinear
programming’’. Mathematical Programming, vol. 39, no. 2, pp. 117-129.

L0oO 41/41

https://ieeexplore.ieee.org/document/585893
https://doi.org/10.1007/BF02592948
https://doi.org/10.1007/BF02592948

No Free Lunch

J , no algorithm is better than any other’
. timizati bl Ivable”
, optimization problems are unsolvable
® |mplications:
— don't try to solve all problems; one (class) at a time!

— “efficient optimization methods can be developed only by intelligently
employing the structure of particular instances of problems”

1D. H. Wolpert and W. G. Macready (1997). “No free lunch theorems for optimization”. IEEE Transactions
on Evolutionary Computation, vol. 1, no. 1, pp. 67—82.

2K. G. Murty and S. N. Kabadi (1987). “Some NP-complete problems in quadratic and nonlinear
programming’’. Mathematical Programming, vol. 39, no. 2, pp. 117-129.

Loo 41/41

https://ieeexplore.ieee.org/document/585893
https://doi.org/10.1007/BF02592948
https://doi.org/10.1007/BF02592948

No Free Lunch

J , no algorithm is better than any other’
. timizati bl Ivable”
, optimization problems are unsolvable
® |mplications:
— don't try to solve all problems; one (class) at a time!

— “efficient optimization methods can be developed only by intelligently
employing the structure of particular instances of problems”

— know your algorithms and their limits

iD. H. Wolpert and W. G. Macready (1997). “No free lunch theorems for optimization”. IEEE Transactions
on Evolutionary Computation, vol. 1, no. 1, pp. 67—82.

2K. G. Murty and S. N. Kabadi (1987). “Some NP-complete problems in quadratic and nonlinear
programming’’. Mathematical Programming, vol. 39, no. 2, pp. 117-129.

Loo 41/41

https://ieeexplore.ieee.org/document/585893
https://doi.org/10.1007/BF02592948
https://doi.org/10.1007/BF02592948

No Free Lunch

J , no algorithm is better than any other’

° , optimization problems are unsolvable”

® |mplications:

don't try to solve all problems; one (class) at a time!

“efficient optimization methods can be developed only by intelligently
employing the structure of particular instances of problems”

— know your algorithms and their limits

— be

iD. H. Wolpert and W. G. Macready (1997). “No free lunch theorems for optimization”. IEEE Transactions
on Evolutionary Computation, vol. 1, no. 1, pp. 67—82.

2K. G. Murty and S. N. Kabadi (1987). “Some NP-complete problems in quadratic and nonlinear
programming’’. Mathematical Programming, vol. 39, no. 2, pp. 117-129.

Loo 41/41

https://ieeexplore.ieee.org/document/585893
https://doi.org/10.1007/BF02592948
https://doi.org/10.1007/BF02592948

No Free Lunch

J , no algorithm is better than any other’

° , optimization problems are unsolvable”

® |mplications:

don't try to solve all problems; one (class) at a time!

“efficient optimization methods can be developed only by intelligently
employing the structure of particular instances of problems”

— know your algorithms and their limits

— be

“There are no stupid questions, only stupid answers."”

1D. H. Wolpert and W. G. Macready (1997). “No free lunch theorems for optimization”. IEEE Transactions
on Evolutionary Computation, vol. 1, no. 1, pp. 67—82.

2K. G. Murty and S. N. Kabadi (1987). “Some NP-complete problems in quadratic and nonlinear
programming’’. Mathematical Programming, vol. 39, no. 2, pp. 117-129.

Loo 41/41

https://ieeexplore.ieee.org/document/585893
https://doi.org/10.1007/BF02592948
https://doi.org/10.1007/BF02592948

No Free Lunch

J , no algorithm is better than any other’

° , optimization problems are unsolvable”

® |mplications:

don't try to solve all problems; one (class) at a time!

“efficient optimization methods can be developed only by intelligently
employing the structure of particular instances of problems”

— know your algorithms and their limits

— be

“There are no stupid questions, only stupid students.”

1D. H. Wolpert and W. G. Macready (1997). “No free lunch theorems for optimization”. IEEE Transactions
on Evolutionary Computation, vol. 1, no. 1, pp. 67—82.

2K. G. Murty and S. N. Kabadi (1987). “Some NP-complete problems in quadratic and nonlinear
programming’’. Mathematical Programming, vol. 39, no. 2, pp. 117-129.

Loo 41/41

https://ieeexplore.ieee.org/document/585893
https://doi.org/10.1007/BF02592948
https://doi.org/10.1007/BF02592948

No Free Lunch

J , no algorithm is better than any other’

° , optimization problems are unsolvable”

® |mplications:

don't try to solve all problems; one (class) at a time!

“efficient optimization methods can be developed only by intelligently
employing the structure of particular instances of problems”

— know your algorithms and their limits

— be

“There are no inferior algorithms, only inferior engineers.”

1D. H. Wolpert and W. G. Macready (1997). “No free lunch theorems for optimization”. IEEE Transactions
on Evolutionary Computation, vol. 1, no. 1, pp. 67—82.

2K. G. Murty and S. N. Kabadi (1987). “Some NP-complete problems in quadratic and nonlinear
programming’’. Mathematical Programming, vol. 39, no. 2, pp. 117-129.

Loo 41/41

https://ieeexplore.ieee.org/document/585893
https://doi.org/10.1007/BF02592948
https://doi.org/10.1007/BF02592948

