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Course Information

• Instructor: Yao-Liang Yu (yaoliang.yu@uwaterloo.ca)

• Office hours: Friday 4-5pm (DC3617) or by email appointment

• TA: Zeou Hu (zeou.hu@uwaterloo.ca)

• Website: cs.uwaterloo.ca/~y328yu/mycourses/794
slides, notes, videos, assignments, policy, etc.

• Piazza: piazza.com/uwaterloo.ca/fall2022/co673cs794
announcements, questions, discussions, etc.

• Learn: learn.uwaterloo.ca/d2l/home/825963
assignments, solutions, grades, etc.
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Prerequisites

• Basic linear algebra, calculus, probability, algorithm

• Some relevant books on course website

• Coding

https://www.python.org/ https://julialang.org/

“Coding to programming is like typing to writing. ”
— Leslie Lamport
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Textbooks

• No required textbook
• Notes, slides, and code will be posted on the course website
• Some fine textbooks for the ambitious ones:

links available on the course website
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Workload

• Roughly 24 lectures, each lasting 80 mins (I hope)

• Expect 5 assignments, approx. 1 bi-weekly

– 20 points each; total: 100

– per approval, may substitute 1 assignment with a course project

• Small, constant progress every week

• Submit on LEARN. Submit early and often

– typeset using LATEX is recommended
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Policy

• Do your work independently and individually

– discussion is fine, but no sharing of text or code

– explicitly acknowledge any source that helped you

• Ignorance is no excuse

– good online discussion, more on course website

• Serious offense will result in expulsion. . .

• NO late submissions!

– except hospitalization, family urgency, . . . notify beforehand

• Appeal within two weeks
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https://uwaterloo.ca/math/academic-matters/academic-integrity
https://cs.uwaterloo.ca/~y328yu/mycourses/794/policy.html


Policy

• Do your work independently and individually

– discussion is fine, but no sharing of text or code

– explicitly acknowledge any source that helped you

• Ignorance is no excuse

– good online discussion, more on course website

• Serious offense will result in expulsion. . .

• NO late submissions!

– except hospitalization, family urgency, . . . notify beforehand

• Appeal within two weeks

L00 5/41

https://uwaterloo.ca/math/academic-matters/academic-integrity
https://cs.uwaterloo.ca/~y328yu/mycourses/794/policy.html


Policy

• Do your work independently and individually

– discussion is fine, but no sharing of text or code

– explicitly acknowledge any source that helped you

• Ignorance is no excuse

– good online discussion, more on course website

• Serious offense will result in expulsion. . .

• NO late submissions!

– except hospitalization, family urgency, . . . notify beforehand

• Appeal within two weeks

L00 5/41

https://uwaterloo.ca/math/academic-matters/academic-integrity
https://cs.uwaterloo.ca/~y328yu/mycourses/794/policy.html


Policy

• Do your work independently and individually

– discussion is fine, but no sharing of text or code

– explicitly acknowledge any source that helped you

• Ignorance is no excuse

– good online discussion, more on course website

• Serious offense will result in expulsion. . .

• NO late submissions!

– except hospitalization, family urgency, . . . notify beforehand

• Appeal within two weeks

L00 5/41

https://uwaterloo.ca/math/academic-matters/academic-integrity
https://cs.uwaterloo.ca/~y328yu/mycourses/794/policy.html


Policy

• Do your work independently and individually

– discussion is fine, but no sharing of text or code

– explicitly acknowledge any source that helped you

• Ignorance is no excuse

– good online discussion, more on course website

• Serious offense will result in expulsion. . .

• NO late submissions!

– except hospitalization, family urgency, . . . notify beforehand

• Appeal within two weeks

L00 5/41

https://uwaterloo.ca/math/academic-matters/academic-integrity
https://cs.uwaterloo.ca/~y328yu/mycourses/794/policy.html


Policy

• Do your work independently and individually

– discussion is fine, but no sharing of text or code

– explicitly acknowledge any source that helped you

• Ignorance is no excuse

– good online discussion, more on course website

• Serious offense will result in expulsion. . .

• NO late submissions!

– except hospitalization, family urgency, . . . notify beforehand

• Appeal within two weeks

L00 5/41

https://uwaterloo.ca/math/academic-matters/academic-integrity
https://cs.uwaterloo.ca/~y328yu/mycourses/794/policy.html


Policy

• Do your work independently and individually

– discussion is fine, but no sharing of text or code

– explicitly acknowledge any source that helped you

• Ignorance is no excuse

– good online discussion, more on course website

• Serious offense will result in expulsion. . .

• NO late submissions!

– except hospitalization, family urgency, . . . notify beforehand

• Appeal within two weeks

L00 5/41

https://uwaterloo.ca/math/academic-matters/academic-integrity
https://cs.uwaterloo.ca/~y328yu/mycourses/794/policy.html


Policy

• Do your work independently and individually

– discussion is fine, but no sharing of text or code

– explicitly acknowledge any source that helped you

• Ignorance is no excuse

– good online discussion, more on course website

• Serious offense will result in expulsion. . .

• NO late submissions!

– except hospitalization, family urgency, . . . notify beforehand

• Appeal within two weeks

L00 5/41

https://uwaterloo.ca/math/academic-matters/academic-integrity
https://cs.uwaterloo.ca/~y328yu/mycourses/794/policy.html


Policy

• Do your work independently and individually

– discussion is fine, but no sharing of text or code

– explicitly acknowledge any source that helped you

• Ignorance is no excuse

– good online discussion, more on course website

• Serious offense will result in expulsion. . .

• NO late submissions!

– except hospitalization, family urgency, . . . notify beforehand

• Appeal within two weeks

L00 5/41

https://uwaterloo.ca/math/academic-matters/academic-integrity
https://cs.uwaterloo.ca/~y328yu/mycourses/794/policy.html


Machine Learning is Everywhere

• Everyone uses ML everyday

• Lots of cool applications

• Excellent for job-hunting
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At the Core is Optimization

System

Optimization

Stats

Magic

Models
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What You Will Learn

• Learn the basic theory and algorithms

• Gain some implementation experience

• Know when to use which algorithm with what guarantees

• Start to formulate problems with algorithms in mind
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Let the Journey Begin



What a Dataset Looks Like

x1 x2 x3 x4 · · · xn x x′

Rd ∋


0 1 0 1 · · · 1 1 0.9
0 0 1 1 · · · 0 1 1.1
...

...
...

... . . . ...
...

...
1 0 1 0 · · · 1 1 −0.1

y + + – + · · · – ? ?!

• each column is a data point: n in total; each has d features

• bottom y is the label vector; binary in this case

• x and x′ are test samples whose labels need to be predicted
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OR Dataset

x1 x2 x3 x4

0 1 0 1
0 0 1 1

y – + + +

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–
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The Early Hype in AI...

Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

NEW NAVY DEVICE LEARNS BY DOING: Psychologist Shows Embryo of Computer Designed to Read and Grow ...
New York Times (1923-); Jul 8, 1958; ProQuest Historical Newspapers: The New York Times
pg. 25

Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

NEW NAVY DEVICE LEARNS BY DOING: Psychologist Shows Embryo of Computer Designed to Read and Grow ...
New York Times (1923-); Jul 8, 1958; ProQuest Historical Newspapers: The New York Times
pg. 25

Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

NEW NAVY DEVICE LEARNS BY DOING: Psychologist Shows Embryo of Computer Designed to Read and Grow ...
New York Times (1923-); Jul 8, 1958; ProQuest Historical Newspapers: The New York Times
pg. 25

New York Times, 1958
L00 12/41
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...due to Perceptron

Frank Rosenblatt
(1928 – 1971)
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Perceptron as an Optimization Problem

• Affine function: f(x) = ⟨x,w⟩+ b, where ⟨x,w⟩ :=
∑

j xjwj

find w ∈ Rd, b ∈ R such that ∀i, yi(⟨xi,w⟩+ b)> 0.

• Perceptron solves the above optimization problem!
– it is iterative: going through the data one by one

– it converges faster if the problem is easier

– it behaves benignly even if no solution exists

• Abstract a bit more:

find w ∈ S ⊆ Rd.

– we often can only describe S partially
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• Abstract a bit more:

find w ∈ S ⊆ Rd.

– we often can only describe S partially
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Geometrically
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Algorithm 1: Perceptron
Input: Dataset D = *(xi, yi) ∈ Rd × {±1} : i = 1, . . . , n+,

initialization w ∈ Rd and b ∈ R, threshold δ ≥ 0
Output: approximate solution w and b

1 for t = 1, 2, . . . do
2 receive index It ∈ {1, . . . , n} // It can be random
3 if yIt(⟨xIt ,w⟩+ b)≤ δ then
4 w← w + yItxIt // update after a “mistake”
5 b← b+ yIt

• Typically δ = 0 and w0 = 0, b = 0

– yŷ > 0 vs. yŷ < 0 vs. yŷ = 0, where ŷ = ⟨x,w⟩+ b

• Lazy update: “if it ain’t broke, don’t fix it”

F. Rosenblatt (1958). “The perceptron: A probabilistic model for information storage and organization in the
brain”. Psychological Review, vol. 65, no. 6, pp. 386–408.
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• Lazy update: “if it ain’t broke, don’t fix it”

F. Rosenblatt (1958). “The perceptron: A probabilistic model for information storage and organization in the
brain”. Psychological Review, vol. 65, no. 6, pp. 386–408.

L00 16/41

http://psycnet.apa.org/record/1959-09865-001
http://psycnet.apa.org/record/1959-09865-001


Algorithm 3: Perceptron
Input: Dataset D = *(xi, yi) ∈ Rd × {±1} : i = 1, . . . , n+,

initialization w ∈ Rd and b ∈ R, threshold δ ≥ 0
Output: approximate solution w and b

1 for t = 1, 2, . . . do
2 receive index It ∈ {1, . . . , n} // It can be random
3 if yIt(⟨xIt ,w⟩+ b)≤ δ then
4 w← w + yItxIt // update after a “mistake”
5 b← b+ yIt

• Typically δ = 0 and w0 = 0, b = 0

– yŷ > 0 vs. yŷ < 0 vs. yŷ = 0, where ŷ = ⟨x,w⟩+ b

• Lazy update: “if it ain’t broke, don’t fix it”
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brain”. Psychological Review, vol. 65, no. 6, pp. 386–408.
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Does it work? Z code
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–

ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (i.e., always counted as a mistake).
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w = [2, 1], b = 0, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (i.e., always counted as a mistake).
L00 17/41

https://github.com/watml/CS794/tree/master/lec-perceptron


Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [2, 1], b = −1, ŷ = sign(⟨x,w⟩+ b),
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where sign(0) is undefined (i.e., always counted as a mistake).
L00 17/41

https://github.com/watml/CS794/tree/master/lec-perceptron


XOR Dataset

x1 x2 x3 x4
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• Prove that no line can separate + from –

• What happens if we run Perceptron regardless?
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Perceptron and the 1st AI Winter

Seymour Papert
(1928 – 2016)

Marvin Minsky
(1927 – 2016)

Seymour Papert
(1928 – 2016)

M. L. Minsky and S. A. Papert (1969). “Perceptron”. MIT press.
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Projection Algorithms

find w ∈ Rd, b ∈ R such that ∀i, yi(⟨xi,w⟩+ b)> 0

find w = [w; b] ∈ Rd+1 such that ∀i, ⟨ai,w⟩ ≤ ci, ai = −yi[xi; 1]

find w ∈ Rp such that A⊤w ≤ c

Algorithm 4: Projection Algorithm for Linear Inequalities
Input: A ∈ Rp×n, c ∈ Rn, initialization w ∈ Rp, relaxation parameter

η ∈ (0, 2]
1 for t = 1, 2, . . . do
2 select index It ∈ {1, . . . , n} // index It can be random

3 w← (1− η)w + η

[
w − (⟨aIt ,w⟩−cIt )

+

∥aIt∥2
· aIt
∥aIt∥2

]

T. S. Motzkin and I. J. Schoenberg (1954). “The Relaxation Method for Linear Inequalities”. Canadian
Journal of Mathematics, vol. 6, pp. 393–404; S. Agmon (1954). “The Relaxation Method for Linear Inequalities”.
Canadian Journal of Mathematics, vol. 6, pp. 382–392.

L00 20/41
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Algorithm 7: Projection Algorithm for Linear Inequalities
Input: A ∈ Rp×n, c ∈ Rn, initialization w ∈ Rp, relaxation parameter
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Interpreting Perceptron

Theorem:
int cone∗A ̸= ∅ ⇐⇒ int cone∗A ∩ coneA ̸= ∅.

coneA := {Aλ : λ ≥ 0}
cone ∗A := {w : A⊤w ≥ 0}

int cone ∗A := {w : A⊤w > 0}
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2
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a1

a2
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Is Perceptron Unique?
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Support Vector Machines: Primal
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Support Vector Machines: Primal

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

max
w:∀i,ŷiyi>0

min
i=1,...,n

ŷiyi
∥w∥

, where ŷi := ⟨xi,w⟩+ b

L00 23/41



Support Vector Machines: Dual
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Support Vector Machines: Dual
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Beyond Separability
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Empirical Risk Minimization

min
w

Êℓ(yŷ)

+ reg(w),

s.t. ŷ := ⟨x,w⟩+ b
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Regularization

min
w

Êℓ(yŷ) +

reg(w), s.t. ŷ := ⟨x,w⟩+ b
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Regression

min
w

Êℓ(y − ŷ) + reg(w), s.t. ŷ := ⟨x,w⟩+ b
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Plan I: Basic

• Lec04: Proximal Gradient: smooth ℓ + nonsmooth reg

• Lec05: Subgradient: nonsmooth ℓ + nonsmooth reg

• Lec10: Acceleration: optimal algorithm under smoothness

• Lec11: Smoothing: nonsmooth —> smooth

• Lec12: Alternating: divide and conquer

• Lec13: Coordinate Gradient: large model

• Lec18: Stochastic Gradient: large dataset

• Lec22: Newton: even faster under smoothness

• Lec23: Quasi-Newton: Newton made economical
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Denoising

min
z

1
2
∥x− z∥22︸ ︷︷ ︸
fidelity

+ λ · ∥z∥tv︸ ︷︷ ︸
regularization

• λ controls the trade-off
• regularization encodes prior knowledge
• crucial to not over-smooth
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Adversarial Examples
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Adversarial Attacks

• Mathematically, a neural network is a function f(w;x)

• Typically, input x is given and network weights w optimized
• Could also freeze weights w and optimize x, adversarially!

min
δ

size(δ) s.t. pred[f(w;x+ δ)] ̸= y

• More generally: maxδ ℓ(w;x+ δ, y) s.t. size(δ) ≤ ϵ
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Robustness as Optimization

• Empirical risk minimization recalled:

min
w

Êℓ(w;x, y)

• Adversarial attack perturbs (x, y) while fixing w:

max
size(δ)≤ϵ

ℓ(w;x+ δ, y)

• Robustness by anticipating the worst-case:

min
w

Ê max
size(δ)≤ϵ

ℓ(w;x+ δ, y)

• The game continues by anticipating the anticipation:

max
size(δ)≤ϵ

ℓ(w;x+ δ, y) leader

min
w

Êℓ(w;x+ δ, y) follower
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Plan II: Game-theoretic

• Lec07: Fictitious Play: playing against oneself

• Lec14: Minimax: understanding duality

• Lec15: Averaging: projected gradient descent ascent

• Lec16: Extragradient: faster under smoothness

• Lec17: Splitting: exploiting structure

• Lec20: Randomized Smoothing: simulating gradient
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Generative Adversarial Networks

min
θ

max
φ

Ê logSφ(x) + Ê log(1− Sφ ◦ Tθ(z))

I. Goodfellow et al. (2014). “Generative Adversarial Nets”. In: NIPS.
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Plan III: Exotic
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• Lec06: Conditional Gradient: model weights quantization
• Lec09: Metric Gradient: model gradient quantization
• Lec08: Mirror Descent: gradient under non-Euclidean geometry
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History Goes A Long Way Back

“Nothing in the world takes place without optimization,
and there is no doubt that all aspects of the world that have
a rational basis can be explained by optimization methods.”

— Leonhard Euler, 1744
“Every year I meet Ph.D. students of different special-

izations who ask me for advice on reasonable numerical
schemes for their optimization models. And very often they
seem to have come too late. In my experience, if an opti-
mization model is created without taking into account the
abilities of numerical schemes, the chances that it will be
possible to find an acceptable numerical solution are close
to zero. In any field of human activity, if we create some-
thing, we know in advance why we are doing so and what
we are going to do with the result.” — Yurii Nesterov
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No Free Lunch

• On average, no algorithm is better than any other1

• In general, optimization problems are unsolvable2

• Implications:

– don’t try to solve all problems; one (class) at a time!

– “efficient optimization methods can be developed only by intelligently
employing the structure of particular instances of problems”

– know your algorithms and their limits

– be open to the impossible

“There are no stupid questions, only stupid answers.”

1D. H. Wolpert and W. G. Macready (1997). “No free lunch theorems for optimization”. IEEE Transactions
on Evolutionary Computation, vol. 1, no. 1, pp. 67–82.

2K. G. Murty and S. N. Kabadi (1987). “Some NP-complete problems in quadratic and nonlinear
programming”. Mathematical Programming, vol. 39, no. 2, pp. 117–129.
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“There are no stupid questions, only stupid students.”

1D. H. Wolpert and W. G. Macready (1997). “No free lunch theorems for optimization”. IEEE Transactions
on Evolutionary Computation, vol. 1, no. 1, pp. 67–82.

2K. G. Murty and S. N. Kabadi (1987). “Some NP-complete problems in quadratic and nonlinear
programming”. Mathematical Programming, vol. 39, no. 2, pp. 117–129.
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– don’t try to solve all problems; one (class) at a time!

– “efficient optimization methods can be developed only by intelligently
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– know your algorithms and their limits

– be open to the impossible

“There are no inferior algorithms, only inferior engineers.”
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