CS794/CO673: Optimization for Data Science Lec 02: Gradient Descent

Yaoliang Yu

September 16, 2022

Problem

Unconstrained smooth minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in \mathbb{R}^{d}} f(\mathbf{w}) .
$$

- No constraint on the domain
- $f: \mathbb{R}^{\mathbb{d}} \rightarrow \mathbb{R}$ is smooth, e.g. continuously differentiable
- f can be convex or nonconvex
- Vinimizer may or may not be attained
- Maximization is just negation

Problem

Unconstrained smooth minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in \mathbb{R}^{d}} f(\mathbf{w}) .
$$

- No constraint on the domain
- $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is smooth, e.g. continuously differentiable
- f can be convex or nonconvex
- Minimizer may or may not be attained
- Maximization is just negation

Problem

Unconstrained smooth minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in \mathbb{R}^{d}} f(\mathbf{w}) .
$$

- No constraint on the domain
- $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is smooth, e.g. continuously differentiable
- f can be convex or nonconvex
- Minimizer may or may not be attained
- Maximization is just negation

Problem

Unconstrained smooth minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in \mathbb{R}^{d}} f(\mathbf{w}) .
$$

- No constraint on the domain
- $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is smooth, e.g. continuously differentiable
- f can be convex or nonconvex
- Minimizer may or may not be attained
- Maximization is just negation

Problem

Unconstrained smooth minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in \mathbb{R}^{d}} f(\mathbf{w}) .
$$

- No constraint on the domain
- $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is smooth, e.g. continuously differentiable
- f can be convex or nonconvex
- Minimizer may or may not be attained
- Maximization is just negation

Linear Regression

Linear Least Squares Regression

$$
\min _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle-y_{i}\right)^{2} \equiv \min _{\mathbf{w}} \underbrace{\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}}_{f(\mathbf{w})}
$$

- $\mathrm{X}=\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right] \in \mathbb{R}^{p \times n}$
- Clearly, f is quadratic and hence (continuously) differentiable
- No constraint on mr

Linear Least Squares Regression

$$
\min _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle-y_{i}\right)^{2} \equiv \min _{\mathbf{w}} \underbrace{\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}}_{f(\mathbf{w})}
$$

- $\mathrm{X}=\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right] \in \mathbb{R}^{p \times n}$
- $\mathrm{y}=\left[y_{1}, \ldots, y_{n}\right] \in \mathbb{R}^{n}$
- $w \in \mathbb{R}^{l}$
- Clearly, f is quadratic and hence (continuously) differentiable
- No constraint on w

Linear Least Squares Regression

$$
\min _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle-y_{i}\right)^{2} \equiv \min _{\mathbf{w}} \underbrace{\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}}_{f(\mathbf{w})}
$$

- $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$
- $\mathbf{y}=\left[y_{1}, \ldots, y_{n}\right] \in \mathbb{R}^{n}$
- $\mathbf{w} \in \mathbb{R}^{p}$
- Clearly, f is quadratic and hence (continuously) differentiable
- No constraint on w

Linear Least Squares Regression

$$
\min _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle-y_{i}\right)^{2} \equiv \min _{\mathbf{w}} \underbrace{\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}}_{f(\mathbf{w})}
$$

- $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$
- $\mathrm{y}=\left[y_{1}, \ldots, y_{n}\right] \in \mathbb{R}^{n}$
- $\mathbf{w} \in \mathbb{R}^{p}$
- Clearly, f is quadratic and hence (continuously) differentiable
- No constraint on w

Linear Least Squares Regression

$$
\min _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle-y_{i}\right)^{2} \equiv \min _{\mathbf{w}} \underbrace{\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}}_{f(\mathbf{w})}
$$

- $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$
- $\mathrm{y}=\left[y_{1}, \ldots, y_{n}\right] \in \mathbb{R}^{n}$
- $\mathbf{w} \in \mathbb{R}^{p}$
- Clearly, f is quadratic and hence (continuously) differentiable
- No constraint on w

Logistic Regression

$$
\inf _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \log \left[1+\exp \left(-y_{i}\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle\right)\right] \equiv \inf _{\mathbf{w}} \underbrace{\left\langle\log [1+\exp (-\mathbf{w} \mathbf{A})], \frac{1}{n} \cdot \mathbf{1}\right\rangle}_{f(\mathbf{w})}
$$

- $\mathbf{A}=\left[y_{1} \mathbf{x}_{1}, \ldots, y_{n} \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$
- $\mathrm{y}=\left[y_{1}, \ldots, y_{n}\right] \in\{ \pm 1\}^{n}$
- $w \in \mathbb{R}^{p}$
- Again, \int is (continuously) differentiable
- No constraint on w

Logistic Regression

$$
\inf _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \log \left[1+\exp \left(-y_{i}\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle\right)\right] \equiv \inf _{\mathbf{w}} \underbrace{\left\langle\log [1+\exp (-\mathbf{w} \mathbf{A})], \frac{1}{n} \cdot \mathbf{1}\right\rangle}_{f(\mathbf{w})}
$$

- $\mathbf{A}=\left[y_{1} \mathbf{x}_{1}, \ldots, y_{n} \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$
- $\mathrm{y}=\left[y_{1}, \ldots, y_{n}\right] \in\{ \pm 1\}^{n}$
- Again, f is (continuously) differentiable
- No constraint on wr

Logistic Regression

$$
\inf _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \log \left[1+\exp \left(-y_{i}\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle\right)\right] \equiv \inf _{\mathbf{w}} \underbrace{\left\langle\log [1+\exp (-\mathbf{w} \mathbf{A})], \frac{1}{n} \cdot \mathbf{1}\right\rangle}_{f(\mathbf{w})}
$$

- $\mathbf{A}=\left[y_{1} \mathbf{x}_{1}, \ldots, y_{n} \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$
- $\mathrm{y}=\left[y_{1}, \ldots, y_{n}\right] \in\{ \pm 1\}^{n}$
- $\mathbf{w} \in \mathbb{R}^{p}$
- Again, f is (continuously) differentiable
- No constraint on w

Logistic Regression

$$
\inf _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \log \left[1+\exp \left(-y_{i}\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle\right)\right] \equiv \inf _{\mathbf{w}} \underbrace{\left\langle\log [1+\exp (-\mathbf{w} \mathbf{A})], \frac{1}{n} \cdot \mathbf{1}\right\rangle}_{f(\mathbf{w})}
$$

- $\mathbf{A}=\left[y_{1} \mathbf{x}_{1}, \ldots, y_{n} \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$
- $\mathrm{y}=\left[y_{1}, \ldots, y_{n}\right] \in\{ \pm 1\}^{n}$
- $\mathbf{w} \in \mathbb{R}^{p}$
- Again, f is (continuously) differentiable
- No constraint on w

Logistic Regression

$$
\inf _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \log \left[1+\exp \left(-y_{i}\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle\right)\right] \equiv \inf _{\mathbf{w}} \underbrace{\left\langle\log [1+\exp (-\mathbf{w} \mathbf{A})], \frac{1}{n} \cdot \mathbf{1}\right\rangle}_{f(\mathbf{w})}
$$

- $\mathbf{A}=\left[y_{1} \mathbf{x}_{1}, \ldots, y_{n} \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$
- $\mathrm{y}=\left[y_{1}, \ldots, y_{n}\right] \in\{ \pm 1\}^{n}$
- $\mathbf{w} \in \mathbb{R}^{p}$
- Again, f is (continuously) differentiable
- No constraint on w

Calculus Detour

(Fréchet) Derivative f^{\prime} of a function f at w:

$$
\lim _{\mathbf{0} \neq \mathbf{z} \rightarrow \mathbf{0}} \frac{\left\|f(\mathbf{w}+\mathbf{z})-f(\mathbf{w})-f^{\prime}(\mathbf{w})(\mathbf{z})\right\|}{\|\mathbf{z}\|} \rightarrow 0
$$

Calculus Detour

(Fréchet) Derivative f^{\prime} of a function f at w:

$$
\lim _{0 \neq \mathbf{z} \rightarrow 0} \frac{\left\|f(\mathbf{w}+\mathbf{z})-f(\mathbf{w})-f^{\prime}(\mathbf{w})(\mathbf{z})\right\|}{\|\mathbf{z}\|} \rightarrow 0
$$

- $f: \mathcal{X} \rightarrow \mathcal{Y} \Longrightarrow f^{\prime}(\mathrm{w}): \mathcal{X} \rightarrow \mathcal{Y} \Longrightarrow f^{\prime}: \mathcal{X} \rightarrow(\mathcal{X} \rightarrow \mathcal{Y})$
- $f^{\prime}(w)(z)$ is linear in z but possibly nonlinear in w

Calculus Detour

(Fréchet) Derivative f^{\prime} of a function f at w:

$$
\lim _{\mathbf{o} \neq \mathbf{z} \rightarrow 0} \frac{\left\|f(\mathbf{w}+\mathbf{z})-f(\mathbf{w})-f^{\prime}(\mathbf{w})(\mathbf{z})\right\|}{\|\mathbf{z}\|} \rightarrow 0
$$

- $f: \mathcal{X} \rightarrow \mathcal{Y} \Longrightarrow f^{\prime}(\mathrm{w}): \mathcal{X} \rightarrow \mathcal{Y} \Longrightarrow f^{\prime}: \mathcal{X} \rightarrow(\mathcal{X} \rightarrow \mathcal{Y})$
- $f^{\prime}(\mathrm{w})(\mathrm{z})$ is linear in z but possibly nonlinear in w

Calculus Detour

(Fréchet) Derivative f^{\prime} of a function f at w:

$$
\lim _{\mathbf{0} \neq \mathbf{z} \rightarrow 0} \frac{\left\|f(\mathbf{w}+\mathbf{z})-f(\mathbf{w})-f^{\prime}(\mathbf{w})(\mathbf{z})\right\|}{\|\mathbf{z}\|} \rightarrow 0
$$

- $f: \mathcal{X} \rightarrow \mathcal{Y} \Longrightarrow f^{\prime}(\mathrm{w}): \mathcal{X} \rightarrow \mathcal{Y} \Longrightarrow f^{\prime}: \mathcal{X} \rightarrow(\mathcal{X} \rightarrow \mathcal{Y})$
- $f^{\prime}(\mathrm{w})(\mathrm{z})$ is linear in z but possibly nonlinear in w

Example: Quadratic function $f(\mathbf{w})=\langle\mathbf{w}, A \mathbf{w}+\mathbf{b}\rangle+c$

$$
\begin{aligned}
f(\mathbf{w}+\mathbf{z}) & =\langle\mathbf{w}+\mathbf{z}, A \mathbf{w}+A \mathbf{z}+\mathbf{b}\rangle+c \\
f(\mathbf{w}+\mathbf{z})-f(\mathbf{w}) & =\langle\mathbf{w}, A \mathbf{z}\rangle+\langle\mathbf{z}, A \mathbf{w}\rangle+\langle\mathbf{z}, A \mathbf{z}\rangle+\langle\mathbf{z}, \mathbf{b}\rangle \\
f^{\prime}(\mathbf{w})(\mathbf{z}) & =\left\langle\left(A+A^{\top}\right) \mathbf{w}+\mathbf{b}, \mathbf{z}\right\rangle \\
f^{\prime}(\mathbf{w}) & =\left(A+A^{\top}\right) \mathbf{w}+\mathbf{b}
\end{aligned}
$$

- Chain rule: $(f \circ g)^{\prime}(\mathbf{w})(\mathbf{z})=f^{\prime}[g(\mathbf{w})]\left[g^{\prime}(\mathbf{w})(\mathbf{z})\right]$
- Often suffices to take

- Chain rule: $(f \circ g)^{\prime}(\mathbf{w})(\mathbf{z})=f^{\prime}[g(\mathbf{w})]\left[g^{\prime}(\mathbf{w})(\mathbf{z})\right]$
- Often suffices to take: $\left[f^{\prime}(\mathbf{w})\right]_{j}=\partial_{j} f\left(w_{1}, \ldots, w_{j}, \ldots, w_{d}\right)$

Example: Logistic Loss

$$
\begin{aligned}
f(\mathbf{w}) & =\left\langle\log [1+\exp (-\mathbf{w} \mathbf{A})], \frac{1}{n} \cdot \mathbf{1}\right\rangle \\
\mathrm{d} f(\mathbf{w}) & =\left\langle\mathrm{d} \log [1+\exp (-\mathbf{w} \mathbf{A})], \frac{1}{n} \cdot \mathbf{1}\right\rangle+\left\langle\log [1+\exp (-\mathbf{w} \mathbf{A})], \mathrm{d} \frac{1}{n} \cdot \mathbf{1}\right\rangle \\
& =\left\langle\frac{-\exp (-\mathbf{w} \mathbf{A})}{1+\exp (-\mathbf{w} \mathbf{A})} \mathrm{d} \mathbf{w} \cdot \mathbf{A}, \frac{1}{n} \cdot \mathbf{1}\right\rangle \\
& =\left\langle\mathrm{d} \mathbf{w}, \frac{-\exp (-\mathbf{w} \mathbf{A})}{1+\exp (-\mathbf{w} \mathbf{A})} \cdot \frac{1}{n} \cdot \mathbf{1} \mathbf{A}^{\top}\right\rangle \\
\nabla f(\mathbf{w}) & =\frac{\mathrm{d} f(\mathbf{w})}{\mathrm{d} \mathbf{w}}=\frac{1}{n} \cdot \frac{-\exp (-\mathbf{w} \mathbf{A})}{1+\exp (-\mathbf{w})} \mathbf{A}^{\top}
\end{aligned}
$$

- Recall $\mathbf{w} \in \mathbb{R}^{p}, \mathbf{A} \in \mathbb{R}^{p \times n}$
- What is the dimension of our gradient $\nabla f(w)$?

Example: Logistic Loss

$$
\begin{aligned}
f(\mathbf{w}) & =\left\langle\log [1+\exp (-\mathbf{w} \mathbf{A})], \frac{1}{n} \cdot \mathbf{1}\right\rangle \\
\mathrm{d} f(\mathbf{w}) & =\left\langle\mathrm{d} \log [1+\exp (-\mathbf{w} \mathbf{A})], \frac{1}{n} \cdot \mathbf{1}\right\rangle+\left\langle\log [1+\exp (-\mathbf{w} \mathbf{A})], \mathrm{d} \frac{1}{n} \cdot \mathbf{1}\right\rangle \\
& =\left\langle\frac{-\exp (-\mathbf{w} \mathbf{A})}{1+\exp (-\mathbf{w} \mathbf{A})} \mathrm{d} \mathbf{w} \cdot \mathbf{A}, \frac{1}{n} \cdot \mathbf{1}\right\rangle \\
& =\left\langle\mathrm{d} \mathbf{w}, \frac{-\exp (-\mathbf{w} \mathbf{A})}{1+\exp (-\mathbf{w} \mathbf{A})} \cdot \frac{1}{n} \cdot \mathbf{1} \mathbf{A}^{\top}\right\rangle \\
\nabla f(\mathbf{w}) & =\frac{\mathrm{d} f(\mathbf{w})}{\mathrm{d} \mathbf{w}}=\frac{1}{n} \cdot \frac{-\exp (-\mathbf{w} \mathbf{A})}{1+\exp (-\mathbf{w})} \mathbf{A}^{\top}
\end{aligned}
$$

- Recall $\mathbf{w} \in \mathbb{R}^{p}, \mathbf{A} \in \mathbb{R}^{p \times n}$
- What is the dimension of our gradient $\nabla f(\mathbf{w})$?

Optimality Condition

Theorem: Fermat's necessary condition for extremity
If w is a minimizer (or maximizer) of a differentiable function f over an open set, then $f^{\prime}(\mathrm{w})=0$.

Optimality Condition

Theorem: Fermat's necessary condition for extremity
If w is a minimizer (or maximizer) of a differentiable function f over an open set, then $f^{\prime}(\mathrm{w})=0$.

Optimality Condition

Theorem: Fermat's necessary condition for extremity
If w is a minimizer (or maximizer) of a differentiable function f over an open set, then $f^{\prime}(\mathrm{w})=0$.

Gradient Descent

```
Algorithm 1: Richardson's first-order extrapolation for linear systems
Input: \(\mathrm{w}_{0} \in \mathbb{R}^{d}, A \in \mathbb{R}^{d \times d}, \mathrm{~b} \in \mathbb{R}^{d}\)
\(\mathbf{1}\) for \(t=0,1, \ldots\) do
\(2 \quad \mathrm{~g}_{t} \leftarrow A \mathrm{w}_{t}-\mathrm{b} \quad\) // 'gradient"'
\(3 \quad \mathbf{w}_{t+1} \leftarrow \mathrm{w}_{t}-\eta_{t} \mathrm{~g}_{t}\)
// \(\eta_{t}\) is the step size
```

Algorithm 2: Gradient descent for unconstrained smooth minimization

Gradient Descent

Algorithm 3: Richardson's first-order extrapolation for linear systems
Input: $\mathrm{w}_{0} \in \mathbb{R}^{d}, A \in \mathbb{R}^{d \times d}, \mathrm{~b} \in \mathbb{R}^{d}$
1 for $t=0,1, \ldots$ do

```
2
3 L w
// \mp@subsup{\eta}{t}{}\mathrm{ is the step size}
```

Algorithm 4: Gradient descent for unconstrained smooth minimization
Input: $\mathrm{w}_{0} \in \mathbb{R}^{d}$, smooth function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$
1 for $t=0,1, \ldots$ do
2

3 | $\mathbf{g}_{t} \leftarrow \nabla f\left(\mathbf{w}_{t}\right)$ | $/ /$ compute the gradient |
| :--- | :--- |
| $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}-\eta_{t} \mathbf{g}_{t}$ | $/ / \eta_{t}$ is the step size |

- Repeatedly subtract a multiple of the gradient

$$
\begin{aligned}
f\left(\mathbf{w}_{t+1}\right) & =f\left(\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right) \\
& =f\left(\mathbf{w}_{t}\right)-\eta_{t}\left\langle\nabla f\left(\mathbf{w}_{t}\right), \nabla f\left(\mathbf{w}_{t}\right)\right\rangle+o\left(\eta_{t}\right) \\
& =f\left(\mathbf{w}_{t}\right)-\eta_{t} \underbrace{\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2}}_{\geq 0}+o\left(\eta_{t}\right)
\end{aligned}
$$

- If $\nabla f\left(\mathbf{w}_{t}\right)=0$, we are done
- Otherwise for small $\eta_{t}>0$, we have $f\left(\mathrm{w}_{t+1}\right)$
- Strict improvement at each iteration; is it enough??

$$
\begin{aligned}
f\left(\mathbf{w}_{t+1}\right) & =f\left(\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right) \\
& =f\left(\mathbf{w}_{t}\right)-\eta_{t}\left\langle\nabla f\left(\mathbf{w}_{t}\right), \nabla f\left(\mathbf{w}_{t}\right)\right\rangle+o\left(\eta_{t}\right) \\
& =f\left(\mathbf{w}_{t}\right)-\eta_{t} \underbrace{\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2}}_{\geq 0}+o\left(\eta_{t}\right)
\end{aligned}
$$

- If $\nabla f\left(\mathbf{w}_{t}\right)=0$, we are done
- Otherwise for small $\eta_{t}>0$, we have $f\left(\mathrm{w}_{t+1}\right)<f\left(\mathrm{w}_{t}\right)$
- Strict improvement at each iteration; is it enough??

$$
\begin{aligned}
f\left(\mathbf{w}_{t+1}\right) & =f\left(\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right) \\
& =f\left(\mathbf{w}_{t}\right)-\eta_{t}\left\langle\nabla f\left(\mathbf{w}_{t}\right), \nabla f\left(\mathbf{w}_{t}\right)\right\rangle+o\left(\eta_{t}\right) \\
& =f\left(\mathbf{w}_{t}\right)-\eta_{t} \underbrace{\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2}}_{\geq 0}+o\left(\eta_{t}\right)
\end{aligned}
$$

- If $\nabla f\left(\mathrm{w}_{t}\right)=0$, we are done
- Otherwise for small $\eta_{t}>0$, we have $f\left(\mathrm{w}_{t+1}\right)<f\left(\mathrm{w}_{t}\right)$
- Strict improvement at each iteration; is it enough??

Lipschitz Continuity = Bounded Derivative

Theorem:
Let $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ be differentiable. Then, T is L-Lipschitz continuous:

$$
\|\mathrm{T}(\mathrm{w})-\mathrm{T}(\mathbf{z})\| \leq \mathrm{L}\|\mathrm{w}-\mathrm{z}\|
$$

if and only if

$$
\sup _{\mathbf{w}}\left\|\mathrm{T}^{\prime}(\mathbf{w})\right\|=\sup _{\mathbf{w}} \sup _{\|\mathbf{z}\| \leq 1}\left\|\mathrm{~T}^{\prime}(\mathbf{w})(\mathbf{z})\right\| \leq \mathrm{L} .
$$

- Lipschitz continuity: output change is bounded by input change
- Equivalently, derivative (i.e. infinitesimal change) is bounded

Lipschitz Continuity = Bounded Derivative

Theorem:
Let $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ be differentiable. Then, T is L-Lipschitz continuous:

$$
\|\mathrm{T}(\mathrm{w})-\mathrm{T}(\mathrm{z})\| \leq \mathrm{L}\|\mathrm{w}-\mathrm{z}\|
$$

if and only if

$$
\sup _{\mathbf{w}}\left\|\mathrm{T}^{\prime}(\mathbf{w})\right\|=\sup _{\mathbf{w}} \sup _{\|\mathbf{z}\| \leq 1}\left\|\mathrm{~T}^{\prime}(\mathbf{w})(\mathbf{z})\right\| \leq \mathrm{L} .
$$

- Lipschitz continuity: output change is bounded by input change
- Equivalently, derivative (i.e. infinitesimal change) is bounded

L-smoothness

We call a differentiable function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ L-smooth if for all w and z :

$$
f(\mathbf{z}) \leq f(\mathbf{w})+\underbrace{f^{\prime}(\mathbf{w})(\mathbf{z}-\mathbf{w})}_{\langle\mathbf{z}-\mathbf{w}, \nabla f(\mathbf{w})\rangle}+\frac{\mathrm{L}}{2}\|\mathbf{z}-\mathbf{w}\|^{2}
$$

Theorem: Characterizing L-smoothness
Consider the following statements for a real-valued smooth function:
(I). Vector-valued derivative $f^{\prime}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is L-Lipschitz continuous
(II). Matrix-valued second-order derivative $f^{\prime \prime}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times d}$ is L-bounded
(III). Real-valued functions $\pm f$ are L-smooth

Then, $(\mathrm{I}) \Longleftrightarrow$ (II) \Longleftrightarrow (III). If f is convex or the norm is Euclidean, then all three are equivalent.

$$
f(\mathbf{w}) \leq f\left(\mathbf{w}_{t}\right)+\left\langle\mathbf{w}-\mathbf{w}_{t}, \nabla f\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{2 \eta_{t}}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|_{2}^{2}
$$

- RHS is a quadratic function of w
- Equality holds if $\eta_{\text {? }}$
- Minimize RHS w.r.t.
- This is exactly gradient descent
- Moreover.

$$
f(\mathbf{w}) \leq f\left(\mathbf{w}_{t}\right)+\left\langle\mathbf{w}-\mathbf{w}_{t}, \nabla f\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{2 \eta_{t}}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|_{2}^{2}
$$

- RHS is a quadratic function of w
- Equality holds if $\eta_{t} \leq \frac{1}{L}$
- Minimize RHS w.r.t.
- This is exactly gradient descent
- Moreover

$$
f(\mathbf{w}) \leq f\left(\mathbf{w}_{t}\right)+\left\langle\mathbf{w}-\mathbf{w}_{t}, \nabla f\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{2 \eta_{t}}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|_{2}^{2}
$$

- RHS is a quadratic function of w
- Equality holds if $\eta_{t} \leq \frac{1}{L}$
- Minimize RHS w.r.t. w:

$$
\mathbf{w}_{t+1} \leftarrow \underset{\mathbf{w}}{\operatorname{argmin}} f\left(\mathbf{w}_{t}\right)+\frac{1}{2 \eta_{t}}\left\|\mathbf{w}-\left[\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right]\right\|_{2}^{2}-\frac{\eta_{t}}{2}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2}
$$

- This is exactly gradient descent
- Moreover

$$
f(\mathbf{w}) \leq f\left(\mathbf{w}_{t}\right)+\left\langle\mathbf{w}-\mathbf{w}_{t}, \nabla f\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{2 \eta_{t}}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|_{2}^{2}
$$

- RHS is a quadratic function of w
- Equality holds if $\eta_{t} \leq \frac{1}{\mathrm{~L}}$
- Minimize RHS w.r.t. w:

$$
\mathbf{w}_{t+1} \leftarrow \underset{\mathbf{w}}{\operatorname{argmin}} f\left(\mathbf{w}_{t}\right)+\frac{1}{2 \eta_{t}}\left\|\mathbf{w}-\left[\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right]\right\|_{2}^{2}-\frac{\eta_{t}}{2}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2}
$$

- This is exactly gradient descent
- Moreover,

$$
f(\mathbf{w}) \leq f\left(\mathbf{w}_{t}\right)+\left\langle\mathbf{w}-\mathbf{w}_{t}, \nabla f\left(\mathbf{w}_{t}\right)\right\rangle+\frac{1}{2 \eta_{t}}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|_{2}^{2}
$$

- RHS is a quadratic function of w
- Equality holds if $\eta_{t} \leq \frac{1}{\mathrm{~L}}$
- Minimize RHS w.r.t. w:

$$
\mathbf{w}_{t+1} \leftarrow \underset{\mathbf{w}}{\operatorname{argmin}} f\left(\mathbf{w}_{t}\right)+\frac{1}{2 \eta_{t}}\left\|\mathbf{w}-\left[\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right]\right\|_{2}^{2}-\frac{\eta_{t}}{2}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2}
$$

- This is exactly gradient descent
- Moreover, $f\left(\mathbf{w}_{t+1}\right) \leq f\left(\mathbf{w}_{t}\right)-\frac{\eta_{t}}{2}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2}$

Example: Logistic Loss

$$
\begin{aligned}
f(\mathbf{w}) & =\left\langle\log [1+\exp (-\mathbf{w} \mathbf{A})], \frac{1}{n} \cdot \mathbf{1}\right\rangle \\
\nabla f(\mathbf{w}) & =\frac{\mathrm{d} f(\mathbf{w})}{\mathrm{d} \mathbf{w}}=\frac{1}{n} \cdot \frac{-\exp (-\mathbf{w} \mathbf{A})}{1+\exp (-\mathbf{w} \mathbf{A})} \mathbf{A}^{\top}=\frac{1}{n} \cdot\left[\frac{1}{1+\exp (-\mathbf{w} \mathbf{A})}-1\right] \mathbf{A}^{\top} \\
\mathrm{d} \nabla f(\mathbf{w}) & =\frac{1}{n} \mathrm{~d} \frac{1}{1+\exp (-\mathbf{w} \mathbf{A})} \cdot \mathbf{A}^{\top}=\frac{1}{n} \frac{\exp (-\mathbf{w} \mathbf{A})}{[1+\exp (-\mathbf{w} \mathbf{A})]^{2}} \mathrm{~d} \mathbf{w} \cdot \mathbf{A}^{\top} \\
& =\mathrm{d} \mathbf{w} \cdot \frac{1}{n} \mathbf{A} \operatorname{diag}\left(\frac{\exp (-\mathbf{w} \mathbf{A})}{[1+\exp (-\mathbf{w} \mathbf{A})]^{2}}\right) \mathbf{A}^{\top} \\
\nabla^{2} f(\mathbf{w}) & =\frac{1}{n} \mathbf{A} \operatorname{diag}\left(\frac{\exp (-\mathbf{w} \mathbf{A})}{[1+\exp (-\mathbf{w} \mathbf{A})]^{2}}\right) \mathbf{A}^{\top} \preceq \frac{1}{n} \mathbf{A A}^{\top}
\end{aligned}
$$

$\sup _{\mathbf{w}}\left\|\nabla^{2} f(\mathbf{w})\right\|_{\mathrm{sp}} \leq\left\|\frac{1}{n} \mathbf{A} \mathbf{A}^{\top}\right\|_{\mathrm{sp}}=\frac{1}{n}\|\mathbf{A}\|_{\mathrm{sp}}^{2} \leq \frac{1}{n}\|\mathbf{A}\|_{\mathrm{F}}^{2}$

Theorem: Convergence of gradient descent for L-smooth functions
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be L-smooth and bounded from below (i.e. $f_{\star}>-\infty$). If the step size $\eta_{t} \in\left[\alpha, \frac{2}{L}-\beta\right]$ for some $\alpha, \beta>0$, then the gradient descent iterate $\left\{\mathbf{w}_{t}\right\}$ satisfies $\nabla f\left(\mathrm{w}_{t}\right) \rightarrow 0$. Moreover,

$$
\min _{0 \leq t \leq T-1}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2} \leq \sqrt{\frac{2\left[f\left(\mathbf{w}_{0}\right)-f_{\star}\right]}{\alpha \beta\llcorner T}} .
$$

```
Can tune \alpha and \beta}\mathrm{ to optimize the bound: since }\alpha+\beta\leq\frac{2}{1}\mathrm{ , the minimum is achieved
when }\alpha=\beta=\frac{1}{L}\mathrm{ , and the bound reduces to
```

Theorem: Convergence of gradient descent for L-smooth functions
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be L-smooth and bounded from below (i.e. $f_{\star}>-\infty$). If the step size $\eta_{t} \in\left[\alpha, \frac{2}{L}-\beta\right]$ for some $\alpha, \beta>0$, then the gradient descent iterate $\left\{\mathbf{w}_{t}\right\}$ satisfies $\nabla f\left(\mathrm{w}_{t}\right) \rightarrow 0$. Moreover,

$$
\min _{0 \leq \leq \leq T-1}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2} \leq \sqrt{\frac{2\left[f\left(\mathbf{w}_{0}\right)-f_{\star}\right]}{\alpha \beta L T}} .
$$

Can tune α and β to optimize the bound: since $\alpha+\beta \leq \frac{2}{\mathrm{~L}}$, the minimum is achieved when $\alpha=\beta=\frac{1}{\mathrm{~L}}$, and the bound reduces to

$$
\min _{0 \leq t \leq T-1}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2} \leq \sqrt{\frac{2 \mathrm{~L}\left[f\left(\mathbf{w}_{0}\right)-f_{\star}\right]}{T}},
$$

[^0]
Proof

$$
\begin{aligned}
f\left(\mathbf{w}_{t+1}\right)=f\left(\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right) & \leq f\left(\mathbf{w}_{t}\right)-\eta_{t}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2}+\frac{\left\llcorner\eta_{t}^{2}\right.}{2}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2} \\
& =f\left(\mathbf{w}_{t}\right)-\eta_{t}\left(1-\frac{\left\llcorner\eta_{t}\right.}{2}\right)\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2} .
\end{aligned}
$$

Proof

$$
\begin{aligned}
f\left(\mathbf{w}_{t+1}\right)=f\left(\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right) & \leq f\left(\mathbf{w}_{t}\right)-\eta_{t}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2}+\frac{\left\llcorner\eta_{t}^{2}\right.}{2}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2} \\
& =f\left(\mathbf{w}_{t}\right)-\eta_{t}\left(1-\frac{\left\llcorner\eta_{t}\right.}{2}\right)\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2} .
\end{aligned}
$$

- If $\left.\eta_{t} \in\right] 0, \frac{2}{L}\left[\right.$ and $\nabla f\left(\mathbf{w}_{t}\right) \neq 0$, strictly decrease function value - Rearranging:
- Telescoping:

Proof

$$
\begin{aligned}
f\left(\mathbf{w}_{t+1}\right)=f\left(\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right) & \leq f\left(\mathbf{w}_{t}\right)-\eta_{t}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2}+\frac{\left\llcorner\eta_{t}^{2}\right.}{2}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2} \\
& =f\left(\mathbf{w}_{t}\right)-\eta_{t}\left(1-\frac{\left\llcorner\eta_{t}\right.}{2}\right)\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2} .
\end{aligned}
$$

- If $\left.\eta_{t} \in\right] 0, \frac{2}{L}\left[\right.$ and $\nabla f\left(\mathbf{w}_{t}\right) \neq 0$, strictly decrease function value
- Rearranging:

$$
\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2} \leq \frac{f\left(\mathbf{w}_{t}\right)-f\left(\mathbf{w}_{t+1}\right)}{\eta_{t}\left(1-L \eta_{t} / 2\right)} \leq \frac{f\left(\mathbf{w}_{t}\right)-f\left(\mathbf{w}_{t+1}\right)}{\alpha \beta \mathrm{L} / 2} .
$$

- Telescoping:

Proof

$$
\begin{aligned}
f\left(\mathbf{w}_{t+1}\right)=f\left(\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right) & \leq f\left(\mathbf{w}_{t}\right)-\eta_{t}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2}+\frac{\left\llcorner\eta_{t}^{2}\right.}{2}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2} \\
& =f\left(\mathbf{w}_{t}\right)-\eta_{t}\left(1-\frac{\left\llcorner\eta_{t}\right.}{2}\right)\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2} .
\end{aligned}
$$

- If $\left.\eta_{t} \in\right] 0, \frac{2}{L}\left[\right.$ and $\nabla f\left(\mathbf{w}_{t}\right) \neq 0$, strictly decrease function value
- Rearranging:

$$
\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2} \leq \frac{f\left(\mathbf{w}_{t}\right)-f\left(\mathbf{w}_{t+1}\right)}{\eta_{t}\left(1-L \eta_{t} / 2\right)} \leq \frac{f\left(\mathbf{w}_{t}\right)-f\left(\mathbf{w}_{t+1}\right)}{\alpha \beta \mathrm{L} / 2} .
$$

- Telescoping:

$$
\sum_{t=0}^{T-1}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2} \leq \frac{f\left(\mathbf{w}_{0}\right)-f\left(\mathbf{w}_{T}\right)}{\alpha \beta \mathrm{L} / 2} \leq \frac{f\left(\mathbf{w}_{0}\right)-f_{\star}}{\alpha \beta \mathrm{L} / 2}
$$

Remarkable Properties

- Rate of convergence is proportional to the Lipschitz smoothness L: the bigger L is, the smaller the step size $\eta=\frac{1}{L}$ has to be since the function f becomes steeper.
- If we start from some point w_{0} whose function value is closer to the infimum then the gradient diminishes faster to zero.

Remarkable Properties

- Rate of convergence is proportional to the Lipschitz smoothness L: the bigger L is, the smaller the step size $\eta=\frac{1}{L}$ has to be since the function f becomes steeper.
- If we start from some point w_{0} whose function value is closer to the infimum f_{\star}, then the gradient diminishes faster to zero.

Remarkable Properties

- Rate of convergence is proportional to the Lipschitz smoothness L: the bigger L is, the smaller the step size $\eta=\frac{1}{L}$ has to be since the function f becomes steeper.
- If we start from some point w_{0} whose function value is closer to the infimum f_{\star}, then the gradient diminishes faster to zero.
- Very importantly, the rate of convergence does not depend on d, the dimension, at all!

Remarkable Properties

- Rate of convergence is proportional to the Lipschitz smoothness L : the bigger L is, the smaller the step size $\eta=\frac{1}{L}$ has to be since the function f becomes steeper.
- If we start from some point w_{0} whose function value is closer to the infimum f_{\star}, then the gradient diminishes faster to zero.
- Very importantly, the rate of convergence does not depend on d, the dimension, at all!
- The $1 / \sqrt{T}$ rate of convergence for the gradient is essentially tight ${ }^{1}$.

[^1]
Backtracking

- Figuring out L can be tedious; and it can be conservative too
- Where did we use the knowledge of L in the proof?
- Choose some $\alpha \in] 0,1\left[\right.$, say $\alpha=\frac{1}{2}$, and aim:
- The above inequality is testable without knowing L!
L. Armijo (1966). "Minimization of functions having Lipschitz continuous first partial derivatives". Pacific Journal of Mathematics, vol. 16, no. 1, pp. 1-3.

Backtracking

- Figuring out L can be tedious; and it can be conservative too
- Where did we use the knowledge of L in the proof?

$$
f\left(\mathbf{w}_{t+1}\right)=f\left(\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right) \leq f\left(\mathbf{w}_{t}\right)-\eta_{t} \underbrace{\left(1-\frac{\mathrm{L} \eta_{t}}{2}\right)}_{\geq 0}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2} .
$$

- Choose some $\alpha \in] 0,1\left[\right.$, say $\alpha=\frac{1}{2}$, and aim:
- The above inequality is testable without knowing L!
 no. 1, pp. 1-3.

Backtracking

- Figuring out L can be tedious; and it can be conservative too
- Where did we use the knowledge of L in the proof?

$$
f\left(\mathbf{w}_{t+1}\right)=f\left(\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right) \leq f\left(\mathbf{w}_{t}\right)-\eta_{t} \underbrace{\left(1-\frac{\mathrm{L} \eta_{t}}{2}\right)}_{\geq 0}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2} .
$$

- Choose some $\alpha \in] 0,1\left[\right.$, say $\alpha=\frac{1}{2}$, and aim:

$$
f\left(\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right) \leq f\left(\mathbf{w}_{t}\right)-\alpha \eta_{t}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2} .
$$

- The above inequality is testable without knowing L!

Backtracking

- Figuring out L can be tedious; and it can be conservative too
- Where did we use the knowledge of L in the proof?

$$
f\left(\mathbf{w}_{t+1}\right)=f\left(\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right) \leq f\left(\mathbf{w}_{t}\right)-\eta_{t} \underbrace{\left(1-\frac{\mathrm{L} \eta_{t}}{2}\right)}_{\geq 0}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2} .
$$

- Choose some $\alpha \in] 0,1\left[\right.$, say $\alpha=\frac{1}{2}$, and aim:

$$
f\left(\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right) \leq f\left(\mathbf{w}_{t}\right)-\alpha \eta_{t}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2} .
$$

- The above inequality is testable without knowing L!
\square

Backtracking

- Figuring out L can be tedious; and it can be conservative too
- Where did we use the knowledge of L in the proof?

$$
f\left(\mathbf{w}_{t+1}\right)=f\left(\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right) \leq f\left(\mathbf{w}_{t}\right)-\eta_{t} \underbrace{\left(1-\frac{\mathrm{L} \eta_{t}}{2}\right)}_{\geq 0}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2} .
$$

- Choose some $\alpha \in] 0,1\left[\right.$, say $\alpha=\frac{1}{2}$, and aim:

$$
f\left(\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right) \leq f\left(\mathbf{w}_{t}\right)-\alpha \eta_{t}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2} .
$$

- The above inequality is testable without knowing L!
- if the test succeeds, happily proceed to the next iteration

Backtracking

- Figuring out L can be tedious; and it can be conservative too
- Where did we use the knowledge of L in the proof?

$$
f\left(\mathbf{w}_{t+1}\right)=f\left(\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right) \leq f\left(\mathbf{w}_{t}\right)-\eta_{t} \underbrace{\left(1-\frac{\mathrm{L} \eta_{t}}{2}\right)}_{\geq 0}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2} .
$$

- Choose some $\alpha \in] 0,1\left[\right.$, say $\alpha=\frac{1}{2}$, and aim:

$$
f\left(\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right) \leq f\left(\mathbf{w}_{t}\right)-\alpha \eta_{t}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2} .
$$

- The above inequality is testable without knowing L!
- if the test succeeds, happily proceed to the next iteration
- if the test fails, halve η_{t} and repeat

Backtracking

- Figuring out L can be tedious; and it can be conservative too
- Where did we use the knowledge of L in the proof?

$$
f\left(\mathbf{w}_{t+1}\right)=f\left(\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right) \leq f\left(\mathbf{w}_{t}\right)-\eta_{t} \underbrace{\left(1-\frac{\mathrm{L} \eta_{t}}{2}\right)}_{\geq 0}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2}
$$

- Choose some $\alpha \in] 0,1\left[\right.$, say $\alpha=\frac{1}{2}$, and aim:

$$
f\left(\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)\right) \leq f\left(\mathbf{w}_{t}\right)-\alpha \eta_{t}\left\|\nabla f\left(\mathbf{w}_{t}\right)\right\|_{2}^{2} .
$$

- The above inequality is testable without knowing L!
- if the test succeeds, happily proceed to the next iteration
- if the test fails, halve η_{t} and repeat
- $\eta_{t} \geq \frac{1-\alpha}{\mathrm{L}}$, repeat at most $K:=\log _{2} \frac{\eta \mathrm{~L}}{1-\alpha}$ times
L. Armijo (1966). "Minimization of functions having Lipschitz continuous first partial derivatives". Pacific Journal of Mathematics, vol. 16, no. 1, pp. 1-3.

[^0]: B. T. Polyak (1963).

[^1]: ${ }^{1}$ C. Cartis et al. (2010). "On the Complexity of Steepest Descent, Newton's and Regularized Newton's Methods for Nonconvex Unconstrained Optimization". SIAM Journal on Optimization, vol. 20, no. 6, pp. 2833-2852.

