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Problem

Constrained smooth minimization:

f⋆ = inf
w∈C

f(w)

• f : smooth and possibly nonconvex

• C: (closed) bounded and convex

• Minimizer may or may not be attained

• Maximization is just negation

• Projection PC is expensive to compute
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Matrix Completion

min
X:rank(X)≤k

∑
(i,j)∈O

(Aij −Xij)
2,

• rank is nonconvex (in fact, discrete valued)

min
X:∥X∥tr≤λ

∑
(i,j)∈O

(Aij −Xij)
2,

• ∥ · ∥tr: trace norm, sum of singular values
• Let X = UΣV ⊤ be its singular value decomposion. Then,

P∥·∥tr(X) = U diag(γ)V ⊤, where γ = P∥·∥1(σ)

• Expensive operation: O(nm2)
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https://en.wikipedia.org/wiki/Singular_value_decomposition


Sparsity

min
w

1
n
∥wX− y∥22︸ ︷︷ ︸

ℓ

+λ · ∥w∥0︸ ︷︷ ︸
r

• Balancing square error with sparsity

• ℓ is convex and L-smooth, r is nonsmooth and nonconvex

min
w

1
n
∥wX− y∥22︸ ︷︷ ︸

ℓ

+λ · ∥w∥1︸ ︷︷ ︸
r

• Convex relaxation: r is now convex but remains nonsmooth (crucial)

R. Tibshirani (1996). “Regression Shrinkage and Selection via the Lasso”. Journal of the Royal Statistical Society: Series B, vol. 58, no. 1,
pp. 267–288.
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https://doi.org/10.1111/j.2517-6161.1996.tb02080.x


Indicator and Support

Recall that the indicator function of a set C is:

ιC(w) =

{
0, if w ∈ C

∞, otherwise

The support function of a set C is:

σC(w
∗) = max

w∈C
⟨w,w∗⟩ = max

w
⟨w,w∗⟩ − ιC(w)

• Always (closed) convex and positive homogeneous

• Any norm is a support function of the unit ball of its dual

• The subdifferential ∂σC will play a crucial role
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From Linear to Quadratic

• Suppose we have an algorithm to solve a linear program:

min
w≥0

⟨w, c⟩ s.t. Aw = b

• How do we solve a quadratic program?

min
w≥0

⟨w, Aw⟩+ ⟨w, c⟩ s.t. Aw = b

• The power of reduction: try to reduce quadratic to linear!
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Algorithm 1: Conditional gradient (condgrad)
Input: w0 ∈ C

1 for t = 0, 1, . . . do
2 zt ← argmax

z∈C
⟨z;−∇f(wt)⟩ // polar operator

3 choose step size ηt ∈ [0, 1]
4 wt+1 ← (1− ηt)wt + ηtzt // convex combination

• The only nontrivial step in Line 2 has a linear objective
• It is in fact ∂σC(−g) where g = ∇f(wt)

• We find a point in C that “correlates” the most with −∇f(wt)

• No projection to C needed: Line 4 remains in C

M. Frank and P. Wolfe (1956). “An Algorithm for Quadratic Programming”. Naval Research Logistics Quarterly, vol. 3, no. 1-2, pp. 95–110;
V. F. Dem’yanov and A. M. Rubinov (1967). “The Minimization of a Smooth Convex Functional on a Convex Set”. SIAM Journal on Control,
vol. 5, no. 2, pp. 280–294. [English translation of paper in Vestnik Leningradskogo Universitera, Seriya Matematiki, Mekhaniki i Astronomii vol.
19, pp. 7–17, 1964].
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https://doi.org/10.1002/nav.3800030109
https://doi.org/10.1137/0305019


Definition: Extreme point
w ∈ C is an extreme point (of C) if it does not lie on the line segment of any two
points in C. In other words, if w ∈ [w1,w2],w1,w2 ∈ C then w = w1 = w2.

• For a convex set C, w ∈ C is an extreme point iff C \ {w} remains convex.

Theorem: Convex maximizer is at the boundary
The maximizer of a convex f over C can always be chosen from the extreme points.

w1

w2
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https://en.wikipedia.org/wiki/Extreme_point


Consider the following simple problem:

min
w∈C

w2
1 + (w2 + 1)2 and C := {w : w1 ∈ [−1, 1], w2 ∈ [0, 2]}.

The global minimizer is clearly at w⋆ = (0, 0), as shown below.
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Let us see how the conditional gradient works on this toy problem:
• We first identify the four extreme points of C as

z1 = (−1, 0), z2 = (1, 0), z3 = (1, 2), z4 = (−1, 2).

• Start with say w1 = (1, 1), we compute the gradient ∇f(w1) = (2, 4).

• We pick the extreme point z that maximizes ⟨z;−∇f(w1)⟩. Clearly, z1 wins.

• Next, we find η > 0 to minimize f((1− η)w1 + ηz1) by setting its derivative
w.r.t. η to 0 :

η1 = η =
⟨w + (0, 1),w − z⟩

∥w − z∥22
=

4

5
.

• Lastly, we compute w2 = (1− η1)w1 + η1z1 = (−3
5
, 1
5
), and the process repeats.
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Convergence rate closely follows Θ(1/t), while projected gradient converges in 2
iterations on this example!
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Sparsity

Let C := {w : ∥w∥1 ≤ λ}, whose polar operator reduces to

zt = argmax
∥z∥1≤λ

⟨z;−∇f(wt)⟩ ∋ −λei, where ⟨ei;∇if(wt)⟩ = max
j
|∇jf(wt)|.

• May choose ei to be the i-th standard basis (i.e. 1 at the i-th entry and 0
elsewhere)

• After t steps, the iterate wt has (added) at most t nonzeros! In comparison, after
even a single iteration, projected gradient can result in a fully dense iterate!

• The resulting coordinate-wise update is a bit wasteful though: we compute the
entire gradient ∇f only to find its minimum index and throw out everything else...
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Sparsity in Rank

• For the matrix setting:

Zt = argmax
∥Z∥tr≤λ

⟨Z;−∇f(Wt)⟩ = −λuv⊤, where u⊤∇f(Wt)v = ∥∇f(Wt)∥sp

• After t steps, the iterate Wt has (added) rank at most t

• Computing the spectral norm, i.e. the largest singular value, costs O(mn), an
order of magnitude cheaper than projection

• Same for tensors
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Theorem: convergence of conditional gradient
Suppose f is convex and L-smooth, and C is compact convex with bounded diameter
ρ. Then, conditional gradient satisfies:

f(wt+1) ≤ f(w) + πt(1− η0)(f(w0)− f(w)) +
Lρ2

2

t∑
s=0

πt

πs

η2s ,

where πt :=
∏t

s=1(1− ηs) with π0 := 1.

• Setting ηt =
2

t+2
, we have η0 = 1, πt =

2
(t+1)(t+2)

and

f(wt)− f(w) ≤ ⟨wt − zt;∇f(wt)⟩ ≤
2Lρ2

t+ 3
,

where the initializer w0, surprisingly, does not play any role.
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The Proof

f(wt+1)− f(w) = f((1− ηt)wt + ηtzt)− f(w)

(L-smoothness) ≤ f(wt)− f(w) + ηt ⟨zt −wt;∇f(wt)⟩+
η2t
2
L ∥wt − zt∥2︸ ︷︷ ︸

≤ρ2

(optimality of zt) ≤ f(wt)− f(w) + ηt ⟨w −wt;∇f(wt)⟩+
η2t
2
Lρ2

(convexity of f) ≤ (1− ηt)(f(wt)− f(w)) +
η2t
2
Lρ2

Telescoping and collecting the terms we arrive at the claim
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Disccussions

• The rate O(1
t
) is tight and cannot be improved (disappointing)

• Polar operator can be solved approximately

– additive error: ⟨zt,−gt⟩ ≤ maxw∈C ⟨w,−gt⟩ − ϵt

– multiplicative error: ⟨zt,−gt⟩ ≤ 1
αt
·maxw∈C ⟨w,−gt⟩

• Choices of the step size ηt

– Open-loop rule: ηt =
2

t+2 , or more generally ηt = Θ(1/t).

– Cauchy’s rule: ηt ∈ argmin
0≤η≤1

f((1− η)wt + ηzt).

– Quadratic rule:

ηt = argmin
0≤η≤1

f(wt) + ηt ⟨zt −wt;∇f(wt)⟩+ L2η2
t ∥wt−zt∥2

2 =
[
⟨wt−zt;∇f(wt)⟩

L2∥wt−zt∥2

]1
0
.

• Possible to accelerate
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Extension to Composite

min
w

f(w), where ℓ(w) + r(w)

Algorithm 2: Generalized conditional gradient (GCG)
Input: w0 ∈ C, functions ℓ and r

1 for t = 0, 1, . . . do
2 zt ← argmin

z
⟨z;∇ℓ(wt)⟩+ r(w) // conjugate of r

3 choose step size ηt ∈ [0, 1]
4 wt+1 ← (1− ηt)wt + ηtzt // convex combination

T. Bonesky et al. (2007). “A Generalized Conditional Gradient Method for Nonlinear Operator Equations with Sparsity Constraints”. Inverse
Problems, vol. 23, no. 5, pp. 2041–2058; K. Bredies et al. (2009). “A Generalized Conditional Gradient Method and its Connection to an
Iterative Shrinkage Method”. Computational Optimization and Applications, vol. 42, pp. 173–193; Y. Yu et al. (2017). “Generalized Conditional
Gradient for Structured Sparse Estimation”. Journal of Machine Learning Research, vol. 18, pp. 1–46.
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https://doi.org/10.1088/0266-5611/23/5/014
https://doi.org/10.1007/s10589-007-9083-3
https://doi.org/10.1007/s10589-007-9083-3
https://jmlr.org/papers/volume18/14-348/14-348.pdf
https://jmlr.org/papers/volume18/14-348/14-348.pdf


Totally Corrective

• Inspecting the conditional gradient algorithm we realize that

wt+1 ∈ conv{w0, z1, . . . , zt},

where the extreme points zk are repeatedly identified and averaged.

• One immediate, natural idea is to replace the next iterate wt+1 as the best
approximation in the entire convex hull:

wt+1 = argmin
w∈conv{w0,z1,...,zt}

f(w).

• Potentially much faster, but more expensive in each step

• Can restrict memory size, even to 2

G. Meyer (1974). “Accelerated Frank–Wolfe Algorithms”. SIAM Journal on Control, vol. 12, no. 4, pp. 655–655; C. A. Holloway (1974).
“An extension of the Frank and Wolfe method of feasible directions”. Mathematical Programming, vol. 6, pp. 14–27.
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https://doi.org/10.1137/0312050
https://doi.org/10.1007/BF01580219



