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Problem

Constrained smooth minimization:

f: smooth and possibly nonconvex

(" (closed)

® Minimizer may or may not be attained

Maximization is just negation

Projection P is expensive to compute






Matrix Completion

o A — X.. 2.
X:r'alrﬁl(g')gk Z ( <J lJ) )
(,5)€0

rank is nonconvex (in fact, discrete valued)

min Z (Al — XU)Q7

X[ X[l <A &
(i,5)€O

| - ||4;: trace norm, sum of singular values
Let X = UV be its . Then,

Pl (X) = Udiag(y)V', where v=P (o)

® Expensive operation: O(nm?)
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https://en.wikipedia.org/wiki/Singular_value_decomposition

Sparsity

nun fHWX y\!2+/\ W llo
\____-\,—-——/ N——

Y4 T
® Balancing square error with sparsity
® [ is convex and L-smooth, 7 is nonsmooth and nonconvex

111111 waX yl3+ A [wll
—_—

¢ r

e Convex relaxation: 7 is now convex but remains nonsmooth (crucial)

R. Tibshirani (1996). . Journal of the Royal Statistical Society: Series B, vol. 58, no. 1,
pp. 267—-288.
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https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

Indicator and Support

Recall that the indicator function of a set (' is:

0, if weC
to(w) = { ’

oo, otherwise

The function of a set C is:

welC w

oc(w") = max (w,w") = max (w,w") — 1o(wW)

e Always (closed) convex and positive homogeneous

® Any norm is a support function of the unit ball of its dual

® The subdifferential do will play a crucial role
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From Linear to Quadratic

® Suppose we have an algorithm to solve a linear program:

min (w,c) st. Aw=Db
w>0

® How do we solve a quadratic program?

min (w, Aw) + (w,c) st. Aw=Db

w>0

® The power of reduction: try to reduce quadratic to linear!
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Algorithm 1: Conditional gradient (condgrad)
Input: wy €
fort =0,1,... do

z; « argmax (z; —V f(wy)) //
zcC

choose step size 7, < [0, 1]
Wi < (1 —n)wy + iz // convex combination

The only nontrivial step in Line 2 has a linear objective
It is in fact Joc(—g) where g = V f(wy)

We find a point in ' that “correlates” the most with —V f(w,)

® No projection to (' needed: Line 4 remains in ('

M. Frank and P. Wolfe (1956). . Naval Research Logistics Quarterly, vol. 3, no. 1-2, pp. 95-110;
V. F. Dem'yanov and A. M. Rubinov (1967). . SIAM Journal on Control,

vol. 5, no. 2, pp. 280-294. [English translation of paper in Vestnik Leningradskogo Universitera, Seriya Matematiki, Mekhaniki i Astronomii vol.
19, pp. 7-17, 1964].
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https://doi.org/10.1002/nav.3800030109
https://doi.org/10.1137/0305019

Definition: Extreme point
is an extreme point (of (') if it does not lie on the line segment of any two

points in (. In other words, if then

® For a convex set (/, w € (/' is an extreme point iff C'\ {w} remains convex.

Theorem: Convex maximizer is at the boundary
The maximizer of a convex | over (' can always be chosen from the extreme points.

Concave



https://en.wikipedia.org/wiki/Extreme_point

Consider the following simple problem:

melg w? 4+ (wy +1)> and  C:={w:w;, €[-1,1],w, € [0,2]}.

The global minimizer is clearly at w, = (0,0), as shown below.
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Let us see how the conditional gradient works on this toy problem:
e We first identify the four extreme points of (' as

z; = (—1,0), zo=1(1,0), z3=(1,2), z4=(—1,2).

Start with say w; = (1, 1), we compute the gradient V f(w;) = (2,4).

We pick the extreme point z that maximizes (z; —V f(w;)). Clearly, z; wins.

® Next, we find 77 > 0 to minimize f((1 —7n)wy + 1z;) by setting its derivative
w.r.t. 17 to 0 :
w+(0,1),w —z !
m—n*< 0.1) 5 >*F
[w — 2|3 5
[ J

Lastly, we compute wy = (1 — n)wy + mz; = (—2, %) and the process repeats.
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Convergence rate closely follows ©(1/t), while projected gradient converges in 2
iterations on this example!

—conditional gradient
—1/(k+2)




Sparsity

Let C':= {w : ||w]|[; < A}, whose polar operator reduces to

z; = argmax (z; —V f(w;)) > —Xe;, where (e;; V,f(w;)) = max |V, f(wy)].
llz[[1 <A J

® May choose e, to be the i-th standard basis (i.e. 1 at the i-th entry and 0
elsewhere)

(] t Wi t In comparison, after
even a single iteration, projected gradient can result in a fully dense iterate!

® The resulting coordinate-wise update is a bit wasteful though: we compute the
entire gradient V / only to find its minimum index and throw out everything else...



Sparsity in Rank

For the matrix setting:

Zy = argmax (Z; -V f(W,)) = - uv', where u'Vf(W)v=|ViW)|sp

HZHU‘S/\

After ¢ steps, the iterate 11, has (added) rank at most ¢

e Computing the spectral norm, i.e. the largest singular value, costs O(mn), an
order of magnitude cheaper than projection

Same for tensors
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Theorem: convergence of conditional gradient

Suppose | is convex and | -smooth, and (' is compact convex with bounded diameter
. Then, conditional gradient satisfies:

® Setting 1, = we have 1y = 1, m = (/42 ) and

2 2
t+2' ) (t+2
2L p?

+3

fwy) = f(w) < <

Qo

~

where the initializer w, surprisingly, does not play any role.



The Proof

f(Wep1) = f(w) = f((1—n) Wy + muze) — f(W)
9
(L-smoothness) < f(w;) — f(w) +m (2 — Wi; V f(wy)) + r’*tl— |wy — ZtH2
2 —_—

<p?

(optimality of z;) < f(w;) — f(W) +n (W — wy; VF(wy)) + 7§Lp2

(convexity of f) < (1—m)(Ff(we) = f(w)) + TLp*

Telescoping and collecting the terms we arrive at the claim
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Disccussions

® The rate O() is tight and cannot be improved (disappointing)
® Polar operator can be solved
— additive error: (z;, —g;) < maxwec (W, —8;) — &

. . . . ] p
— multiplicative error: (z;, —g;) < o - MaXwec (W, —g¢)

® Choices of the step size 7,

S = H% or more generally 7; = ©(1/t).

— Cauchy’s rule: n; € argmin f((1 — n)w¢ + nz).
0<n<1

— Quadratic rule:

o . . L2n2 —z:||? —z;V
ne = argmin f(wy) + n: (ze — wi; V f(wy)) + —2 H“;t A — <w|_tsz$f ,‘ZEWJ))
0<n<1 ¢

® Possible to accelerate

1

0
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Extension to Composite

N

s W

min f(w), where {(w)+r(w)

Algorithm 2: Generalized conditional gradient (GCG)

Input: w, € (', functions 7 and r

fort =0,1,... do
z; « argmin (z; VI{(wy)) + r(w) // r
choose step size 1, € [0, 1]
Wi < (1 —n)wy + iz // convex combination
T. Bonesky et al. (2007). . Inverse

Problems, vol. 23, no. 5, pp. 2041-2058; K. Bredies et al. (2009).
. Computational Optimization and Applications, vol. 42, pp. 173-193; Y. Yu et al. (2017).
. Journal of Machine Learning Research, vol. 18, pp. 1-46.
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https://doi.org/10.1088/0266-5611/23/5/014
https://doi.org/10.1007/s10589-007-9083-3
https://doi.org/10.1007/s10589-007-9083-3
https://jmlr.org/papers/volume18/14-348/14-348.pdf
https://jmlr.org/papers/volume18/14-348/14-348.pdf

Totally Corrective

® Inspecting the conditional gradient algorithm we realize that
Wil € conv{wg,Z1,...,%},
where the extreme points z, are repeatedly identified and averaged.

® One immediate, natural idea is to replace the next iterate w, ; as the best
approximation in the entire convex hull:

Wi = argmin f(w).
weEconv{wg,z1,...,2¢ }

Potentially much faster, but more expensive in each step

Can restrict memory size, even to 2

G. Meyer (1974). . SIAM Journal on Control, vol. 12, no. 4, pp. 655—655; C. A. Holloway (1974).

. Mathematical Programming, vol. 6, pp. 14-27.


https://doi.org/10.1137/0312050
https://doi.org/10.1007/BF01580219




