CS794/CO673: Optimization for Data Science Lec 10: Accelerated Proximal Gradient

Yaoliang Yu

October 21, 2022

Problem

Composite smooth minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in \mathbb{R}^{d}} f(\mathbf{w}), \text { where } f(\mathbf{w})=\ell(\mathbf{w})+r(\mathbf{w})
$$

- ℓ : smooth and possibly nonconvex
- I : nonsmooth and possibly nonconvex
- The sum may not be smooth or convex
- Minimizer may or may not be attained
- Maximization is just negation

Problem

Composite smooth minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in \mathbb{R}^{d}} f(\mathbf{w}), \quad \text { where } \quad f(\mathbf{w})=\ell(\mathbf{w})+r(\mathbf{w})
$$

- ℓ : smooth and possibly nonconvex
- r: nonsmooth and possibly nonconvex
- The sum may not be smooth or convex
- Ninimizer may or may not be aitiained
- Maximization is just negation

Problem

Composite smooth minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in \mathbb{R}^{d}} f(\mathbf{w}), \text { where } f(\mathbf{w})=\ell(\mathbf{w})+r(\mathbf{w})
$$

- ℓ : smooth and possibly nonconvex
- r : nonsmooth and possibly nonconvex
- The sum $f=\ell+r$ may not be smooth or convex
- Minimizer may or may not be attained
- Maximization is just negation

Problem

Composite smooth minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in \mathbb{R}^{d}} f(\mathbf{w}), \quad \text { where } \quad f(\mathbf{w})=\ell(\mathbf{w})+r(\mathbf{w})
$$

- ℓ : smooth and possibly nonconvex
- r : nonsmooth and possibly nonconvex
- The sum $f=\ell+r$ may not be smooth or convex
- Vinimizer may or may not be attained
- Maximization is just negation

Problem

Composite smooth minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in \mathbb{R}^{d}} f(\mathbf{w}), \text { where } f(\mathbf{w})=\ell(\mathbf{w})+r(\mathbf{w})
$$

- ℓ : smooth and possibly nonconvex
- r : nonsmooth and possibly nonconvex
- The sum $f=\ell+r$ may not be smooth or convex
- Minimizer may or may not be attained
- Maximization is just negation

Composite smooth minimization:

$$
f_{\star}=\inf _{\mathbf{w} \in \mathbb{R}^{d}} f(\mathbf{w}), \text { where } f(\mathbf{w})=\ell(\mathbf{w})+r(\mathbf{w})
$$

- ℓ : smooth and possibly nonconvex
- r : nonsmooth and possibly nonconvex
- The sum $f=\ell+r$ may not be smooth or convex
- Minimizer may or may not be attained
- Maximization is just negation

https://www.ams.org/journals/notices/202208/noti2534/

Sparsity

$$
\min _{\mathbf{w}} \underbrace{\frac{1}{n}\|\mathbf{w} \boldsymbol{x}-\mathbf{y}\|^{2} 2}_{\ell}+\underbrace{\lambda \cdot\|\mathbf{w}\| 0}_{r}
$$

- Balancing square error with sparsity
- n is convex and ' -smooth, is monsmooth and nonconvex

$$
\min _{\mathbf{w}} \underbrace{\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}}_{\ell}+\underbrace{\lambda \cdot\|\mathbf{w}\|_{1}}_{r}
$$

- Convex relaxation: r is now convex but remains nonsmooth (crucial)
R. Tibshirani. "Regression Shrinkage and Selection via the Lasso". Journal of the Royal Statistical Society: Series B, vol. 58, no. 1 (1996), pp. 267-288.

Sparsity

$$
\min _{\mathbf{w}} \underbrace{\frac{1}{n}\|\mathbf{w} \boldsymbol{x}-\mathbf{y}\|^{2} 2}_{\ell}+\underbrace{\lambda \cdot\|\mathbf{w}\| 0}_{r}
$$

- Balancing square error with sparsity
- l is convex and L-smooth, r is nonsmooth and nonconvex

$$
\min _{\mathbf{w}} \underbrace{\frac{1}{n}\|\mathbf{w} \mathbf{X}-\mathbf{y}\|_{2}^{2}}_{\ell}+\underbrace{\lambda \cdot\|\mathbf{w}\|_{1}}_{r}
$$

- Convex relaxation:
is now convex but remains nonsmooth (crucial)
R. Tibshirani. "Regression Shrinkage and Selection via the Lasso". Journal of the Royal Statistical Society: Series B, vol. 58, no. 1 (1996), pp. 267-288.

Sparsity

- Balancing square error with sparsity
- ℓ is convex and L-smooth, r is nonsmooth and nonconvex

- Convex relaxation: is now convex but remains nonsmooth (crucial)

[^0]
Sparsity

- Balancing square error with sparsity
- ℓ is convex and L-smooth, r is nonsmooth and nonconvex

- Convex relaxation: r is now convex but remains nonsmooth (crucial)

[^1]Input: $\mathrm{w}_{0} \in \mathbb{R}^{d}$, smooth function $\ell: \mathbb{R}^{d} \rightarrow \mathbb{R}, r: \mathbb{R}^{d} \rightarrow \mathbb{R}$
$\mathbf{1}$ for $t=0,1, \ldots$ do

```
2 }\mp@subsup{\textrm{Z}}{t}{}\leftarrow\mp@subsup{\mathbf{w}}{t}{}-\mp@subsup{\eta}{t}{}\cdot\nabla\ell(\mp@subsup{\mathbf{w}}{t}{})\quad // gradient step w.r.t. \ell
3 [ w
```

Input: $\mathrm{w}_{0}, \mathrm{~b} \in \mathbb{R}^{d}, A \in \mathbb{S}_{++}^{d} \in[\sigma, \mathrm{~L}], \gamma_{0}=2, \kappa=\frac{\mathrm{L}}{\sigma}$
$1 \mathrm{~g}_{0} \leftarrow A \mathrm{w}_{0}-\mathrm{b}$
$2 \mathbf{w}_{1} \leftarrow \mathbf{w}_{0}-\eta_{0} \mathbf{g}_{0}$
$\mathbf{3}$ for $t=1,2, \ldots$ do
4
$\mathbf{5}$
$\mathbf{6}$$\left[\begin{array}{lr}\mathrm{g}_{t} \leftarrow A \mathrm{w}_{t}-\mathrm{b} & \text { // gradient } \\ \gamma_{t} \leftarrow \frac{4(\kappa+1)^{2}}{4(\kappa+1)^{2}-(\kappa-1)^{2} \gamma_{t-1}} \\ \mathrm{w}_{t+1} \leftarrow \mathrm{w}_{t}-\gamma_{t} \cdot \eta_{t} \mathrm{~g}_{t}+\left(\gamma_{t}-1\right)\left(\mathrm{w}_{t}-\mathrm{w}_{t-1}\right) & / / \gamma_{t} \text { is the momentum size } \\ & \\ \end{array}\right.$

Heavy Ball

$$
\mathbf{w}_{t+1}=\underbrace{\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)}_{\text {gradient step }}+\underbrace{\beta_{t}\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)}_{\text {momentum }}=\underbrace{\left(1+\beta_{t}\right) \mathbf{w}_{t}-\beta_{t} \mathbf{w}_{t-1}}_{\text {extrapolation }}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)
$$

- Typically $\mathrm{w}_{1}=\mathrm{w}_{0}$ (so that at $t=1$ we start with the usual gradient step)
- The underlying continuous analogue:

Heavy Ball

$$
\mathbf{w}_{t+1}=\underbrace{\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)}_{\text {gradient step }}+\underbrace{\beta_{t}\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)}_{\text {momentum }}=\underbrace{\left(1+\beta_{t}\right) \mathbf{w}_{t}-\beta_{t} \mathbf{w}_{t-1}}_{\text {extrapolation }}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)
$$

- Typically $\mathrm{w}_{1}=\mathrm{w}_{0}$ (so that at $t=1$ we start with the usual gradient step)
- The underlying continuous analogue:

Heavy Ball

$$
\mathbf{w}_{t+1}=\underbrace{\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)}_{\text {gradient step }}+\underbrace{\beta_{t}\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)}_{\text {momentum }}=\underbrace{\left(1+\beta_{t}\right) \mathbf{w}_{t}-\beta_{t} \mathbf{w}_{t-1}}_{\text {extrapolation }}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)
$$

- Typically $\mathrm{w}_{1}=\mathrm{w}_{0}$ (so that at $t=1$ we start with the usual gradient step)
- The underlying continuous analogue:

$$
\begin{aligned}
& \mathbf{0}=\left[\left(\mathbf{w}_{t+1}-\mathbf{w}_{t}\right)-\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)\right]+\left(1-\beta_{t}\right)\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)+\eta_{t} \nabla f\left(\mathbf{w}_{t}\right) \\
& \approx \ddot{\mathbf{w}}(t)+\left(1-\beta_{t}\right) \dot{\mathbf{w}}(t)+\eta_{t} \nabla f(\mathbf{w}(t)) \\
& \mathbf{w}(t) \text { as the position of a heavy ball } \\
& \dot{w}(t) \text { is the velocity; } \ddot{\mathbf{w}}(t) \text { is the momentum } \\
& f \text { acts as the potential energy }
\end{aligned}
$$

Heavy Ball

$$
\mathbf{w}_{t+1}=\underbrace{\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)}_{\text {gradient step }}+\underbrace{\beta_{t}\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)}_{\text {momentum }}=\underbrace{\left(1+\beta_{t}\right) \mathbf{w}_{t}-\beta_{t} \mathbf{w}_{t-1}}_{\text {extrapolation }}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)
$$

- Typically $\mathrm{w}_{1}=\mathrm{w}_{0}$ (so that at $t=1$ we start with the usual gradient step)
- The underlying continuous analogue:

$$
\begin{aligned}
0 & =\left[\left(\mathbf{w}_{t+1}-\mathbf{w}_{t}\right)-\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)\right]+\left(1-\beta_{t}\right)\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)+\eta_{t} \nabla f\left(\mathbf{w}_{t}\right) \\
& \approx \ddot{\mathbf{w}}(t)+\left(1-\beta_{t}\right) \dot{\mathbf{w}}(t)+\eta_{t} \nabla f(\mathbf{w}(t))
\end{aligned}
$$

- $\mathbf{w}(t)$ as the position of a heavy ball

$$
\begin{align*}
& -\dot{w}(t) \text { is the velocity; } \dot{w}(t) \text { is the momentum } \\
& \hline \text { B. T. Polyak. "Some methods of speeding up the convergence of iteration methods". USSR Computational Mathematics and Mathematical } \\
& \text { Physics, vol. 4, no. } 5 \text { (1964), pp. 791-803. }
\end{align*}
$$

Heavy Ball

$$
\mathbf{w}_{t+1}=\underbrace{\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)}_{\text {gradient step }}+\underbrace{\beta_{t}\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)}_{\text {momentum }}=\underbrace{\left(1+\beta_{t}\right) \mathbf{w}_{t}-\beta_{t} \mathbf{w}_{t-1}}_{\text {extrapolation }}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)
$$

- Typically $\mathrm{w}_{1}=\mathrm{w}_{0}$ (so that at $t=1$ we start with the usual gradient step)
- The underlying continuous analogue:

$$
\begin{aligned}
0 & =\left[\left(\mathbf{w}_{t+1}-\mathbf{w}_{t}\right)-\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)\right]+\left(1-\beta_{t}\right)\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)+\eta_{t} \nabla f\left(\mathbf{w}_{t}\right) \\
& \approx \ddot{\mathbf{w}}(t)+\left(1-\beta_{t}\right) \dot{\mathbf{w}}(t)+\eta_{t} \nabla f(\mathbf{w}(t))
\end{aligned}
$$

- $\mathbf{w}(t)$ as the position of a heavy ball
- $\dot{\mathbf{w}}(t)$ is the velocity; $\ddot{\mathbf{w}}(t)$ is the momentum

Heavy Ball

$$
\mathbf{w}_{t+1}=\underbrace{\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)}_{\text {gradient step }}+\underbrace{\beta_{t}\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)}_{\text {momentum }}=\underbrace{\left(1+\beta_{t}\right) \mathbf{w}_{t}-\beta_{t} \mathbf{w}_{t-1}}_{\text {extrapolation }}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)
$$

- Typically $\mathrm{w}_{1}=\mathrm{w}_{0}$ (so that at $t=1$ we start with the usual gradient step)
- The underlying continuous analogue:

$$
\begin{aligned}
\mathbf{0} & =\left[\left(\mathbf{w}_{t+1}-\mathbf{w}_{t}\right)-\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)\right]+\left(1-\beta_{t}\right)\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)+\eta_{t} \nabla f\left(\mathbf{w}_{t}\right) \\
& \approx \ddot{\mathbf{w}}(t)+\left(1-\beta_{t}\right) \dot{\mathbf{w}}(t)+\eta_{t} \nabla f(\mathbf{w}(t))
\end{aligned}
$$

- $\mathbf{w}(t)$ as the position of a heavy ball
- $\dot{\mathbf{w}}(t)$ is the velocity; $\ddot{\mathbf{w}}(t)$ is the momentum
- f acts as the potential energy

Heavy Ball

$$
\mathbf{w}_{t+1}=\underbrace{\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)}_{\text {gradient step }}+\underbrace{\beta_{t}\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)}_{\text {momentum }}=\underbrace{\left(1+\beta_{t}\right) \mathbf{w}_{t}-\beta_{t} \mathbf{w}_{t-1}}_{\text {extrapolation }}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)
$$

- Typically $\mathrm{w}_{1}=\mathrm{w}_{0}$ (so that at $t=1$ we start with the usual gradient step)
- The underlying continuous analogue:

$$
\begin{aligned}
0 & =\left[\left(\mathbf{w}_{t+1}-\mathbf{w}_{t}\right)-\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)\right]+\left(1-\beta_{t}\right)\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)+\eta_{t} \nabla f\left(\mathbf{w}_{t}\right) \\
& \approx \ddot{\mathbf{w}}(t)+\left(1-\beta_{t}\right) \dot{\mathbf{w}}(t)+\eta_{t} \nabla f(\mathbf{w}(t))
\end{aligned}
$$

- $\mathbf{w}(t)$ as the position of a heavy ball
- $\dot{\mathbf{w}}(t)$ is the velocity; $\ddot{\mathbf{w}}(t)$ is the momentum
- f acts as the potential energy
- $\beta_{t}>0$: extrapolation vs. $\beta_{t}<0$:

Nesterov's Momentum

- Simultaneous gradient update and extrapolation:
\qquad gradient step
- Sequential gradient update and extrapolation:
- Continuous analogue:

Nesterov's Momentum

- Simultaneous gradient update and extrapolation:

$$
\mathbf{w}_{t+1}=\underbrace{\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)}_{\text {gradient step }}+\underbrace{\beta_{t}\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)}_{\text {momentum }}
$$

- Sequential gradient update and extrapolation:
- Continuous analogue:

Nesterov's Momentum

- Simultaneous gradient update and extrapolation:

$$
\mathbf{w}_{t+1}=\underbrace{\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)}_{\text {gradient step }}+\underbrace{\beta_{t}\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)}_{\text {momentum }}
$$

- Sequential gradient update and extrapolation:

$$
\begin{aligned}
\mathbf{z}_{t+1} & =\mathbf{w}_{t}+\beta_{t}\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right) \\
\mathbf{w}_{t+1} & =\mathbf{z}_{t+1}-\eta_{t} \nabla f\left(\mathbf{z}_{t+1}\right)
\end{aligned}
$$

- Continuous analogue:

Nesterov's Momentum

- Simultaneous gradient update and extrapolation:

$$
\mathbf{w}_{t+1}=\underbrace{\mathbf{w}_{t}-\eta_{t} \nabla f\left(\mathbf{w}_{t}\right)}_{\text {gradient step }}+\underbrace{\beta_{t}\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)}_{\text {momentum }}
$$

- Sequential gradient update and extrapolation:

$$
\begin{aligned}
\mathbf{z}_{t+1} & =\mathbf{w}_{t}+\beta_{t}\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right) \\
\mathbf{w}_{t+1} & =\mathbf{z}_{t+1}-\eta_{t} \nabla f\left(\mathbf{z}_{t+1}\right)
\end{aligned}
$$

- Continuous analogue:

$$
\ddot{\mathbf{w}}(t)+\frac{a}{t} \dot{\mathbf{w}}(t)+\nabla f(\mathbf{w}(t))=0
$$

Theorem: Optimal rate for Nesterov's momentum
Let $r=0$ and ℓ be L-smooth convex. Then, with the momentum size choice

$$
\beta_{t}=\frac{\gamma_{t}-1}{\gamma_{t+1}}, \quad \text { where } \quad \gamma_{t+1}=\frac{1+\sqrt{1+4 \gamma_{t}^{2}}}{2},
$$

Nesterov algorithm satisfies:

$$
f\left(\mathbf{w}_{t}\right)-f_{\star} \leq \frac{2 L\left\|\mathbf{w}_{0}-\mathrm{w}_{\star}\right\|_{2}^{2}}{\eta(t+2)^{2}},
$$

where the constant step size $\eta \in(0,1 / L)$ and $\mathrm{w}_{\star} \in \operatorname{argmin} f$ with $f_{\star}=f\left(\mathrm{w}_{\star}\right)$.

[^2]
Back to the Composite Problem

```
min
```

Algorithm 1: Accelerated Proximal Gradient, a.k.a. FISTA
Input: $\mathrm{w}_{0}=\mathrm{z}_{1}, \gamma_{1}=1, \eta_{0}$
$\mathbf{1}$ for $t=1,2, \ldots$ do
2 choose step size $\eta_{t} \leq \eta_{t-1}$
$3 \quad \mathbf{u}_{t}=\mathbf{z}_{t}-\eta_{t} \nabla \ell\left(\mathbf{z}_{t}\right)$
$\mathbf{w}_{t}=\mathrm{P}_{r}^{\eta_{t}}\left(\mathbf{u}_{t}\right)=\operatorname{argmin}_{\mathbf{u}} \frac{1}{2 \eta_{t}}\left\|\mathbf{u}_{t}-\mathbf{u}\right\|_{2}^{2}+r(\mathbf{u}) \quad / /$ proximal step w.r.t. r
$\gamma_{t+1}=\frac{1+\sqrt{1+4 \gamma_{t}^{2}}}{2}$
$\beta_{t}=\frac{\gamma_{t}-1}{\gamma_{t+1}} \quad$ // momentum size
$7 \quad \mathbf{z}_{t+1}=\mathbf{w}_{t}+\beta_{t}\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)$
// extrapolation

```

\section*{Disccussions}
- When \(r=0\), FISTA reduces to the original algorithm of Nesterov.
- When \(\gamma_{1}=1\), \(w_{0}\) does not really play any role: the first step is simply a proximal gradient step
- The smooth function l needs to be defined over the entire space \(\mathbb{R}^{d}\)
- The proximal sequence \(\mathrm{w}_{t}\) remains in dom \(r\) by construction
- The momentum choice \(\beta_{t}=\frac{\gamma_{t}-1}{v_{t+1}}\) is universal: given any sequerice


In particular, the choice
```

or equivalently }\mp@subsup{\beta}{t}{}

```
works equally well.

\section*{Disccussions}
- When \(r \equiv 0\), FISTA reduces to the original algorithm of Nesterov.
- When \(\gamma_{1}=1\), wo does not really play any role: the first step is simply a proximal gradient step
- The smooth function l needs to be defined over the entire space \(\mathbb{I}\).
- The proximal sequence \(\mathrm{w}_{t}\) remains in domr by construction
- The momentum choice \(\beta_{t}=\frac{\gamma_{t}-1}{\gamma_{t+1}}\) is universal: given any sequence

In particular, the choice
or equivalently \(\beta_{t}=\frac{1}{1}, \quad a \geq 3\)
works equally well.

\section*{Disccussions}
- When \(r \equiv 0\), FISTA reduces to the original algorithm of Nesterov.
- When \(\gamma_{1}=1\), \(\mathrm{w}_{0}\) does not really play any role: the first step is simply a proximal gradient step
- The smooth function l needs to be defined over the entire space
- The proximal sequence \(\mathrm{w}_{t}\) remains in dom \(r\) by construction
- The momentum choice \(\beta_{t}=\frac{\gamma t-1}{\gamma_{t+1}}\) is universal: given any sequence

In particular, the choice
or equivalently

works equally well.

\section*{Disccussions}
- When \(r \equiv 0\), FISTA reduces to the original algorithm of Nesterov.
- When \(\gamma_{1}=1, w_{0}\) does not really play any role: the first step is simply a proximal gradient step
- The smooth function \(\ell\) needs to be defined over the entire space \(\mathbb{R}^{d}\)
- The proximal sequence \(w_{t}\) remains in dom \(r\) by construction
- The momentum choice \(\beta_{t}=\frac{\gamma_{t}-1}{\gamma_{t+1}}\) is universal: given any sequence

In particular, the choice
works equally well.
or equivalently
\(a \geq 3\)

\section*{Disccussions}
- When \(r \equiv 0\), FISTA reduces to the original algorithm of Nesterov.
- When \(\gamma_{1}=1, w_{0}\) does not really play any role: the first step is simply a proximal gradient step
- The smooth function \(\ell\) needs to be defined over the entire space \(\mathbb{R}^{d}\)
- The proximal sequence \(\mathrm{w}_{t}\) remains in dom \(r\) by construction
- The momentum choice \(\beta_{t}=\frac{\gamma_{t}-1}{v_{t-1}}\) is universal: given any sequence

In particular, the choice
works equally well.
\(a \geq 3\)

\section*{Disccussions}
- When \(r \equiv 0\), FISTA reduces to the original algorithm of Nesterov.
- When \(\gamma_{1}=1\), \(\mathrm{w}_{0}\) does not really play any role: the first step is simply a proximal gradient step
- The smooth function \(\ell\) needs to be defined over the entire space \(\mathbb{R}^{d}\)
- The proximal sequence \(\mathrm{w}_{t}\) remains in dom \(r\) by construction
- The momentum choice \(\beta_{t}=\frac{\gamma_{t}-1}{\gamma_{t+1}}\) is universal: given any sequence \(\beta_{t}\),
\[
\forall t \in[j, i] \text { s.t. } \beta_{t} \neq 0, \quad \gamma_{t+1}=\frac{\gamma_{t}-1}{\beta_{t}}=\frac{\gamma_{j}-1-\sum_{m=j}^{t-1} \prod_{k=j}^{m} \beta_{k}}{\prod_{k=j}^{t} \beta_{k}} .
\]

In particular, the choice
\[
\gamma_{t}=\frac{t+a-2}{a-1}, \quad \text { or equivalently } \quad \beta_{t}=\frac{t-1}{t+a-1}, \quad a \geq 3
\]
works equally well.

Theorem: Optimal rate for Nesterov's momentum
Suppose \(\ell: \mathbb{R}^{d} \rightarrow \mathbb{R}\) is \(L^{[1]}\)-smooth and convex, \(r: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}\) is closed and convex, and \(\eta_{t} \equiv \eta \leq 1 / \mathrm{L}^{[1]}\). Then, the proximal sequence \(\left\{\mathrm{w}_{t}\right\}\) generated by FISTA satisfies: for all w and \(t \geq 1\),
\[
f\left(\mathbf{w}_{t}\right) \leq f(\mathbf{w})+\frac{\left\|\mathbf{w}-\mathbf{z}_{1}\right\|_{2}^{2}}{2 \eta_{t} \gamma_{t}^{2}} \leq f(\mathbf{w})+\frac{2\left\|\mathbf{w}-\mathbf{z}_{1}\right\|_{2}^{2}}{\eta_{t}(t+1)^{2}} .
\]
\[
\begin{aligned}
\frac{1}{2}+\gamma_{t} & \leq \frac{1+2 \gamma_{t}}{2}
\end{aligned} \leq \gamma_{t+1} \leq \frac{1+\sqrt{1+4 \gamma_{t}^{2}}}{2} \leq \frac{1+1+2 \gamma_{t}}{2}=1+\gamma_{t} \Longrightarrow
\]

Theorem: Optimal rate for Nesterov's momentum
Suppose \(\ell: \mathbb{R}^{d} \rightarrow \mathbb{R}\) is \(L^{[1]]}\)-smooth and convex, \(r: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}\) is closed and convex, and \(\eta_{t} \equiv \eta \leq 1 / \mathrm{L}^{[1]}\). Then, the proximal sequence \(\left\{\mathrm{w}_{t}\right\}\) generated by FISTA satisfies: for all w and \(t \geq 1\),
\[
f\left(\mathbf{w}_{t}\right) \leq f(\mathbf{w})+\frac{\left\|\mathbf{w}-\mathbf{z}_{1}\right\|_{2}^{2}}{2 \eta_{t} \gamma_{t}^{2}} \leq f(\mathbf{w})+\frac{2\left\|\mathbf{w}-\mathbf{z}_{1}\right\|_{2}^{2}}{\eta_{t}(t+1)^{2}} .
\]

- FISTA is not monotonic: it could happen that \(f\left(\mathrm{w}_{t+1}\right)>f\left(\mathrm{w}_{t}\right)\) !

\section*{Refinements}

If we choose \(\mathrm{w} \in \operatorname{argmin} f\), then we can make the following refinements:
- The extrapolation constants need only satisfy

In particular, the choice for \(\gamma_{t}=\frac{t+a-2}{a-1}, a \geq 3\) works and enjoys the same
guarantee (with slightly worse constants)
- We can use Amijo's rule to adaptively choose \(\eta_{t}\). However, the condition needs to be respected, meaning that each Amijo step should start with the step size from the previous iteration

If we choose \(\mathrm{w} \in \operatorname{argmin} f\), then we can make the following refinements:
- The extrapolation constants need only satisfy
\[
\gamma_{t-1}^{2} \geq \gamma_{t}^{2}-\gamma_{t} .
\]

In particular, the choice for \(\gamma_{t}=\frac{t+a-2}{a-1}, a \geq 3\) works and enjoys the same guarantee (with slightly worse constants).
- We can use Amijo's rule to adaptively choose \(\eta_{t}\). However, the condition
needs to be respected, meaning that each Amijo step should start with the step size from the previous iteration.

If we choose \(\mathrm{w} \in \operatorname{argmin} f\), then we can make the following refinements:
- The extrapolation constants need only satisfy
\[
\gamma_{t-1}^{2} \geq \gamma_{t}^{2}-\gamma_{t}
\]

In particular, the choice for \(\gamma_{t}=\frac{t+a-2}{a-1}, a \geq 3\) works and enjoys the same guarantee (with slightly worse constants).
- We can use Amijo's rule to adaptively choose \(\eta_{t}\). However, the condition \(\eta_{t} \leq \eta_{t-1}\) needs to be respected, meaning that each Amijo step should start with the step size from the previous iteration.
Algorithm 2: Monotonic FISTA
Input: \(\mathrm{w}_{0}=\mathrm{z}_{1}, \gamma_{1}=1, \eta_{0}\)
1 for \(t=1,2, \ldots\) do
2 choose step size \(\eta_{t} \leq \eta_{t-1}\)
// step size can only decrease \(\mathbf{u}_{t}=\mathbf{z}_{t}-\eta_{t} \nabla \ell\left(\mathbf{z}_{t}\right)\) \(\tilde{\mathbf{w}}_{t}=\mathrm{P}_{r}^{\eta_{t}}\left(\mathbf{u}_{t}\right)=\operatorname{argmin}_{\mathbf{u}} \frac{1}{2 \eta_{t}}\left\|\mathbf{u}_{t}-\mathbf{u}\right\|_{2}^{2}+r(\mathbf{u})\) // gradient step w.r.t. \(\ell\) choose \(\mathbf{w}_{t}\) such that \(f\left(\mathbf{w}_{t}\right) \leq f\left(\tilde{\mathbf{w}}_{t}\right)\)
// local improvment
\[
\gamma_{t+1}=\frac{1+\sqrt{1+4 \gamma_{t}^{2}}}{2}
\]
\[
\mathbf{z}_{t+1}=\mathbf{w}_{t}+\frac{\gamma_{t}-1}{\gamma_{t+1}}\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)+\frac{\gamma_{t}}{\gamma_{t+1}}\left(\tilde{\mathbf{w}}_{t}-\mathbf{w}_{t}\right)
\]
// extrapolation
- Can also restart the algorithm: roll back to the previous w

- Can also restart the algorithm: roll back to the previous \(\mathrm{w}_{t-1}\)
```

Algorithm 4: Monotonic FISTA
Input: $\mathrm{w}_{0}=\mathrm{z}_{1}, \gamma_{1}=1, \eta_{0}$
1 for $t=1,2, \ldots$ do
2 choose step size $\eta_{t} \leq \eta_{t-1}$
$3 \quad \mathbf{u}_{t}=\mathbf{z}_{t}-\eta_{t} \nabla \ell\left(\mathbf{z}_{t}\right)$
$4 \quad \tilde{\mathbf{w}}_{t}=\mathrm{P}_{r}^{\eta_{t}}\left(\mathbf{u}_{t}\right)=\operatorname{argmin}_{\mathbf{u}} \frac{1}{2 \eta_{t}}\left\|\mathbf{u}_{t}-\mathbf{u}\right\|_{2}^{2}+r(\mathbf{u})$
// step size can only decrease
// gradient step w.r.t. ℓ
choose \mathbf{w}_{t} such that $f\left(\mathbf{w}_{t}\right) \leq f\left(\tilde{w}_{t}\right) \quad / /$ local improvment
// proximal step w.r.t. r
$\gamma_{t+1}=\frac{1+\sqrt{1+4 \gamma_{t}^{2}}}{2}$
$\mathbf{z}_{t+1}=\mathbf{w}_{t}+\frac{\gamma_{t}-1}{\gamma_{t+1}}\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)+\frac{\gamma_{t}}{\gamma_{t+1}}\left(\tilde{\mathbf{w}}_{t}-\mathbf{w}_{t}\right)$
// extrapolation

```
- Can also restart the algorithm: roll back to the previous \(\mathrm{w}_{t-1}\)
- does the algorithm simply repeat and get stuck?
```

Algorithm 5: Monotonic FISTA
Input: $\mathrm{w}_{0}=\mathrm{z}_{1}, \gamma_{1}=1, \eta_{0}$
1 for $t=1,2, \ldots$ do
2 choose step size $\eta_{t} \leq \eta_{t-1}$
$3 \quad \mathbf{u}_{t}=\mathbf{z}_{t}-\eta_{t} \nabla \ell\left(\mathbf{z}_{t}\right)$
$4 \quad \tilde{\mathbf{w}}_{t}=\mathrm{P}_{r}^{\eta_{t}}\left(\mathbf{u}_{t}\right)=\operatorname{argmin}_{\mathbf{u}} \frac{1}{2 \eta_{t}}\left\|\mathbf{u}_{t}-\mathbf{u}\right\|_{2}^{2}+r(\mathbf{u})$
// step size can only decrease
// gradient step w.r.t. ℓ
choose \mathbf{w}_{t} such that $f\left(\mathbf{w}_{t}\right) \leq f\left(\tilde{w}_{t}\right) \quad / /$ local improvment
// proximal step w.r.t. r
$\gamma_{t+1}=\frac{1+\sqrt{1+4 \gamma_{t}^{2}}}{2}$
$\mathbf{z}_{t+1}=\mathbf{w}_{t}+\frac{\gamma_{t}-1}{\gamma_{t+1}}\left(\mathbf{w}_{t}-\mathbf{w}_{t-1}\right)+\frac{\gamma_{t}}{\gamma_{t+1}}\left(\tilde{\mathbf{w}}_{t}-\mathbf{w}_{t}\right)$
// extrapolation

```
- Can also restart the algorithm: roll back to the previous \(\mathrm{w}_{t-1}\)
- does the algorithm simply repeat and get stuck?
- what to do with \(\gamma_{t}\) ?

\section*{Algorithm 6: Optimized gradient descent \\ Input: \(\mathrm{w}_{0}=\mathrm{z}_{1}, \gamma_{1}=1, \eta_{0}\) \\ 1 for \(t=1,2, \ldots, T\) do}

2 choose step size \(\eta_{t} \leq \eta_{t-1}\)
\[
\begin{aligned}
& f\left(\mathbf{z}_{T+1}\right)-f_{\star} \leq \frac{\left\|\mathbf{z}_{1}-\mathbf{w}_{\star}\right\|_{2}^{2}}{2 \eta \gamma_{T+1}^{2}} \leq \frac{\left\|\mathbf{z}_{1}-\mathbf{w}_{\star}\right\|_{2}^{2}}{\eta(T+1)(T+1+\sqrt{2})}, \quad \eta_{t} \equiv \eta \leq 1 / L^{[1]} \\
& f\left(\mathbf{w}_{t}\right)-f_{\star} \leq \frac{\left\|\mathbf{z}_{1}-\mathbf{w}_{\star}\right\|_{2}^{2}}{4 \eta \gamma_{t}^{2}} \leq \frac{\left\|\mathbf{z}_{1}-\mathbf{w}_{\star}\right\|_{2}^{2}}{\eta(t+1)^{2}}
\end{aligned}
\]
D. Kim and J. A. Fessler. "Optimized first-order methods for smooth convex minimization". Mathematical Programming, vol. 159 (2016), pp. 81-107, D. Kim and J. A. Fessler. "On the Convergence Analysis of the Optimized Gradient Method". Journal of Optimization Theory and Applications, vol. 172 (2017), pp. 187-205.
```

Algorithm 7: Proximal point algorithm for minimization
Input: $\mathbf{w}_{0} \in \mathbb{R}^{d}$, function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$
$\mathbf{1}$ for $t=0,1, \ldots$ do
$2\left\llcorner\mathbf{w}_{t+1} \leftarrow \mathrm{P}_{f}^{\eta_{t}}\left(\mathbf{w}_{t}\right) \quad\right.$ // η_{t} is the step size

```
```


[^0]: R. Tibshirani. "Regression Shrinkage and Selection via the Lasso". Journal of the Royal Statistical Society: Series B, vol. 58, no. 1 (1996), pp. 267-288.

[^1]: R. Tibshirani. "Regression Shrinkage and Selection via the Lasso". Journal of the Royal Statistical Society: Series B, vol. 58, no. 1 (1996), pp. 267-288.

[^2]: Y. E. Nesterov. "A Method for Solving a Convex Programming Problem with Convergence Rate $O\left(1 / k^{2}\right)$ ".

 Soviet Mathematics Doklady, vol. 27, no. 2 (1983), pp. 372-376.

