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Problem

Composite smooth minimization:

f⋆ = inf
w∈Rd

f(w), where f(w) = ℓ(w) + r(w)

• ℓ: smooth and possibly nonconvex

• r: nonsmooth and possibly nonconvex

• The sum f = ℓ+ r may not be smooth or convex

• Minimizer may or may not be attained

• Maximization is just negation
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Sparsity

min
w

1
n
∥wX− y∥22︸ ︷︷ ︸

ℓ

+λ · ∥w∥0︸ ︷︷ ︸
r

• Balancing square error with sparsity

• ℓ is convex and L-smooth, r is nonsmooth and nonconvex

min
w

1
n
∥wX− y∥22︸ ︷︷ ︸

ℓ

+λ · ∥w∥1︸ ︷︷ ︸
r

• Convex relaxation: r is now convex but remains nonsmooth (crucial)

R. Tibshirani. “Regression Shrinkage and Selection via the Lasso”. Journal of the Royal Statistical Society: Series B, vol. 58, no. 1 (1996),
pp. 267–288.
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Input: w0 ∈ Rd, smooth function ℓ : Rd → R, r : Rd → R

1 for t = 0, 1, . . . do
2 zt ← wt − ηt · ∇ℓ(wt) // gradient step w.r.t. ℓ

3 wt+1 ← Pηt
r (zt) // proximal step w.r.t. r

Input: w0,b ∈ Rd, A ∈ Sd++ ∈ [σ, L], γ0 = 2, κ = L
σ

1 g0 ← Aw0 − b
2 w1 ← w0 − η0g0 // ηt ≡ 2

L+σ

3 for t = 1, 2, . . . do
4 gt ← Awt − b // gradient

5 γt ← 4(κ+1)2

4(κ+1)2−(κ−1)2γt−1
// γt is the momentum size

6 wt+1 ← wt− γt · ηtgt + (γt − 1) (wt −wt−1) // ηt ≡ 2
L+σ

L10 4/14



Heavy Ball

wt+1 = wt − ηt∇f(wt)︸ ︷︷ ︸
gradient step

+ βt(wt −wt−1)︸ ︷︷ ︸
momentum

= (1 + βt)wt − βtwt−1︸ ︷︷ ︸
extrapolation

−ηt∇f(wt)

• Typically w1 = w0 (so that at t = 1 we start with the usual gradient step)
• The underlying continuous analogue:

0 = [(wt+1 −wt)− (wt −wt−1)] + (1− βt)(wt −wt−1) + ηt∇f(wt)

≈ ẅ(t) + (1− βt)ẇ(t) + ηt∇f(w(t))

– w(t) as the position of a heavy ball
– ẇ(t) is the velocity; ẅ(t) is the momentum
– f acts as the potential energy
– βt > 0: extrapolation vs. βt < 0:

B. T. Polyak. “Some methods of speeding up the convergence of iteration methods”. USSR Computational Mathematics and Mathematical
Physics, vol. 4, no. 5 (1964), pp. 791–803.
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– f acts as the potential energy
– βt > 0: extrapolation vs. βt < 0:

B. T. Polyak. “Some methods of speeding up the convergence of iteration methods”. USSR Computational Mathematics and Mathematical
Physics, vol. 4, no. 5 (1964), pp. 791–803.

L10 5/14

https://doi.org/10.1016/0041-5553(64)90137-5


Heavy Ball

wt+1 = wt − ηt∇f(wt)︸ ︷︷ ︸
gradient step

+ βt(wt −wt−1)︸ ︷︷ ︸
momentum

= (1 + βt)wt − βtwt−1︸ ︷︷ ︸
extrapolation

−ηt∇f(wt)

• Typically w1 = w0 (so that at t = 1 we start with the usual gradient step)
• The underlying continuous analogue:

0 = [(wt+1 −wt)− (wt −wt−1)] + (1− βt)(wt −wt−1) + ηt∇f(wt)
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Nesterov’s Momentum
• Simultaneous gradient update and extrapolation:

wt+1 = wt − ηt∇f(wt)︸ ︷︷ ︸
gradient step

+ βt(wt −wt−1)︸ ︷︷ ︸
momentum

• Sequential gradient update and extrapolation:

zt+1 = wt + βt(wt −wt−1)

wt+1 = zt+1 − ηt∇f(zt+1)

• Continuous analogue:

ẅ(t) +
a

t
ẇ(t) +∇f

(
w(t)

)
= 0

W. Su et al. “A Differential Equation for Modeling Nesterov’s Accelerated Gradient Method: Theory and Insights”. Journal of Machine
Learning Research, vol. 17, no. 153 (2016), pp. 1–43.
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Theorem: Optimal rate for Nesterov’s momentum

Let r = 0 and ℓ be L-smooth convex. Then, with the momentum size choice

βt =
γt − 1

γt+1

, where γt+1 =
1 +

√
1 + 4γ2

t

2
,

Nesterov algorithm satisfies:

f(wt)− f⋆ ≤
2L∥w0 −w⋆∥22

η(t+ 2)2
,

where the constant step size η ∈ (0, 1/L) and w⋆ ∈ argmin f with f⋆ = f(w⋆).

Y. E. Nesterov. “A Method for Solving a Convex Programming Problem with Convergence Rate O(1/k2)”. Soviet Mathematics Doklady,
vol. 27, no. 2 (1983), pp. 372–376.

L10 7/14
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Back to the Composite Problem
min
w

ℓ(w) + r(w)

Algorithm 1: Accelerated Proximal Gradient, a.k.a. FISTA
Input: w0 = z1, γ1 = 1, η0

1 for t = 1, 2, . . . do
2 choose step size ηt ≤ ηt−1 // step size can only decrease
3 ut = zt − ηt∇ℓ(zt) // gradient step w.r.t. ℓ

4 wt = Pηt
r (ut) = argminu

1
2ηt
∥ut − u∥22 + r(u) // proximal step w.r.t. r

5 γt+1 =
1+
√

1+4γ2
t

2

6 βt =
γt−1
γt+1

// momentum size

7 zt+1 = wt + βt(wt −wt−1) // extrapolation

A. Beck and M. Teboulle. “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems”. SIAM Journal on Imaging
Sciences, vol. 2, no. 1 (2009), pp. 183–202, Y. E. Nesterov. “Gradient Methods for Minimizing Composite Functions”. Mathematical
Programming, Series B, vol. 140 (2013), pp. 125–161.

L10 8/14
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Disccussions
• When r ≡ 0, FISTA reduces to the original algorithm of Nesterov.
• When γ1 = 1, w0 does not really play any role: the first step is simply a proximal

gradient step
• The smooth function ℓ needs to be defined over the entire space Rd

• The proximal sequence wt remains in dom r by construction
• The momentum choice βt =

γt−1
γt+1

is universal: given any sequence βt,

∀t ∈ [j, i] s.t. βt ̸= 0, γt+1 =
γt − 1

βt

=
γj − 1−

∑t−1
m=j

∏m
k=j βk∏t

k=j βk

.

In particular, the choice

γt =
t+ a− 2

a− 1
, or equivalently βt =

t− 1

t+ a− 1
, a ≥ 3,

works equally well.
L10 9/14



Disccussions
• When r ≡ 0, FISTA reduces to the original algorithm of Nesterov.
• When γ1 = 1, w0 does not really play any role: the first step is simply a proximal

gradient step
• The smooth function ℓ needs to be defined over the entire space Rd

• The proximal sequence wt remains in dom r by construction
• The momentum choice βt =

γt−1
γt+1

is universal: given any sequence βt,

∀t ∈ [j, i] s.t. βt ̸= 0, γt+1 =
γt − 1

βt

=
γj − 1−

∑t−1
m=j

∏m
k=j βk∏t

k=j βk

.

In particular, the choice

γt =
t+ a− 2

a− 1
, or equivalently βt =

t− 1

t+ a− 1
, a ≥ 3,

works equally well.
L10 9/14



Disccussions
• When r ≡ 0, FISTA reduces to the original algorithm of Nesterov.
• When γ1 = 1, w0 does not really play any role: the first step is simply a proximal

gradient step
• The smooth function ℓ needs to be defined over the entire space Rd

• The proximal sequence wt remains in dom r by construction
• The momentum choice βt =

γt−1
γt+1

is universal: given any sequence βt,

∀t ∈ [j, i] s.t. βt ̸= 0, γt+1 =
γt − 1

βt

=
γj − 1−

∑t−1
m=j

∏m
k=j βk∏t

k=j βk

.

In particular, the choice

γt =
t+ a− 2

a− 1
, or equivalently βt =

t− 1

t+ a− 1
, a ≥ 3,

works equally well.
L10 9/14



Disccussions
• When r ≡ 0, FISTA reduces to the original algorithm of Nesterov.
• When γ1 = 1, w0 does not really play any role: the first step is simply a proximal

gradient step
• The smooth function ℓ needs to be defined over the entire space Rd

• The proximal sequence wt remains in dom r by construction
• The momentum choice βt =

γt−1
γt+1

is universal: given any sequence βt,

∀t ∈ [j, i] s.t. βt ̸= 0, γt+1 =
γt − 1

βt

=
γj − 1−

∑t−1
m=j

∏m
k=j βk∏t

k=j βk

.

In particular, the choice

γt =
t+ a− 2

a− 1
, or equivalently βt =

t− 1

t+ a− 1
, a ≥ 3,

works equally well.
L10 9/14



Disccussions
• When r ≡ 0, FISTA reduces to the original algorithm of Nesterov.
• When γ1 = 1, w0 does not really play any role: the first step is simply a proximal

gradient step
• The smooth function ℓ needs to be defined over the entire space Rd

• The proximal sequence wt remains in dom r by construction
• The momentum choice βt =

γt−1
γt+1

is universal: given any sequence βt,

∀t ∈ [j, i] s.t. βt ̸= 0, γt+1 =
γt − 1

βt

=
γj − 1−

∑t−1
m=j

∏m
k=j βk∏t

k=j βk

.

In particular, the choice

γt =
t+ a− 2

a− 1
, or equivalently βt =

t− 1

t+ a− 1
, a ≥ 3,

works equally well.
L10 9/14



Disccussions
• When r ≡ 0, FISTA reduces to the original algorithm of Nesterov.
• When γ1 = 1, w0 does not really play any role: the first step is simply a proximal

gradient step
• The smooth function ℓ needs to be defined over the entire space Rd

• The proximal sequence wt remains in dom r by construction
• The momentum choice βt =

γt−1
γt+1

is universal: given any sequence βt,

∀t ∈ [j, i] s.t. βt ̸= 0, γt+1 =
γt − 1

βt

=
γj − 1−

∑t−1
m=j

∏m
k=j βk∏t

k=j βk

.

In particular, the choice

γt =
t+ a− 2

a− 1
, or equivalently βt =

t− 1

t+ a− 1
, a ≥ 3,

works equally well.
L10 9/14



Theorem: Optimal rate for Nesterov’s momentum

Suppose ℓ : Rd → R is L[1]-smooth and convex, r : Rd → R ∪ {∞} is closed and
convex, and ηt ≡ η ≤ 1/L[1]. Then, the proximal sequence {wt} generated by FISTA
satisfies: for all w and t ≥ 1,

f(wt) ≤ f(w) +
∥w − z1∥22

2ηtγ2
t

≤ f(w) +
2 ∥w − z1∥22
ηt(t+ 1)2

.

1

2
+ γt ≤

1 + 2γt
2

≤ γt+1 ≤
1 +

√
1 + 4γ2

t

2
≤ 1 + 1 + 2γt

2
= 1 + γt =⇒

t−1
2

+ γ1 ≤ γt ≤ t− 1 + γ1

• FISTA is not monotonic: it could happen that f(wt+1) > f(wt)!
L10 10/14
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convex, and ηt ≡ η ≤ 1/L[1]. Then, the proximal sequence {wt} generated by FISTA
satisfies: for all w and t ≥ 1,

f(wt) ≤ f(w) +
∥w − z1∥22

2ηtγ2
t

≤ f(w) +
2 ∥w − z1∥22
ηt(t+ 1)2

.

1

2
+ γt ≤

1 + 2γt
2

≤ γt+1 ≤
1 +

√
1 + 4γ2

t

2
≤ 1 + 1 + 2γt

2
= 1 + γt =⇒

t−1
2

+ γ1 ≤ γt ≤ t− 1 + γ1
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Refinements

If we choose w ∈ argmin f , then we can make the following refinements:
• The extrapolation constants need only satisfy

γ2
t−1 ≥ γ2

t − γt.

In particular, the choice for γt = t+a−2
a−1

, a ≥ 3 works and enjoys the same
guarantee (with slightly worse constants).

• We can use Amijo’s rule to adaptively choose ηt. However, the condition
ηt ≤ ηt−1 needs to be respected, meaning that each Amijo step should start with
the step size from the previous iteration.
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Algorithm 2: Monotonic FISTA
Input: w0 = z1, γ1 = 1, η0

1 for t = 1, 2, . . . do
2 choose step size ηt ≤ ηt−1 // step size can only decrease
3 ut = zt − ηt∇ℓ(zt) // gradient step w.r.t. ℓ

4 w̃t = Pηt
r (ut) = argminu

1
2ηt
∥ut − u∥22 + r(u) // proximal step w.r.t. r

5 choose wt such that f(wt) ≤ f(w̃t) // local improvment

6 γt+1 =
1+
√

1+4γ2
t

2

7 zt+1 = wt +
γt−1
γt+1

(wt −wt−1) +
γt

γt+1
(w̃t −wt) // extrapolation

• Can also restart the algorithm: roll back to the previous wt−1

– does the algorithm simply repeat and get stuck?
– what to do with γt?

A. Beck and M. Teboulle. “Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems”.
IEEE Transactions on Image Processing, vol. 18, no. 11 (2009), pp. 2419–2434.

L10 12/14

https://ieeexplore.ieee.org/document/5173518


Algorithm 3: Monotonic FISTA
Input: w0 = z1, γ1 = 1, η0

1 for t = 1, 2, . . . do
2 choose step size ηt ≤ ηt−1 // step size can only decrease
3 ut = zt − ηt∇ℓ(zt) // gradient step w.r.t. ℓ

4 w̃t = Pηt
r (ut) = argminu

1
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Algorithm 4: Monotonic FISTA
Input: w0 = z1, γ1 = 1, η0

1 for t = 1, 2, . . . do
2 choose step size ηt ≤ ηt−1 // step size can only decrease
3 ut = zt − ηt∇ℓ(zt) // gradient step w.r.t. ℓ

4 w̃t = Pηt
r (ut) = argminu

1
2ηt
∥ut − u∥22 + r(u) // proximal step w.r.t. r

5 choose wt such that f(wt) ≤ f(w̃t) // local improvment

6 γt+1 =
1+
√

1+4γ2
t

2

7 zt+1 = wt +
γt−1
γt+1

(wt −wt−1) +
γt

γt+1
(w̃t −wt) // extrapolation

• Can also restart the algorithm: roll back to the previous wt−1

– does the algorithm simply repeat and get stuck?
– what to do with γt?

A. Beck and M. Teboulle. “Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems”.
IEEE Transactions on Image Processing, vol. 18, no. 11 (2009), pp. 2419–2434.

L10 12/14

https://ieeexplore.ieee.org/document/5173518


Algorithm 5: Monotonic FISTA
Input: w0 = z1, γ1 = 1, η0

1 for t = 1, 2, . . . do
2 choose step size ηt ≤ ηt−1 // step size can only decrease
3 ut = zt − ηt∇ℓ(zt) // gradient step w.r.t. ℓ

4 w̃t = Pηt
r (ut) = argminu

1
2ηt
∥ut − u∥22 + r(u) // proximal step w.r.t. r

5 choose wt such that f(wt) ≤ f(w̃t) // local improvment

6 γt+1 =
1+
√

1+4γ2
t

2

7 zt+1 = wt +
γt−1
γt+1

(wt −wt−1) +
γt

γt+1
(w̃t −wt) // extrapolation

• Can also restart the algorithm: roll back to the previous wt−1

– does the algorithm simply repeat and get stuck?
– what to do with γt?

A. Beck and M. Teboulle. “Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems”.
IEEE Transactions on Image Processing, vol. 18, no. 11 (2009), pp. 2419–2434.
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Algorithm 6: Optimized gradient descent
Input: w0 = z1, γ1 = 1, η0

1 for t = 1, 2, . . . , T do
2 choose step size ηt ≤ ηt−1 // step size can only decrease
3 wt = zt − ηt∇ℓ(zt) // gradient step w.r.t. ℓ

4 γt+1 =
1+
√

1+4(1+Jt=T K)γ2
t

2

5 zt+1 = wt +
γt−1
γt+1

(wt −wt−1) +
γt

γt+1
(wt − zt) // extrapolation

f(zT+1)− f⋆ ≤
∥z1 −w⋆∥22
2ηγ2

T+1

≤ ∥z1 −w⋆∥22
η(T + 1)(T + 1 +

√
2)
, ηt ≡ η ≤ 1/L[1]

f(wt)− f⋆ ≤
∥z1 −w⋆∥22

4ηγ2
t

≤ ∥z1 −w⋆∥22
η(t+ 1)2

D. Kim and J. A. Fessler. “Optimized first-order methods for smooth convex minimization”. Mathematical Programming, vol. 159 (2016),
pp. 81–107, D. Kim and J. A. Fessler. “On the Convergence Analysis of the Optimized Gradient Method”. Journal of Optimization Theory and
Applications, vol. 172 (2017), pp. 187–205.
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Algorithm 7: Proximal point algorithm for minimization
Input: w0 ∈ Rd, function f : Rd → R

1 for t = 0, 1, . . . do
2 wt+1 ← Pηt

f (wt) // ηt is the step size
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