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OR Dataset

X1 X X3 Xy




Quadratic Classifier

F(x) = (x,Qx) + V2 {x,p) +b
® Predict as before y = sign(f(x))
® Weights to be learned: ) ¢ R™? pc RY be R

® Setting () = 0 reduces to the linear case
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The Power of Lifting ¥

f(x) = (x,Qx) + V2 (x,p) +b
= (xx",Q) + <\f2X,p> +b
- <q6(}()7 ‘A7>

, where x € R? — ¢(x) € R

o

e Weights to be learned: w = [p
b

® Nonlinear in x but linear in ¢(x): ¢ must be nonlinear

® Feature map ¢(x) =

o
V2x
1

eR
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From Nonlinear to Linear




The Kernel Trick

R REXd+d+1

Feature map ¢ : blows up the dimension

® Do we have to operate in the high-dimensional feature space, explicitly?
e But,
(9(x), ¢(z)) = V2x | [V 2z = ({(x, Z>)2 +2(x,2) +1
1 1
= (c.2) +1)?
e Which can still be computed in O(d) time!
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Reverse Engineering

Given feature map ¢ : X' — H, the resulting inner product

(p(x),0(z)) =: k(x,2)

can be computed, albeit inefficiently due to large dimension of #

Conversely, given & : X' x X' — R, does there exist ¢ : X — H such that

(o(x), #(2)) = k(x,2)?

For computational purposes, all we need is the existence of such ¢

Later, neural nets learn ¢ simultaneously with w



(Reproducing) Kernels

We call & : X x X — R a (reproducing) if there exists some feature transform
¢ : X — H so that (p(x), #(z)) = k(x, z).

® Choosing a feature transform ¢ determines the corresponding kernel £
® Choosing a kernel % determines some feature transform ¢ too
— may not be unique; cannonical choice p(x) := k(-,x)
— ¢(x1,12) := [22,V2x122, 23, V211, V213, 1]
— (w1, T2) = [23, 120, 172, T3, V221, V210, 1]
RKHS: Hy := {x — (¢(x),w) : w € H} CR*
: <f~ ]‘"(X)> - f(X) and <k(,X) k(,Z)> - ]{(X./Z)

N. Aronszajn. “Theory of Reproducing Kernels”

Transactions of the American Mathematical Society, vol. 68, no. 3 (1950), pp. 337—404.
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https://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space
https://doi.org/10.2307/1990404

Verifying a Kernel

Theorem: Positive Semi-definite (PSD)

is a kernel iff for any , for any , the kernel

matrix is symmetric and PSD. In notation:

® Symmetric: /;; = K,
e PSD: for a € R",

n n

(a, Kav) ZZ(» a; iG; >0

=1 j=1

— if equality is attained only at & = 0, then it is called positive definite or strictly PSD

® (Can think of a kernel as some form of similarity measure



Examples

Polynomial kernel: k(x,z) = ((x,z) + 1)?

— underlying RKHS?

Gaussian kernel: k(x,z) = exp(—||x — z||3/0)

— infinite-dimensional RKHS!

Laplace kernel: k(x,z) = exp(—||x — zl[[2/0)

Brownian motion: k(s,t) := s At for s,t >0
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A Word About Universality

1-1 correspondence between a kernel /& and its RKHS 7,

RKHS is a linear space of functions from X" to R

A kernel is called if its RKHS is large enough to approximate any
continuous function (over a compact domain ')

e Kernel mean embedding: P — | ¢(X) € Hy, 1-1iff i is
X~P
C. A. Micchelli et al. . Journal of Machine Learning Research, vol. 7, no. 95 (2006), pp. 2651-2667, B. K. Sriperumbudur
et al. . Journal of Machine Learning Research, vol. 12, no. 70 (2011),

pp. 2389-2410.
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http://jmlr.org/papers/v7/micchelli06a.html
http://jmlr.org/papers/v12/sriperumbudur11a.html

Kernel Calculus

e |f L is a kernel, so is Ak for any A > 0

— if k has feature map ¢, what could be the feature map of \k?

e If i, and k5 are kernels, so is &y + ks

— if k; has feature map ¢;, what could be the feature map of k1 + ko?
e |f i, and k5 are kernels, so is ki ks

— if k; has feature map ¢;, what could be the feature map of kqks?

® |f /;; are kernels then the limit lim, &, (when exists) is also a kernel
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Kernel SVM




Testing

® Solve v € R™, and recover

n
W = E (@7 yz() )(7
1=1

® \We do not know ¢ so cannot compute w explicitly

® For testing, only need to compute

f(x) = (p(x),w < Za Vi (X > — Z(}:,;yjk(x,xi) S

1=1 =1

¢ Knowing the dual variable «, training set {x;,y,;} and the kernel % suffices!
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Tradeoff

Previously: training O(nd) and testing O(d)

Kernel (including the linear kernel (x,z)): training O(n"d) and testing O(nd)

Managed to avoid explicit dependence on feature dimension (could even be )

At the price of n (the training set size) times slower, both in training and test

Also necessary to store the training set (at least the support vectors)



Does It Work?

° 1 =
—1.5 -1 —-0.5 05 1 15
—o —1 C

¢(X) = [:1;%/ \@:1:1:1;2, :1;37 \@31;1: \[25172: 1]
k(x,2) = ((x,2) + 1)
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Crunch Crunch
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oo |—=

O] = Qg = O3 = Oy =

W = Z azyz(b(X’L) — [07 _\/L§7 07 07 07 0]

d(x) = [22, V2x120, 22, V221, V25, 1]
f(x) = (o(x), w) = Z%’WH’Q X;) = —T1T2
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Logistic Regression Revisited

n

1
min = > log(1 + exp(—y; (xi, w))) + | w3
1=1

w n <

n

1 A .
min — " log(1 + exp(—y; ($(x:), w))) + 5w
=il

w (e

Theorem: Representer Theorem

The optimal for some .



Orthogonal Decomposition

w=wl4+w

wl e span{y;op(x;) :i=1,...,n}

Logistic loss only depends on w!

Regularizer is smaller if w' = 0

Thus, w = wl =37 ajy;6(x;) for some o € R”
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Learning the Kernel

I, A
min Ezé(<®<zl)7w>>+§”w‘|§

e Can learn a positive combination of base kernels, with coefficient (3 learned
simultaneously with w

A 2
111};31 E 14 <<@d bp(z >> + §HWH2

® Apply the representer theorem to plug in
W= 0, @ (s
J j2

G. R. Lanckriet et al. “Learning the Kernel Matrix with Semidefinite Programming”. Journal of Machine Learning Research, vol. 5 (2004),
pp. 27-72.
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https://www.jmlr.org/papers/v5/lanckriet04a.html




