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Quadratic Classifier

f(x) = ⟨x, Qx⟩+
√
2 ⟨x,p⟩+ b

• Predict as before ŷ = sign(f(x))

• Weights to be learned: Q ∈ Rd×d, p ∈ Rd, b ∈ R

• Setting Q = 0 reduces to the linear case
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The Power of Lifting

f(x) = ⟨x, Qx⟩+
√
2 ⟨x,p⟩+ b

=
〈
xx⊤, Q

〉
+
〈√

2x,p
〉
+ b

= ⟨ϕ(x),w⟩

• Feature map ϕ(x) =


−−→
xx⊤
√
2x
1

, where x ∈ Rd 7→ ϕ(x) ∈ Rd×d+d+1

• Weights to be learned: w =

−→Qp
b

 ∈ Rd×d+d+1

• Nonlinear in x but linear in ϕ(x): ϕ must be nonlinear
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From Nonlinear to Linear
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The Kernel Trick

• Feature map ϕ : Rd → R
d× d+ d+ 1 blows up the dimension

• Do we have to operate in the high-dimensional feature space, explicitly?

• But, all we need is the inner product!

⟨ϕ(x), ϕ(z)⟩ =

〈
−−→
xx⊤
√
2x
1

 ,


−−→
zz⊤√
2z
1

〉 = (⟨x, z⟩)2 + 2 ⟨x, z⟩+ 1

= (⟨x, z⟩+ 1)2

• Which can still be computed in O(d) time!
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Reverse Engineering

• Given feature map ϕ : X → H, the resulting inner product

⟨ϕ(x), ϕ(z)⟩ =: k(x, z)

can be computed, albeit inefficiently due to large dimension of H

• Conversely, given k : X × X → R, does there exist ϕ : X → H such that

⟨ϕ(x), ϕ(z)⟩ = k(x, z)?

• For computational purposes, all we need is the existence of such ϕ

• Later, neural nets learn ϕ simultaneously with w
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(Reproducing) Kernels

We call k : X × X → R a (reproducing) kernel if there exists some feature transform
ϕ : X → H so that ⟨ϕ(x), ϕ(z)⟩ = k(x, z).

• Choosing a feature transform ϕ determines the corresponding kernel k

• Choosing a kernel k determines some feature transform ϕ too

– may not be unique; cannonical choice φ(x) := k(·,x)

– ϕ(x1, x2) := [x21,
√
2x1x2, x

2
2,
√
2x1,

√
2x2, 1]

– ψ(x1, x2) := [x21, x1x2, x1x2, x
2
2,
√
2x1,

√
2x2, 1]

• Unique RKHS: Hk := {x 7→ ⟨ϕ(x),w⟩ : w ∈ H} ⊆ RX

• Reproducing: ⟨f, k(·,x)⟩ = f(x) and ⟨k(·,x), k(·, z)⟩ = k(x, z)

N. Aronszajn. “Theory of Reproducing Kernels”. Transactions of the American Mathematical Society, vol. 68, no. 3 (1950), pp. 337–404.
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Verifying a Kernel

Theorem: Positive Semi-definite (PSD)

k : X × X → R is a kernel iff for any n ∈ N, for any x1, . . . ,xn ∈ X , the kernel
matrix Kij := k(xi,xj) is symmetric and PSD. In notation: K ∈ Sn+.

• Symmetric: Kij = Kji

• PSD: for any α ∈ Rn,

⟨α, Kα⟩ =
n∑

i=1

n∑
j=1

αiαjKij ≥ 0.

– if equality is attained only at α = 0, then it is called positive definite or strictly PSD

• Can think of a kernel as some form of similarity measure
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Examples

• Polynomial kernel: k(x, z) = (⟨x, z⟩+ 1)p

– underlying RKHS?

• Gaussian kernel: k(x, z) = exp(−∥x− z∥22/σ)

– infinite-dimensional RKHS!

• Laplace kernel: k(x, z) = exp(−∥x− z∥2/σ)

• Brownian motion: k(s, t) := s ∧ t for s, t ≥ 0
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A Word About Universality

• 1-1 correspondence between a kernel k and its RKHS Hk

• RKHS is a linear space of functions from X to R

• A kernel is called universal if its RKHS is large enough to approximate any
continuous function (over a compact domain X )

• Kernel mean embedding: P 7→ E
X∼P

φ(X) ∈ Hk, 1-1 iff k is characteristic

C. A. Micchelli et al. “Universal Kernels”. Journal of Machine Learning Research, vol. 7, no. 95 (2006), pp. 2651–2667, B. K. Sriperumbudur
et al. “Universality, Characteristic Kernels and RKHS Embedding of Measures”. Journal of Machine Learning Research, vol. 12, no. 70 (2011),
pp. 2389–2410.
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http://jmlr.org/papers/v7/micchelli06a.html
http://jmlr.org/papers/v12/sriperumbudur11a.html


Kernel Calculus

• If k is a kernel, so is λk for any λ ≥ 0

– if k has feature map ϕ, what could be the feature map of λk?

• If k1 and k2 are kernels, so is k1 + k2

– if ki has feature map ϕi, what could be the feature map of k1 + k2?

• If k1 and k2 are kernels, so is k1k2

– if ki has feature map ϕi, what could be the feature map of k1k2?

• If kt are kernels then the limit limt kt (when exists) is also a kernel
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Kernel SVM

min
w,b

1
2
∥w∥22 + C

n∑
i=1

(1− yiŷi)
+

s.t. ŷi = ⟨xi,w⟩+ b,∀i

min
C≥α≥0

−
∑
i

αi +
1
2

∑
i

∑
j αiαjyiyj ⟨xi,xj⟩

s.t.
∑
i

αiyi = 0

min
C≥α≥0

−
∑
i

αi +
1
2

∑
i

∑
j αiαjyiyjk(xi,xj)

s.t.
∑
i

αiyi = 0
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Testing

• Solve α ∈ Rn, and recover

w =
n∑

i=1

αiyiϕ(xi)

• We do not know ϕ so cannot compute w explicitly

• For testing, only need to compute

f(x) := ⟨ϕ(x),w⟩ =

〈
ϕ(x),

n∑
i=1

αiyiϕ(xi)

〉
=

n∑
i=1

αiyik(x,xi) ∈ Hk

• Knowing the dual variable α, training set {xi, yi} and the kernel k suffices!
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Tradeoff

• Previously: training O(nd) and testing O(d)

• Kernel (including the linear kernel ⟨x, z⟩): training O(n2d) and testing O(nd)

• Managed to avoid explicit dependence on feature dimension (could even be ∞)

• At the price of n (the training set size) times slower, both in training and test

• Also necessary to store the training set (at least the support vectors)
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Does It Work?
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k(x, z) = (⟨x, z⟩+ 1)2

L07 15/20



Crunch Crunch

min
C≥α≥0

−
∑
i

αi +
1
2

∑
i

∑
j αiαjyiyjk(xi,xj)

s.t.
∑
i

αiyi = 0
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α1 = α2 = α3 = α4 =
1
8

w =
∑
i

αiyiϕ(xi) = [0,− 1√
2
, 0, 0, 0, 0]

ϕ(x) = [x2
1,
√
2x1x2, x

2
2,
√
2x1,

√
2x2, 1]

f(x) = ⟨ϕ(x),w⟩ =
∑
i

αiyik(x,xi) = −x1x2
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Logistic Regression Revisited

min
w

1

n

n∑
i=1

log(1 + exp(−yi ⟨xi,w⟩)) + λ

2
∥w∥22

min
w

1

n

n∑
i=1

log(1 + exp(−yi ⟨ϕ(xi),w⟩)) + λ

2
∥w∥22

Theorem: Representer Theorem

The optimal w =
∑n

j=1 αjyjϕ(xj) for some α ∈ Rn.
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Orthogonal Decomposition

w = w∥ +w⊥

• w∥ ∈ span{yiϕ(xi) : i = 1, . . . , n}

• Logistic loss only depends on w∥

• Regularizer is smaller if w⊥ = 0

• Thus, w = w∥ =
∑

j αjyjϕ(xj) for some α ∈ Rn
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Learning the Kernel

min
w

1

n

∑
i

ℓ(⟨ϕ(zi),w⟩) + λ

2
∥w∥22

• Can learn a positive combination of base kernels, with coefficient β learned
simultaneously with w

min
w,β

1

n

∑
i

ℓ

(〈⊕
p

βpϕp(zi),w

〉)
+

λ

2
∥w∥22

• Apply the representer theorem to plug in

w =
∑
j

αj

⊕
p

βpϕp(zj)

G. R. Lanckriet et al. “Learning the Kernel Matrix with Semidefinite Programming”. Journal of Machine Learning Research, vol. 5 (2004),
pp. 27–72.
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https://www.jmlr.org/papers/v5/lanckriet04a.html



