CS480/680: Introduction to Machine Learning
 Lec 07: Reproducing Kernels

Yaoliang Yu

May 29, 2024

XOR Dataset

	x_{1}	x_{2}	x_{3}	x_{4}
	0	1	0	1
	0	0	1	1
y	-	+	+	-

Quadratic Classifier

$$
f(\mathbf{x})=\langle\mathbf{x}, Q \mathbf{x}\rangle+\sqrt{2}\langle\mathbf{x}, \mathbf{p}\rangle+b
$$

- Predict as before $\hat{y}=\operatorname{sign}(f(x))$
- Weights to be learned: $Q \in \mathbb{R}^{d \times d}, \mathrm{p} \in \mathbb{R}^{d}, b \in \mathbb{R}$
- Setting $Q=0$ reduces to the linear case

The Power of Lifting

$$
\begin{aligned}
f(\mathbf{x}) & =\langle\mathbf{x}, Q \mathbf{x}\rangle+\sqrt{2}\langle\mathbf{x}, \mathbf{p}\rangle+b \\
& =\left\langle\mathbf{x} \mathbf{x}^{\top}, Q\right\rangle+\langle\sqrt{2} \mathbf{x}, \mathbf{p}\rangle+b \\
& =\langle\phi(\mathbf{x}), \mathbf{w}\rangle
\end{aligned}
$$

- Feature map $\phi(\mathbf{x})=\left[\begin{array}{c}\overline{\mathbf{x x}^{7}} \\ \sqrt{2} \mathbf{x} \\ 1\end{array}\right]$, where $\mathbf{x} \in \mathbb{R}^{d} \mapsto \phi(\mathbf{x}) \in \mathbb{R}^{d \times d+d+1}$
- Weights to be learned: $\mathbf{w}=\left[\begin{array}{c}\vec{Q} \\ \mathrm{p} \\ b\end{array}\right] \in \mathbb{R}^{d \times d+d+1}$
- Nonlinear in x but linear in $\phi(\mathrm{x}): \phi$ must be nonlinear

From Nonlinear to Linear

The Kernel Trick

- Feature map $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times d+d+1}$ blows up the dimension
- Do we have to operate in the high-dimensional feature space, explicitly?
- But, all we need is the inner product!

$$
\begin{aligned}
\langle\phi(\mathrm{x}), \phi(\mathbf{z})\rangle & =\left\langle\left[\begin{array}{c}
\overrightarrow{\mathrm{xx}}^{\dagger} \\
\sqrt{2} \mathrm{x} \\
1
\end{array}\right],\left[\begin{array}{c}
\overrightarrow{\mathrm{zz}}^{\dagger} \\
\sqrt{2} \mathbf{z} \\
1
\end{array}\right]\right\rangle=(\langle\mathbf{x}, \mathbf{z}\rangle)^{2}+2\langle\mathbf{x}, \mathbf{z}\rangle+1 \\
& =(\langle\mathbf{x}, \mathbf{z}\rangle+1)^{2}
\end{aligned}
$$

- Which can still be computed in $O(d)$ time!
- Given feature map $\phi: \mathcal{X} \rightarrow \mathcal{H}$, the resulting inner product

$$
\langle\phi(\mathbf{x}), \phi(\mathbf{z})\rangle=: k(\mathbf{x}, \mathbf{z})
$$

can be computed, albeit inefficiently due to large dimension of \mathcal{H}

- Conversely, given $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, does there exist $\phi: \mathcal{X} \rightarrow \mathcal{H}$ such that

$$
\langle\phi(\mathrm{x}), \phi(\mathrm{z})\rangle=k(\mathrm{x}, \mathrm{z}) ?
$$

- For computational purposes, all we need is the existence of such ϕ
- Later, neural nets learn ϕ simultaneously with w

(Reproducing) Kernels

We call $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ a (reproducing) kernel if there exists some feature transform $\phi: \mathcal{X} \rightarrow \mathcal{H}$ so that $\langle\phi(\mathrm{x}), \phi(\mathrm{z})\rangle=k(\mathrm{x}, \mathrm{z})$.

- Choosing a feature transform ϕ determines the corresponding kernel k
- Choosing a kernel k determines some feature transform ϕ too
- may not be unique; cannonical choice $\varphi(\mathrm{x}):=k(\cdot, \mathrm{x})$
- $\phi\left(x_{1}, x_{2}\right):=\left[x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, 1\right]$
$-\psi\left(x_{1}, x_{2}\right):=\left[x_{1}^{2}, x_{1} x_{2}, x_{1} x_{2}, x_{2}^{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, 1\right]$
- Unique RKHS: $\mathcal{H}_{k}:=\{\mathrm{x} \mapsto\langle\phi(\mathrm{x}), \mathrm{w}\rangle: \mathrm{w} \in \mathcal{H}\} \subseteq \mathbb{R}^{\mathcal{X}}$
- Reproducing: $\langle f, k(\cdot, \mathbf{x})\rangle=f(\mathbf{x})$ and $\langle k(\cdot, \mathbf{x}), k(\cdot, \mathbf{z})\rangle=k(\mathbf{x}, \mathbf{z})$

Verifying a Kernel

Theorem: Positive Semi-definite (PSD)
$k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a kernel iff for any $n \in \mathbb{N}$, for any $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n} \in \mathcal{X}$, the kernel matrix $K_{i j}:=k\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right)$ is symmetric and PSD. In notation: $K \in \mathbb{S}_{+}^{n}$.

- Symmetric: $K_{i j}=K_{j i}$
- PSD: for any $\alpha \in \mathbb{R}^{n}$,

$$
\langle\alpha, K \alpha\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K_{i j} \geq 0 .
$$

- if equality is attained only at $\alpha=0$, then it is called positive definite or strictly PSD
- Can think of a kernel as some form of similarity measure

Examples

- Polynomial kernel: $k(\mathbf{x}, \mathbf{z})=(\langle\mathbf{x}, \mathbf{z}\rangle+1)^{p}$
- underlying RKHS?
- Gaussian kernel: $k(\mathrm{x}, \mathrm{z})=\exp \left(-\|\mathrm{x}-\mathrm{z}\|_{2}^{2} / \sigma\right)$
- infinite-dimensional RKHS!
- Laplace kernel: $k(\mathrm{x}, \mathrm{z})=\exp \left(-\|\mathrm{x}-\mathrm{z}\|_{2} / \sigma\right)$
- Brownian motion: $k(s, t):=s \wedge t$ for $s, t \geq 0$

A Word About Universality

- 1-1 correspondence between a kernel k and its RKHS \mathcal{H}_{k}
- RKHS is a linear space of functions from \mathcal{X} to \mathbb{R}
- A kernel is called universal if its RKHS is large enough to approximate any continuous function (over a compact domain \mathcal{X})
- Kernel mean embedding: $P \mapsto \underset{X \sim P}{\mathbb{E}} \varphi(\mathrm{X}) \in \mathcal{H}_{k}, 1-1$ iff k is characteristic

Kernel Calculus

- If k is a kernel, so is λk for any $\lambda \geq 0$
- if k has feature map ϕ, what could be the feature map of λk ?
- If k_{1} and k_{2} are kernels, so is $k_{1}+k_{2}$
- if k_{i} has feature map ϕ_{i}, what could be the feature map of $k_{1}+k_{2}$?
- If k_{1} and k_{2} are kernels, so is $k_{1} k_{2}$
- if k_{i} has feature map ϕ_{i}, what could be the feature map of $k_{1} k_{2}$?
- If k_{t} are kernels then the $\operatorname{limit} \lim _{t} k_{t}$ (when exists) is also a kernel

Kernel SVM

$$
\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|_{2}^{2}+C \sum_{i=1}^{n}\left(1-\mathrm{y}_{i} \hat{y}_{i}\right)^{+}
$$

s.t. $\hat{y}_{i}=\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b, \forall i$

$$
\begin{aligned}
\min _{C \geq a \geq 0} & -\sum_{i} \alpha_{i}+\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \\
\text { s.t. } & \sum_{i} \alpha_{i} \mathrm{y}_{i}=0
\end{aligned}
$$

$$
\begin{aligned}
\min _{C \geq \alpha \geq 0} & -\sum_{i} \alpha_{i}+\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
\text { s.t. } & \sum_{i} \alpha_{i} y_{i}=0
\end{aligned}
$$

Testing

- Solve $\alpha \in \mathbb{R}^{n}$, and recover

$$
\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} \mathbf{y}_{i} \phi\left(\mathbf{x}_{i}\right)
$$

- We do not know ϕ so cannot compute w explicitly
- For testing, only need to compute

$$
f(\mathbf{x}):=\langle\phi(\mathbf{x}), \mathbf{w}\rangle=\left\langle\phi(\mathbf{x}), \sum_{i=1}^{n} \alpha_{i} \mathrm{y}_{i} \phi\left(\mathbf{x}_{i}\right)\right\rangle=\sum_{i=1}^{n} \alpha_{i} \mathrm{y}_{i} k\left(\mathbf{x}, \mathbf{x}_{i}\right) \in \mathcal{H}_{k}
$$

- Knowing the dual variable α, training set $\left\{\mathrm{x}_{i}, \mathrm{y}_{i}\right\}$ and the kernel k suffices!
- Previously: training $O(n d)$ and testing $O(d)$
- Kernel (including the linear kernel $\langle\mathrm{x}, \mathrm{z}\rangle$): training $O\left(n^{2} d\right)$ and testing $O(n d)$
- Managed to avoid explicit dependence on feature dimension (could even be ∞)
- At the price of n (the training set size) times slower, both in training and test
- Also necessary to store the training set (at least the support vectors)

Does It Work?

$$
\begin{aligned}
& \phi(\mathrm{x})=\left[x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, 1\right] \\
& k(\mathbf{x}, \mathbf{z})=(\langle\mathbf{x}, \mathbf{z}\rangle+1)^{2}
\end{aligned}
$$

Crunch Crunch

$$
\begin{aligned}
& \text { " } \sum_{20 x=0}
\end{aligned}
$$

$$
\left[\begin{array}{llll}
-1 & & & \\
& 1 & & \\
& & -1 & \\
& & & 1
\end{array}\right] \underbrace{\left[\begin{array}{llll}
9 & 1 & 1 & 1 \\
1 & 9 & 1 & 1 \\
1 & 1 & 9 & 1 \\
1 & 1 & 1 & 9
\end{array}\right]}\left[\begin{array}{cccc}
-1 & & & \\
& 1 & & \\
& & -1 & \\
& & & 1
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& \alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=\frac{1}{8} \\
& \mathrm{w}=\sum_{i} \alpha_{i} \mathrm{y}_{i} \phi\left(\mathrm{x}_{i}\right)=\left[0,-\frac{1}{\sqrt{2}}, 0,0,0,0\right] \\
& \phi(\mathrm{x})=\left[x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, 1\right] \\
& f(\mathbf{x})=\langle\phi(\mathbf{x}), \mathbf{w}\rangle=\sum_{i} \alpha_{i} y_{i} k\left(\mathbf{x}, \mathbf{x}_{i}\right)=-x_{1} x_{2}
\end{aligned}
$$

Logistic Regression Revisited

$$
\min _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \log \left(1+\exp \left(-\mathrm{y}_{i}\left\langle\mathrm{x}_{i}, \mathbf{w}\right\rangle\right)\right)+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2}
$$

$$
\min _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \log \left(1+\exp \left(-\mathbf{y}_{i}\left\langle\phi\left(\mathbf{x}_{i}\right), \mathbf{w}\right\rangle\right)\right)+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2}
$$

Theorem: Representer Theorem
The optimal w $=\sum_{j=1}^{n} \alpha_{j} y_{j} \phi\left(\mathrm{x}_{j}\right)$ for some $\alpha \in \mathbb{R}^{n}$.

Orthogonal Decomposition

$$
\mathbf{w}=\mathbf{w}^{\|}+\mathbf{w}^{\perp}
$$

- $\mathrm{w}^{\|} \in \operatorname{span}\left\{\mathrm{y}_{i} \phi\left(\mathrm{x}_{i}\right): i=1, \ldots, n\right\}$
- Logistic loss only depends on wll
- Regularizer is smaller if $\mathrm{w}^{\perp}=0$
- Thus, $\mathrm{w}=\mathrm{w}^{\|}=\sum_{j} \alpha_{j} \mathrm{y}_{j} \phi\left(\mathrm{x}_{j}\right)$ for some $\alpha \in \mathbb{R}^{n}$

Learning the Kernel

$$
\min _{\mathbf{w}} \frac{1}{n} \sum_{i} \ell\left(\left\langle\phi\left(\mathbf{z}_{i}\right), \mathbf{w}\right\rangle\right)+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2}
$$

- Can learn a positive combination of base kernels, with coefficient β learned simultaneously with w

$$
\min _{\mathbf{w}, \boldsymbol{\beta}} \frac{1}{n} \sum_{i} \ell\left(\left\langle\bigoplus_{p} \beta_{p} \phi_{p}\left(\mathbf{z}_{i}\right), \mathbf{w}\right\rangle\right)+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2}
$$

- Apply the representer theorem to plug in

$$
\mathbf{w}=\sum_{j} \alpha_{j} \bigoplus_{p} \beta_{p} \phi_{p}\left(\mathbf{z}_{j}\right)
$$

G. R. Lanckriet et al. "Learning the Kernel Matrix with Semidefinite Programming". Journal of Machine Learning Research, vol. 5 (2004),

