CS480/680: Introduction to Machine Learning
Lec 14: Boosting

Yaoliang Yu

W UNIVERSITY OF FACULTY OF MATHEMATICS

DAVID R. CHERITON SCHOOL
@ WATE R Loo OF COMPUTER SCIENCE

June 24, 2024

“"Which Algorithm Should | Use for My Problem”

® Cheap answers

deep learning, but then which architecture?

| don't know; whatever the boss says
— whatever | can find in xxxxx package

The one that runs fast!

Try a bunch and pick the “best”

e Why not a few algorithms? But how?

Bootstrap Aggregating

TTIEL

sample with replacement sample with replacement

diggn- i - BApdA- i

h1 o hT

e.g. majority vote

® Bootstrap if can't afford to have many training sets

L. Breiman . Machine Learning, vol. 24, no. 2 (1996), pp. 123-140.

https://link.springer.com/article/10.1023/A:1018054314350

Why and When Bagging Works

e With 7"i.i.d. classifiers /;, averaging reduces variance by a factor of 7°

e Beneficial if classifiers have high variance (i.e. unstable)

— performances change a lot if training set is slightly perturbed

— simple models such as decision trees but not sophisticated ones

Randomized Output

® For regression, add small noise (e.g. Gaussian) to each y; while leaving x;
unchanged

® For classification, can

— use one-hot encoding and reduce to regression

— randomly flip a small proportion of training labels

® Train many /; and average/vote the results

L. Breiman. . Machine Learning, vol. 40, no. 3 (2000), pp. 229-242.

https://link.springer.com/article/10.1023/A:1007682208299

Random Forest

e A collection of tree-structured classifiers {/1(x;0;) -t =1,...

— 0, are i.i.d. random

® Random feature split

® Random samples (bagging)

L. Breiman. “Random Forest”. Machine Learning, vol. 45, no. 1 (2001), pp. 5-32.

5/22

https://link.springer.com/article/10.1023/A:1010933404324

Boosting

® Given a collection of classifiers /;, each slightly better than random guessing

GOOD BATTERY

N
A

® Yes! i;% —
o

FLAT BATTERY I

6/22

STRENGTH
IN
NUMBERS strength

HOWPOLLS WORK

And numbers
WHY WE NEED THEM

GVELLIOTT
MORRIS

Call E

To each example (z;
Initially, all weights

if € > 1/2 —1/p(n,s) then return WeakLearn(é, EX) QFanda

ae—g'(e)

EX, «+ EX
hy «— Learn(e, /5, EX;)
T —¢€/3
let @ be an estimate of a; = Pryep[hi (v) # c(v)):
choose a sample sufficiently large that |a; — & | < 7 with probability > 1 — §/5
if @ < ¢ — 7y then return h,

. Repeat

or
i.
defun EX3()
{ flip coin
if heads, return the first instance v from EX for which h.(v)
else return the first instance v from EX for which A
hy — Learn(a, /3, EX;)
72— (1 —2a)e/8
let & be an estimate of e = Pryeplha(v) # c(v)]:
choose a sample sufficiently large that |e — &| < 75 with probability > 1 - §/5
if ¢ < ¢ — 7, then return &,

c(v)
() }

ool

4. Return

Subroutine

defun EX;()
{ return the first instance v from EX for which Ay(v) # hy(v) } 1
hy « Learn(a, /5, EX3)

choose

2

defun h(v)
{ b — ha(v), by ha(v)
if b; = b, then return b,
else return A;(v) } 3
return k Return

R. E. Schapire. Machine Learning, vol. 5

Information and Computation, vol. 121, no.

(For example, any k

(a) repeat the following

Increment r
) Update 1l

Normalize the weights by dividing each weight by).

Perform a binary search

, no. 2 (1990), pp. 197-22
2 (1995), 8

X m times to generate a iple L) (#gno b)} -

I;) in § lcr*aapcrd and count r;.

are 1/m and all

a weight w;
counts are zero.

(small) k that satisfies
\-
2
=z
> 1/(29%) In{m/2) is sufficient.)

the following steps for i=1...k.
steps for I=1...(1
until a weak hypothesis is found.
Call WeakLearn, referring it to FiltEX as its source of examples,
and save the returned hypothesis as h,.

A)In(2k

/&)

Sum the weights of the examples on which h(z;)
If the

then

sum is smaller than 1/2

declare h, a weak hypothesis and exit the lcop.

by cne for each example on which h(z;) =1

e weights of the examples according to w

is defined in Equation (1).

hoag

as the final hypothesis, hy, the majority vote over hj,

FitEX
a real number z uniformly at random in the range (

for the index j fer which

w, is defined to be zerc.)

the example (z

Y. Freund.

pp. 25

https://doi.org/10.1007/BF00116037
https://doi.org/10.1006/inco.1995.1136
https://doi.org/10.1006/inco.1995.1136

Algorithm 1: Hedging.

Input: initial weight vector w; € R" , discount factor €
Output: last weight vector w4

fort=1,2,....7 do
learner chooses probability vector p;, = w,/ (1, w;) // normalization
environment chooses loss vector ¢, € [0, 1]" // £; may depend on p;!

learner suffers (expected) loss (p;, 4;)
learner updates weights w;,; = w, ® 3% // element-wise product ® and power
optional scaling: w;,1 < ¢ 1Wyiiq // ci41 >0 can be arbitrary

n horses in a race, repeated for 7" rounds

pi; s the proportion of money bet on the i-th horse at round ¢

/;; is the loss on the i-th horse at round ¢

for the winning horses and -7 for the losing ones

Y. Freund and R. E. Schapire. . Journal of
Computer and System Sciences, vol. 55, no. 1 (1997), pp. 119-139.

http://www.sciencedirect.com/science/article/pii/S002200009791504X

Theorem: Hedging guarantee

. We have

, we have

® | ogarithmic dependence on 7: can bet on many horses!
® Square root dependence on T’
® In the long run, can do no worse than the best horse (with hindsight)

Algorithm 2: Adaptive Boosting.

Input: initial weight w, € R" , training set D, = |(x;,y;) (", € R? x
Output: meta-classifier 1 : R? — cx e [(In 1) (h(x) —) > 0]
1 fort=1,2,....7 do

2 | S Wt/ <1;Wt> // normalization
3 hy < WeakLearn(Dn, pt> // t-th weak classifier h;:RY —

4 Vi, by =1— \ht(xi) = yi| // higher loss if more accurate!

5 e =1— (P, &) =D iy Pilhe(xi) — i // error of h;
6 By = Et/(l = Et) // discounting f; <1 <= ¢ < %
7 Wit = W O ﬁft // element-wise product ® and power
8 optional scaling: Wit] < Cipr1 Wiy // ci+1 >0 can be arbitrary

Y. Freund and R. E. Schapire. “A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting”. Journal of

Computer and System Sciences, vol. 55, no. 1 (1997), pp. 119-139.
L14

11/22

http://www.sciencedirect.com/science/article/pii/S002200009791504X

Properties of Adaboost

® Expected error ¢, < % <= f; € [0, 1], adaptive and automatic
— what if ¢ > %?
® Each weak classifier focuses on examples that are misclassified before

pl=lhi(xi)—yil
Wil = Wi+ Py c

— when will w;; become 07
® Meta-classifier / aggregates the history, with weight In j% for the ¢-th classifier
— which classifier gets higher weight?

® No same classifier in a row (assuming 7, € {0,1}):
eer1(he) =3, where e(h) := Y7 pulh(x:) — yil

— what happens to ; and In 3%7

12/22

Does It Work?

Original data set, D, Update weights, D, Update weights, D,

Combined classifier

I'rained classifier

Theorem: Exponential decay of

The meta-classifier /1 of Adaboost satisfies:

Assuming

In particular, if for all 7, then

® To achieve ¢ (weighted) , combine at most 7" = [In *| weak
classifiers, each of which slightly better than random guessing (by a margin of ~)

Will Adaboost Overfit?

Boosting

o 0
classifiers

1.0-

cumulative distribution

L Pboost

Adaboost test error
Adaboost train error

™

1e1 162 1e3 1e4 1e5 166
e — e

\/ P
LP min margin
Adaboost min margin

A. J. Grove and D. Schuurmans.
National Conference on Artificial Intelligence. 1998, pp. 692—699, L. Breiman
vol. 11, no. 7 (1999), pp. 1493-1517.

Adaboost test
Adaboost train error

LP min margin
Adaboost min margin

In:

Adaboost test error
Adaboost train error

LP min margin
Adaboost min margin

Proceedings of the Fifteenth
Neural Computation,

http://www.aaai.org/Library/AAAI/1998/aaai98-098.php
https://www.mitpressjournals.org/doi/abs/10.1162/089976699300016106?journalCode=neco

C4.5 Adaboost LP-Adaboost DualLPboost

Data set error% win% | error% margin | errorf% win% margin | errorf% win% margin
Audiology | 22.70 17.0 16.39 0.446 | 1648 49.0 0.501 18.09 38.5 0.370
Banding 25.58 125 15.00 0.528 | 1542 455 0.565 [22.50 20.0 0.430
Chess 418 125 270 0.657 2.74 46.5 0.730 297 37.0 0.560
Colic 1446 67.5 17.03 0.051 1897 31.5 0.182 | 18.16 44.0 0.108
Glass 3091 22.0 2395 0513 | 2391 495 0.624 | 26.86 0.386
Hepatitis 21.06 38.0 1894 0329 1756 59.0 0.596 | 20.00 0.385
Labor 1533 43.0 12.83 0.535 | 13.83 47.0 0.684 [15.17 . 0.599

Promoter 21.09 10.5 7.55 0.599 8.00 47.0 0.694 [13.55 . 0.378
Sonar 28.81 16.0 18.10 0.628 | 18.62 48.0 0.685 [25.00 . 0.478
Soybean 8.86 . 6.97 -0.005 6.55 62.0 0.017 8.41 . 0.003
Splice 16.18 . 6.83 0.535 7.00 25.0 0.569 [11.01 . 0.393
Vote 4.95 502 0.723 530 445 0.795 5.27 0.756
Wine 9.11 461 0.869 489 475 0.912 4.50 0.814

Pros and Cons

“Straightforward” way to boost performance

Flexible: can work with any base classifiers

Less interpretable

Longer training time

— harder to parallelize, compared to bagging

boosting

sequential

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/

19/22

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/

Extensions

LogitBoost

GradBoost

L2Boost

XGboost

Multi-class

Regression

Ranking

Face Detection

® Each detection window results in ~ 160k features

® Speed is crucial for real-time detection

P. Viola and M. J. Jones. . International Journal of Computer Vision, vol. 57, no. 2 (2004), pp. 137-154.

https://doi.org/10.1023/B:VISI.0000013087.49260.fb

(e B P P o A g
MEaEf®erda
REYPPL. BYE™
R WEPE @S
WP e el

