
CS480/680: Introduction to Machine Learning
Lec 14: Boosting

Yaoliang Yu

June 24, 2024

“Which Algorithm Should I Use for My Problem”

• Cheap answers

– deep learning, but then which architecture?

– I don’t know; whatever the boss says

– whatever I can find in xxxxx package

– The one that runs fast!

– Try a bunch and pick the “best”

• Why not combine a few algorithms? But how?

L14 1/22

Bootstrap Aggregating

• Bootstrap if can’t afford to have many independent training sets

L. Breiman. “Bagging Predictors”. Machine Learning, vol. 24, no. 2 (1996), pp. 123–140.

L14 2/22

https://link.springer.com/article/10.1023/A:1018054314350

Why and When Bagging Works

• With T i.i.d. classifiers ht, averaging reduces variance by a factor of T

• Beneficial if classifiers have high variance (i.e. unstable)

– performances change a lot if training set is slightly perturbed

– simple models such as decision trees but not sophisticated ones

L14 3/22

Randomized Output

• For regression, add small noise (e.g. Gaussian) to each yi while leaving xi

unchanged

• For classification, can

– use one-hot encoding and reduce to regression

– randomly flip a small proportion of training labels

• Train many ht and average/vote the results

L. Breiman. “Randomizing outputs to increase prediction accuracy”. Machine Learning, vol. 40, no. 3 (2000), pp. 229–242.

L14 4/22

https://link.springer.com/article/10.1023/A:1007682208299

Random Forest

• A collection of tree-structured classifiers {h(x; θt) : t = 1, . . . , T}

– θt are i.i.d. random

• Random feature split

• Random samples (bagging)

L. Breiman. “Random Forest”. Machine Learning, vol. 45, no. 1 (2001), pp. 5–32.

L14 5/22

https://link.springer.com/article/10.1023/A:1010933404324

Boosting

• Given a collection of classifiers ht, each slightly better than random guessing

• Is it possible to construct a meta-classifier with nearly optimal accuracy?

• Yes!

L14 6/22

L14 7/22

R. E. Schapire. “The strength of weak learnability”. Machine Learning, vol. 5, no. 2 (1990), pp. 197–227, Y. Freund. “Boosting a Weak
Learning Algorithm by Majority”. Information and Computation, vol. 121, no. 2 (1995), pp. 256–285.

L14 8/22

https://doi.org/10.1007/BF00116037
https://doi.org/10.1006/inco.1995.1136
https://doi.org/10.1006/inco.1995.1136

Algorithm 1: Hedging.
Input: initial weight vector w1 ∈ Rn

++, discount factor β ∈ [0, 1]
Output: last weight vector wT+1

1 for t = 1, 2, . . . , T do
2 learner chooses probability vector pt = wt/ ⟨1,wt⟩ // normalization
3 environment chooses loss vector ℓt ∈ [0, 1]n // ℓt may depend on pt!
4 learner suffers (expected) loss ⟨pt, ℓt⟩
5 learner updates weights wt+1 = wt⊙βℓt // element-wise product ⊙ and power
6 optional scaling: wt+1 ← ct+1wt+1 // ct+1 > 0 can be arbitrary

• n horses in a race, repeated for T rounds
• pit is the proportion of money bet on the i-th horse at round t

• ℓit is the loss on the i-th horse at round t

• for the winning horses and for the losing ones

Y. Freund and R. E. Schapire. “A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting”. Journal of
Computer and System Sciences, vol. 55, no. 1 (1997), pp. 119–139.

L14 9/22

http://www.sciencedirect.com/science/article/pii/S002200009791504X

Theorem: Hedging guarantee

Let Lmin := mini Li = mini

∑T
t=0 ℓit and w1 = 1. We have

T∑
t=1

⟨pt, ℓt⟩ ≤
Lmin ln

1
β
+ ln n

1− β

With β = 1

1+
√

(2 lnn)/Lmin

, we have

1

T

T∑
t=1

⟨pt, ℓt⟩ ≤
Lmin

T
+

√
2 ln n

T
+

ln n

T

• Logarithmic dependence on n: can bet on many horses!
• Square root dependence on T
• In the long run, can do no worse than the best horse (with hindsight)

L14 10/22

Algorithm 2: Adaptive Boosting.
Input: initial weight w1 ∈ Rn

++, training set Dn = *(xi, yi)+ni=1 ⊆ Rd × {0, 1}
Output: meta-classifier h̄ : Rd → {0, 1}, x 7→ J

∑T
t=1(ln

1
βt
)(ht(x)− 1

2
) ≥ 0K

1 for t = 1, 2, . . . , T do
2 pt = wt/ ⟨1,wt⟩ // normalization
3 ht ← WeakLearn(Dn,pt) // t-th weak classifier ht : R

d → [0, 1]

4 ∀i, ℓit = 1− |ht(xi)− yi| // higher loss if more accurate!
5 ϵt = 1− ⟨pt, ℓt⟩ =

∑n
i=1 pit|ht(xi)− yi| // weighted error of ht

6 βt = ϵt/(1− ϵt) // adaptive discounting βt ≤ 1 ⇐⇒ ϵt ≤ 1
2

7 wt+1 = wt ⊙ βℓt
t // element-wise product ⊙ and power

8 optional scaling: wt+1 ← ct+1wt+1 // ct+1 > 0 can be arbitrary

Y. Freund and R. E. Schapire. “A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting”. Journal of
Computer and System Sciences, vol. 55, no. 1 (1997), pp. 119–139.

L14 11/22

http://www.sciencedirect.com/science/article/pii/S002200009791504X

Properties of Adaboost

• Expected error ϵt ≤ 1
2
⇐⇒ βt ∈ [0, 1], adaptive and automatic

– what if ϵt > 1
2?

• Each weak classifier focuses on hard examples that are misclassified before

wi,t+1 = wi,t · β1−|ht(xi)−yi|
t

– when will wi,t become 0?

• Meta-classifier h̄ aggregates the history, with weight ln 1
βt

for the t-th classifier
– which classifier gets higher weight?

• No same classifier in a row (assuming ht ∈ {0, 1}):

ϵt+1(ht) ≡ 1
2
, where ϵt(h) :=

∑n
i=1 pit|h(xi)− yi|

– what happens to βt and ln 1
βt

?

L14 12/22

Does It Work?

L14 13/22

Theorem: Exponential decay of training error

The meta-classifier h̄ of Adaboost satisfies:
n∑

i=1

pi1Jh̄(xi) ̸= yiK ≤
T∏
t=1

√
4ϵt(1− ϵt).

Assuming |ϵt − 1
2
| > γt, then

n∑
i=1

pi1Jh̄(xi) ̸= yiK ≤
T∏
t=1

√
1− 4γ2

t ≤ exp

(
−2

T∑
t=1

γ2
t

)
.

In particular, if γt ≥ γ for all t, then
n∑

i=1

pi1Jh̄(xi) ̸= yiK ≤ exp(−2Tγ2).

• To achieve ϵ (weighted) training error, combine at most T = ⌈ 1
2γ2 ln

1
ϵ
⌉ weak

classifiers, each of which slightly better than random guessing (by a margin of γ)
L14 14/22

Will Adaboost Overfit?

L14 15/22

LPboost

A. J. Grove and D. Schuurmans. “Boosting in the Limit: Maximizing the Margin of Learned Ensembles”. In: Proceedings of the Fifteenth
National Conference on Artificial Intelligence. 1998, pp. 692–699, L. Breiman. “Prediction Games and Arcing Algorithms”. Neural Computation,
vol. 11, no. 7 (1999), pp. 1493–1517.

L14 16/22

http://www.aaai.org/Library/AAAI/1998/aaai98-098.php
https://www.mitpressjournals.org/doi/abs/10.1162/089976699300016106?journalCode=neco

L14 17/22

Pros and Cons

• “Straightforward” way to boost performance

• Flexible: can work with any base classifiers

• Less interpretable

• Longer training time

– harder to parallelize, compared to bagging

L14 18/22

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/

L14 19/22

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/

Extensions

• LogitBoost

• GradBoost

• L2Boost

• XGboost

• Multi-class

• Regression

• Ranking

L14 20/22

Face Detection

• Each detection window results in ≈ 160k features
• Speed is crucial for real-time detection

P. Viola and M. J. Jones. “Robust Real-Time Face Detection”. International Journal of Computer Vision, vol. 57, no. 2 (2004), pp. 137–154.

L14 21/22

https://doi.org/10.1023/B:VISI.0000013087.49260.fb

L14 22/22

