12 Givens Rotations

Goal
Use elementary rotations to orthogonalize a set of given vectors.

Alert 12.1: Convention
Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Definition 12.2: Rotation
Let $I \in \mathbb{R}^{m \times m}$ be the identity matrix and fix two indices $i \neq j \in \{1, \ldots, m\}$ and some angle θ. Define

$$G^T = G^T_{ij}(\theta) = I - (1 - \cos(\theta))e_i e_i^T - (1 - \cos(\theta))e_j e_j^T - \sin(\theta)e_i e_j^T + \sin(\theta)e_j e_i^T$$

where e_i is the i-th canonical basis in \mathbb{R}^m, i.e., with a single 1 at the i-th entry. We easily verify that G is an orthogonal matrix: $G^T G = I$, and $G^T(\theta) = G(-\theta)$. In particular, G is invertible, and it is a rank-2 modification of the identity matrix.

The systematic use of rotations in numerical analysis was due to Givens (1958).

Example 12.3: Geometric View

Exercise 12.4: Determinant
Prove that $\det(G) = 1$.
Remark 12.5: Structured Matrix-Vector Product

Multiplying a rotation with a vector can be done in linear time, instead of the usual quadratic time for a generic matrix:

\[[G^T x]_k = \begin{cases}
 x_k, & k \neq i, k \neq j \\
 \cos(\theta)x_i - \sin(\theta)x_j, & k = i \\
 \sin(\theta)x_i + \cos(\theta)x_j, & k = j
\end{cases}. \]

Algorithm 12.6: Givens Orthogonal Triangularization

Given two vectors \(x, y \in \mathbb{R}^m \), can we find a rotation \(G^T = G^T_{ij}(\theta) \) so that \(y = G^T x \)? Since \(G^T \) only changes the \(i \)-th and \(j \)-th coordinate, and \(G^T \) is orthogonal, we obviously need \(\|x\|_2 = \|y\|_2, x_k = y_k, k \neq i, k \neq j \).

This, again, turns out to be sufficient. Indeed,

\[[G^T x]_k = \begin{cases}
 x_i \cos(\theta) - x_j \sin(\theta), & k = i \\
 x_i \sin(\theta) + x_j \cos(\theta), & k = j \\
 x_k, & \text{otherwise}
\end{cases} \iff \begin{bmatrix} x_i & -x_j \\ x_j & x_i \end{bmatrix} \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix} = \begin{bmatrix} y_i \\ y_j \end{bmatrix} \iff c := \cos(\theta) = \frac{x_i y_i + x_j y_j}{x_i^2 + x_j^2}, s := \sin(\theta) = \frac{x_i y_j - x_j y_i}{x_i^2 + x_j^2}, \]

provided that \(x_i^2 + x_j^2 \neq 0 \) (otherwise trivially we have \(\cos(\theta) = 1 \)).

In particular, let \(y_i = \sqrt{x_i^2 + x_j^2}, y_j = 0 \), and \(y_k = x_k \) otherwise, then we have

\[c = \cos(\theta) = \frac{x_i}{\sqrt{x_i^2 + x_j^2}}, \quad s = \sin(\theta) = \frac{-x_j}{\sqrt{x_i^2 + x_j^2}}. \]

Thus, by left-multiplying a rotation we can introduce one more zero in the vector \(x \). Repeating this \(O(n^2) \) times gives us the Givens orthogonal triangularization algorithm.

In practice, we need only store one of \(c = \cos(\theta) \) and \(s = \sin(\theta) \) on the lower diagonal of \(A \). The usual choice is the smaller one, since to recover the other one we need to compute \(\sqrt{1 - x^2} \), which is numerically less accurate when \(x \) is close to 1. In the algorithm below we actually store \(2/c \) if \(c \) is smaller and \(s/2 \) if \(s \) is smaller so that there is a unique encoding (Stewart 1976): if the storage is smaller than 1 then we know we stored \(s/2 \) while if the storage is bigger than 1 then we have stored \(2/c \). The scaling factor 2 is chosen for convenience in a binary machine.

Given \(\rho \) we can easily recover \((c, s)\), and we store \(Q \) in the factor form:

\[Q = G_{m-1,m;1} \cdots G_{1,2,1} \cdot G_{m-1,m;2} \cdots G_{2,3,2} \cdots G_{m-1,m;\lceil m/2 \rceil} \cdots G_{n\wedge(m-1),1+n\wedge(m-1);n\wedge(m-1)}. \] \hspace{1cm} (12.1)

Yaoliang Yu 73 – Version 0.1 – July 17, 2018 –
where $G_{i-1,i,j}, i = m, m-1, \ldots, j+1$, is the i-th rotation used on the j-column.

Algorithm: Givens QR

Input: $A \in \mathbb{R}^{m \times n}$

Output: $A = QR$, where $Q \in \mathbb{R}^{m \times n}$ orthogonal and $R \in \mathbb{R}^{n \times n}$ upper triangular.

1. for $j = 1, \ldots, n \land (m-1)$ do
2. for $i = m, m-1, \ldots, j+1$ do
3. $[c, s, \rho] = \text{givens}(a_{i-1,j}, a_{ij})$ // take a pair $(i-1,i)$ on j-th column and find rotation
4. $A_{(i-1):i,j:n} \leftarrow \begin{bmatrix} c & -s \\ s & c \end{bmatrix} A_{(i-1):i,j:n}$ // annihilate a_{ij}
5. $a_{ij} \leftarrow \rho$ // store rotation inplace

6. Procedure $[c, s, \rho] = \text{givens}(a, b)$
7. if $b = 0$ then
8. $c \leftarrow 1$, $s \leftarrow 0$, $\rho \leftarrow 0$ // no need to rotate, pass
9. else if $a = 0$ then
10. $c \leftarrow 0$, $s \leftarrow 1$, $\rho \leftarrow 1$ // rotation does not need to be computed
11. else
12. if $|b| > |a|$ then
13. $\tau \leftarrow -a/b$, $s \leftarrow \frac{1}{\sqrt{1+\tau^2}}$, $c \leftarrow s\tau$, $\rho \leftarrow 2/c$ // $|s| > |c| \implies |\rho| > 2\sqrt{2}$
14. else
15. $\tau \leftarrow -b/a$, $c \leftarrow \frac{1}{\sqrt{1+\tau^2}}$, $s \leftarrow c\tau$, $\rho \leftarrow s/2$ // $|c| \geq |s| \implies |\rho| \leq \sqrt{2}/4$
16. Procedure $[c, s] = \text{givensInv}(\rho)$
17. if $\rho = 0$ then
18. $c \leftarrow 1$, $s \leftarrow 0$
19. else if $\rho = 1$ then
20. $c \leftarrow 0$, $s \leftarrow 1$
21. else if $|\rho| > 2$ then
22. $c \leftarrow 2/\rho$, $s \leftarrow \sqrt{1-c^2}$
23. else
24. $s \leftarrow 2/\rho$, $c \leftarrow \sqrt{1-s^2}$

Remark 12.7: Complexity of Givens QR

The total number of FLOPs in Algorithm 12.6 is (assuming $m \geq n$):

$$\sum_{j=1}^{n} \sum_{i=j+1}^{m} 6(n-j+1) \sim \sum_{j=1}^{n} 6(m-j)(n-j) = 6mn^2 - 3mn^2 - 3n^3 + 2n^3 = 3mn^2 - n^3 = O(mn^2),$$

which is slower than the $2mn^2 - \frac{2}{3}n^3$ of Householder QR.

Example 12.8: Schematic Illustration

The main procedure in Algorithm 12.6 can be understood as follows:

Line 3 computes the rotation for the pair \((i - 1, i)\) (highlighted in blue) at the \(j\)-th (outer) iteration. Note that due to the structure in \(G_{i-1,i,j}^T\), only the highlighted area (in blue) in \(A_{i-1,j}\) gets updated. In other words, the structure in \(G_{i-1,i,j}^T\) makes sure we do not destroy any zeros introduced in previous iterations.

Algorithm 12.9: Explicit vs. Implicit

Note that we do not store each rotation \(G\) explicitly in Algorithm 12.6. For most applications, having the essential scalar \(\rho\) is enough, for we can perform the matrix-matrix multiplication \(Q^T C\), where \(Q\) is given in (12.1), efficiently:

Algorithm: Implicit Givens Matrix-Matrix Multiplication

- **Input:** \(A \in \mathbb{R}^{m \times n}\), \(C \in \mathbb{R}^{m \times p}\)
- **Output:** inplace for \(Q^T C\)
- 1. for \(j = 1, \ldots, n \wedge (m - 1)\) do
- 2. for \(i = m, m - 1, \ldots, j + 1\) do
- 3. \([c, s] = \text{givensInv}(a_{i,j})\)
- 4. \(C_{(i-1):i,:} \leftarrow \begin{bmatrix} c & -s \\ s & c \end{bmatrix} C_{(i-1):i,:}\) // \(C \leftarrow G_{i,i-1,j}^T C\)

The above algorithm costs \(3pn(2m - n)\). Similarly, we can efficiently compute \(QC\) as well.

Algorithm 12.10: Recovering \(Q\)

We can also explicitly recover the orthogonal matrix \(Q\), by exploiting efficient matrix-matrix product:

Algorithm: Backward Recovery for Givens Orthogonal Matrix

- **Input:** \(A \in \mathbb{R}^{m \times n}\)
- **Output:** \(Q \in \mathbb{R}^{m \times p}\)
- 1. \(Q \leftarrow I_m(:, 1 : p)\) // if only the first \(p\) columns need recovery
- 2. for \(j = n \wedge (m - 1) \wedge p, \ldots, 2, 1\) do
- 3. for \(i = j + 1, \ldots, m - 1, m\) do
- 4. \([c, s] = \text{givensInv}(a_{i,j})\)
- 5. \(Q_{(i-1):i,j:p} \leftarrow \begin{bmatrix} c & s \\ -s & c \end{bmatrix} Q_{(i-1):i,j:p}\) // \(Q \leftarrow G_{i,i-1,j} Q\)

The above algorithm, known as backward accumulation, has complexity \(6mnp - 3mn^2 - 3pn^2 + 2n^3\), assuming \(m \geq p \geq n\). In particular, for \(m \geq n = p\), recovering \(Q\) costs an additional \(3mn^2 - n^3\). Again, we have exploited the sparsity pattern in \(I_m\) so that at the \(j\)-th iteration only the \(j\)-th to the \(p\)-th columns of \(Q\) need be updated (and become dense).
Algorithm 12.11: Hessenberg QR via Givens

Givens rotation can be used to introduce strategic and selective zeros. For example, when a matrix \(A \) is Hessenberg (i.e., \((1,n)\)-banded), using rotations we can annihilate the sub-diagonal more efficiently:

Algorithm: Givens QR for Hessenberg matrices

Input: Hessenberg matrix \(A \in \mathbb{R}^{m \times n} \)

Output: inplace for QR decomposition

1. for \(j = 1, 2, \ldots, (n-1) \wedge (m-1) \) do
2. \[[c, s, \rho] = \text{givens}(a_{jj}, a_{j+1,j}) \]
3. \[A_{j:(j+1),j:n} \leftarrow \begin{bmatrix} c & -s \\ s & c \end{bmatrix} A_{j:(j+1),j:n} \]
4. \(a_{j+1,j} \leftarrow \rho \) \hspace{1cm} // inplace store rotation

The above algorithm costs only \(3n^2 \). If we use Householder and take sparsity into account, then the number of total FLOPs is \(4n^2 \).

Exercise 12.12: Givens QR for Tri-diagonal matrix

Let \(A \in \mathbb{R}^{n \times n} \) be tri-diagonal. Design an efficient algorithm for the QR decomposition of \(A \).

Exercise 12.13: Givens QR for Banded matrices

Adapt the Givens QR algorithm for a \((p,q)\)-banded matrix.

Remark 12.14: Parallelism

Givens rotations can be easily parallelized: pairs that do not overlap can be updated in parallel (and the corresponding rotations commute), without interfering with each other. In other words, the pairs \((i_1, j_1; k_1)\) and \((i_2, j_2; k_2)\) can be updated in parallel if \(\{i_1, i_2, j_1, j_2\}\) are distinct. In fact, using \(n\) processes (each corresponding to a column) we can perform Givens QR in \(O((m+n)n)\) by arranging the pairs carefully:

<table>
<thead>
<tr>
<th>steps</th>
<th>processes</th>
<th>(j = 1)</th>
<th>(j = 2)</th>
<th>(\cdots)</th>
<th>(j = n-1)</th>
<th>(j = n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((m,m-1))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>((m-1,m-2))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>((m-2,m-3))</td>
<td>((m,m-1))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\vdots)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m-2)</td>
<td>((3,2))</td>
<td>((5,4))</td>
<td>(\ddots)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m-1)</td>
<td>((2,1))</td>
<td>((4,3))</td>
<td>(\ddots)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m)</td>
<td>((3,2))</td>
<td>(\ddots)</td>
<td>(\ddots)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\ddots)</td>
<td>(\ddots)</td>
<td>(\ddots)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2m-1)</td>
<td>(\ddots)</td>
<td>((m,m-1))</td>
<td>(\ddots)</td>
<td>((m-1,m-2))</td>
<td>(\ddots)</td>
<td>(\ddots)</td>
</tr>
<tr>
<td>(2n-2)</td>
<td>(\ddots)</td>
<td>(\ddots)</td>
<td>((m-2,m-3))</td>
<td>((m,m-1))</td>
<td>(\ddots)</td>
<td>(\ddots)</td>
</tr>
<tr>
<td>(2m-3)</td>
<td>(\ddots)</td>
<td>(\ddots)</td>
<td>(\ddots)</td>
<td>(\ddots)</td>
<td>(\ddots)</td>
<td>(\ddots)</td>
</tr>
<tr>
<td>(m+n-4)</td>
<td>(\ddots)</td>
<td>((n+1,n))</td>
<td>((n+3,n+2))</td>
<td>(\ddots)</td>
<td>(\ddots)</td>
<td>(\ddots)</td>
</tr>
<tr>
<td>(m+n-3)</td>
<td>((n,n-1))</td>
<td>((n+2,n+1))</td>
<td>(\ddots)</td>
<td>(\ddots)</td>
<td>(\ddots)</td>
<td>(\ddots)</td>
</tr>
<tr>
<td>(m+n-2)</td>
<td>((n+1,n))</td>
<td>((n+1,n))</td>
<td>(\ddots)</td>
<td>(\ddots)</td>
<td>(\ddots)</td>
<td>(\ddots)</td>
</tr>
</tbody>
</table>

At each step, if the pair \((i,i+1)\) is on process/column \(j\), then the pair \((i+2,i+3)\) is on process \(j+1\).
Hence, there is no conflict. Counting from top to bottom we observe that for $k = 1, \ldots n - 1$, we have 3 steps with k processes concurrently running, hence there are $\frac{mn - n(n+1)}{2} - 3(n-1) = m - \frac{4+7}{2} + \frac{3}{n}$ steps where n processes are concurrently running.