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ON AN EFFECTIVE METHOD OF SOLVING EXTREMAL
PROBLEMS FOR QUADRATIC FUNCTIONALS *

We consider here a method of successive approximations applicable to a
wide class of minimization problems for quadratic functionals. This method
may be used for actual solution of these problems as well as for their quali-
tative study (existence theorems, properties of solutions, etc.).

Let us outline the general idea of the method. A functional I(f) on a
linear metric space is considered. I(f) is assumed to be quadratic, that is
I(f+e€g) is a polynomial of the second degree in €. Given a fixed element Fy,
we choose the direction of the gradient of I(f) at f = f,, i.e., the element
g = g, such that [d/deI(f + £g)]. = O||g|| has an extremal value (the space
can be, for instance, of type F, [1]). Further, we obtain ¢ = ¢, from the
condition that I( f, + €g,) should attain an extremum, and then the process
is to be reoeated again and again.

Let us consider the application of the method to some concrete cases.

1. Systems of linear algebraic equations. Let a system
Za,'kz—kZb;, i=1,2,...,n (1)
k=1

be given. Consider the quadratic form
n n 2
H(X)= Z (Za;kxk —b,) (2)
i=1 k=1

that attains its minimum equal to zero at X = {z,}, the solution of (1).
Suppose that z; = 2? are chosen as initial values of the z’s. We take

2
H(XO 4 eZ) = Z [Zaik(zo +ez) — bi] =
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= H(X®) + 262 (Z r! )a,,,) z + Z (E a,m) , (3)

where

(1) Za(o)xk - b,‘.

The coefficient 2¢ is maximal when "z, = const if the z; are propor-
tional to their own coefficients. We simply put

2
> (Z “) : (4)
i \k
To minimize H (X +¢Z), we set

>k zl(¢1)2
i (Ek askzl(:l)) .

e=eW =

(5)

Now, we put

(2) Z a: k(x(o) + 6(1)2(1))2 (1) + 6(1) Z a: kz (6)

and then calculate successively 2, 3, a;x2, @, 18, etc. by formulas
analogous to (4), (5), and (6). The SOllltIOIl of (1) is

i = 2 4+ ez @2 ¢ ... (M

Computations may be arranged in a simple scheme and can easily be car-
ried out on calculators. The formulas and computations can be considerably
simplified when the matrix ||a;|| is symmetric.

The method of successive approximations just considered converges (i)
to the solution if the latter is unique, (ii) to one of the solutions if there are
several, (iii) to a solution of the least squares problem if there is no solution.
In particular, it is convenient to apply the method to normal systems in
using the Gauss least squares method. The order of convergence equals that
of a geometrical progression (usually with a small denominator).

Let us note a simple geometric interpretation of the method. Namely,
given a family of similar ellipsoids H(X) = const, we draw the normal to
the ellipsoid which passes through the initial point X(°). Then we choose
another ellipsoid which touches the normal at point X = X () 4 ¢(1)z(1)
draw the normal at the point, and so on.

We notice finally that the method may be applied to infinite systems as
well.
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2. Fredholm integral equations. For the sake of simplicity, we con-
sider only the case of symmetric kernels. The solution of the equation

56) = 8(a) = [ K(a0)é0) dy — h(z) = 0 (8)

extremizes the integral

b b b b
H6)= [ ¢@)dz =2 [ [ K(@o@)o) dedy=2 [ 6(a)h(z)ds (9)

provided A/A\; < 1,k =1,2,....
Starting from an arbitrary ¢o(z), we construct successive approximations
in the same way as above; we put

5:(2) = u(&) = A [ K(e,9)n(w) dy ~ h(a), (10)

-1
) 5 b b
e=- [ H)ds ( [ #@)dz-x [ [ K@ na@s)d dy)
(11)
The following functions ¢¢(z) and numbers ¢, are defined analogously. The
solution §(z) is given by the formula:

#(x) = do(x) + E1¢(2) + - - (12)

If ¢(z) is a solution of (8), which by necessity has a solution, if A is not
an eigenvalue, then, as is easily seen,

H(¢o) — H(do + €161) =

- _ (/ﬂ"q&f(x)dx)z (/a" % (z)dz — ,\/ab /ab K(z,y)¢:1(z)$1(y) dz dy)

H(¢o) - H(E) =
) b b —
== /a n*(z)dz — )\/a /‘; K(z,y)n(z)n(y)dz dy; 1(z) = ¢o(z) — ¢(z).

Hence, if the o, are the Fourier coefficients of ¢;(z) with respect to the
eigen-functions,

[H(¢o) — H(do + &161)]/[H () — H(¢)] =

- () (S (-2 o) (£(1-2) a)]
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It is evident that if @ and (3 are any numbers satisfying the inequalities
A
0l<a<l-—<pB< 4+,
Ak

we have

H(¢o) — H(¢o +€161) > %[H(%) - H(9)).

We see that the functional tends to its minimum with the rate of a geometric
progression. This implies that series (12) converges as rapidly (more accu-
rately: the quotient of the progression does not exceed (8 — a)?/(8 + «)?).

The method is also applicable to the case where ) is an eigenvalue, when
it is required to find the eigenfunctions and the eigenvalues. It can also be
applied to equations with non-symmetric kernels, as well as to the case in
which the condition A/A; < 1 is not fulfilled. In the latter case we must
consider [[L(¢))?dz instead of H(¢). Finally, the method can be used in
solving equations of the first kind.

3. Ordinary differential equations. Consider the equation
d
L(y) = 7 (p(2)y) — a(z)y = f(z) =0, y(a) = y(b) = 0. (13)
This equation is associated with the minimization problem for the integral
b
1) = [ ()™ + a(@)s? + 2f(2)y) da. (14)

Taking a function z(z) that satisfies together with yo(z) the conditions
2(a) = 2(b) = 0, we easily obtain

b b
I(yotez) = I(y0)+26/ [py{) - /(qyo + f) d:c] F4 dz+€2/ (p2'* 4 ¢2%) dz.

To find the value z = z; extremalizing the multiplier of 2¢ under the condi-
tion [ 2'2dz = const, we put

2 =py - /(qyo + f)dz +C or 2 = L(yo)- (15)

With the value z, obtained from this equation, in accordance to the
conditions z(a) = z(b) = 0 we put:

€1 =— (/ 2 d:c) (/[p(a:)z'z]q(:::)z2 d:c>—l (16)

%1(2) = yo(z) + e121(2). (17)

and, finally,



SELECTED WORKS: PART II 157

Further approximations can be determined in a similar way. For the case
in which p(z) > 0, g(z) > 0 the following inequality, analogous to that in
the point 2 holds

1) ~ () > (w0 - 1), (18)
Pmax + TQmax

where 7 is a solution. Hence, it follows that the approximations converge to
the solution and the convergence has the rate of a progression.

It is possible to apply the method to equations of higher orders as well
as to other boundary problems. The method can also serve as a basis for
various grapho-analytical methods. Thus beam designers will find it useful
in reducing the design of trussed beams to a repeated calculation of simple
beams.

4. Boundary problems for partial differential equations. Con-
sider, for instance, the Dirichlet problem for the self-adjoint elliptic equation

0 ([ Ou o [, 0u
L(u) = e (aa—z) +0—y (ba_y) —cu—f=0, u=4¢(s)onTl (19)

The minimization problem for the integral

I(u)://D [a (%)2+b<%§)2+cu2+2fu] dz dy (20)

is associated with (19). We have

I(ug + en) = I(ug) — 2 //D L(uo)ndz+

2 @)2 (@)2 2
+e //p[a(az +b By + cn?| dz dy.
It is natural to put
_ @)2 (@)2
lImll = //D [a (az +b 3y dz dy.

Then, under the condition ||n|| = const, the multiplier of 2¢ attains its
extremum when 7 = 7, is replaced by the solution of the equation

Any = L(u), m =0 on T. (21)

As to I(ug + €n), it is minimized by € = €,, where

€1 ://D L(ug)m dz dy (//;7 [a (%)2+b<g—2)2+cnz] d:::dy)—1 (22)
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Then u; = ug + €;7; will be the first approximation to u. The convergence
of the process can also be proved under certain conditions.

Here the practical use of the method is hampered by the necessity of
solving the Poisson equation (when determining 7) in each step of the pro-
cess. Thus the Green’s function in the domain D is required. But seeing
that the domain can be transformed into a circle (or a sphere in the case
of spatial transformations) by suitably changing variables without altering
the type of the equation and that the Green’s function of the circle is ele-
mentary, it appears that our method may also find practical application in
a number of cases.

On its basis different numerical, graphical and experimental methods
can be developed. It can also be applied to other types of equation and to
other graphical problems.

5. Functional equations in Hilbert space. Let H be a self-adjoint
positive definite operator defined on a linear manifold R; in a Hilbert space
R. Let T be an analogous operator which takes R; onto R and possesses
the inverse T~! on R. We suppose H to be bounded with respect to T', that

is, 0 < a(Tf,fYS(HSf, f)<B(TS, f). Let us find a solution f € R, of the
equation

Hf-¢=0. (23)
A solution f of this equation minimizes the quadratic functional
I(f)=(Hf, f)-2(f,¢) (24)

Let g € R, and f; € R be the initial value of f. Then
I(fo+eg) = I(fo) + 2¢(H fo — ¢,9) + €*(H g, 9)-

The second summand on the right-hand side attains its maximum under
the condition (T'g,g) = const when H f, — ¢ is proportional to Tg, in other
words, when g is proportional to

g =T (Hfo—¢). (25)
Having chosen the element g;, we minimize I by equating ¢; to

_(Hfo - ¢7gl) - _ (Tglagl)
(H91,91) (Hgy,91)

Now put fi = fy + €;. Then we obtain

I(f) = 1(fo) _ Tg1,9)* _
I(fo)—I(f) (Hgl’gl)%(HfO_Hf,fo_f)

& =
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— (Tghgl)z(HfO - HTafE— 7) > (Tglagl)2(Hf0 - HT7 fO__ ?) _
(H91,01)(Tg1, fo — f)? - (Hyl’gl)(Tghyl)(TfO -Tf, fo— f) -

(T91,91)(H fo — HF, fo — f) N
- (thgl)i(Hfo - HT,fo - 7) - B
It is evident that I(f,) tends to I(f) with the rate of a geometrical pro-
gression. Hence, we may conclude that f, — f in the sense of the norm
lgll = (Tg, 9).

It is possible to apply the method to non-quadratic functionals (for in-
stance, to systems of non-linear algebraic equations). In such cases, how-
ever, the determination of ¢ becomes essentially more difficult, and we have
to content ourselves with approximate values of ¢.

It may be remarked in conclusion that this method, though developped
here independently, is connected with the author’s general concepts regard-
ing extremal problems. These ideas are briefly outlined in [2].
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