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Algorithms are proposed for teaching automata to recognize classes of input functions based on the con-
struction of the so-called potential functions. A basic hypothesis is introduced concerning the character
of the functions distinguishing the ensembles corresponding to various classes of input situations. Using
this hypothesis, theorems are proved on the convergence of the algorithm in a finite number of steps.

It is shown that the proposed algorithms may be realized by a broad class of circuits. The charac=-
teristics of the elements of which the circuits are constructed are practically arbitrary. It is shown that
the Rosenblatt perceptron is related to this class of circuit, i.e., it is proven that the operation of the
perceptron can be considered to be a realization of the potential function method. In this connection
the theorems demonstrated on the convergence of the method of potential functions also solve the
problem of convergence of the perceptron process.

1. Statement of the Problem
1. Partitioning of the input situations into classes. Let us consider an automaton receiving signals from the out-

side. This input information may contain logical variables (for example, the replies "yes” or "no” to certainques-
tions), continuous or discrete variables (for example, measurement or computation results obtained from analog or
digital computers) or even continuous functions * (for example, the characteristics of a system under investigation).
The set of information applied in any form to the input of the automaton constitutes the input situation, Input situa-
tions can be divided into several classes. The purpose of the automaton is to determine the class to which each newly

érising input situation belongs.

Such problems arise, for example, in the development of machines for technical diagnosis (fault detection) or
fnedica] diagnosis,in automnation of geophysical prospecting based on seismic soundings or electrical core sampling,
1 the development of optical pattern recognition devices (for example, alphabetic or numerical characters written
0 different handwritings or printed in different fonts), in recognition of aircraft or ship types from their sound, cte.

In each of the above examples the automaton for classifying the input signals is important in itself. Frequently
U . . .
ch 2utomar, serve as the primary element of a complex automation system, Indeed, the very problem of automatic
€0 4 . .
0ol g5 4 whole can be considered to be the problem of assigning the input situation to one or another class, and to

gtﬂera[e s
the optimal response as a function of that class,

P B e e s i o s

boy + the simplest procedure would be first to introduce into the aut ption «
Frequently, however, it is Impossible or difficult to

Process for classifying the input signals, regardless of the fact that the person designing the :nuoumm'n

If how 1o distinguish the classes, This is connected with the fact that the human is often ah‘lv to distin-

fecognize classes due 1o accumulated experience and Intuition, but not able to give exact instructions =

ndan’es " .
Pro v Le., the rules for the conduct of the automaton,
gram the
‘nfms himse
Buish and 1o
1 ]
EIFOr EXample
(X
+in
e Patter

san be temperature curves, cardiograms, encephalograms,

» I machines for medical diagnosis the inputs ¢ '
the image shown to the machine can be introduced,

Ntecognition machines different types of scans of
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a program how to do this, to another person lacking exp eriencf" ﬁever::?i::se' fc? }Tixrsen’le';icsefs fs: c;n N
inexperienced one to recognize these classes, 1.¢., €31 ransmit e ex{)es of machine r;oise for variouon:l2 o8
instructions, but by showing examples. Thus, in demonst 72178 exarnhp' noise, although each time thS ek, it
possible to teach an inexperienced person to distinguish defed_s by l, CTI | ' teach ¥6ung d © n.ew Noise gjf.
fers somewhat from that which was demonstrated during teaCh,mg; simflarly hfe o y1 : 105[0rs to.lment
or breathing sounds; a teacher can teach the pupil to distinguish letters, showing examples only of their shape

We shall term such processes teaching by examples.*

ivip

0 heapy
S, ete,

Accordingly, by the expression teaching an automaton by examples to disr;;:in: féa:ri:s wle shall have i v,
the following process. No indications are introduced int? the automator?lm any o e .HI];-‘ es or features to p,
used for classifying the input situations. After the machme.has been bl:ll T, ;Cer ain time wi N ?, taken up by the
teaching process, During this process the only information introduced into the automaton each time a certaip input
situation has arisen will be the class to which the situation belongs.

After this teaching process has stopped, when these same or new situations appear at the input the automatop
must recognize the classes to which they belong (test).

A feature of the problem consists in the fact that during the teaching process a finite (and relatively smaly)
number of situations is presented to the automaton, yet after teaching the machine must know the rules for classify-
ing the infinite (or very large) number of situations that may appear during the test process. This very fact excludes 3
trivial solution to the problem, the simple memorizing of the situations which have appeared; the design of the auto-
maton should provide for the "extrapolation” of the information obtained in the learning process to new situations
which have not appeared at the input during that process.

In this statement of the problem the automaton should classify input situations although (before beginning the
teaching process) it was not known exactly which classification would be carried out, For example, in the recognition
of visual patterns a given machine should learn to distinguish various numbers or letters of the alphabet, or photographs
of individuals, etc. The particular classification to be carried out in a given concrete experiment is defined only by

the sequence of situations presented during the learning process. In this sense the automaton capable of learning ©
distinguish classes must be "universal.”

3. Geometrical interpretation of the problem. The method of potential functions, Without loss of generality
we shall consider below only automata learning to distinguish two classes: classes A and B,

Let us introduce the input space X, constructed so that to each input situation there correspond in a one-to-0n
relationship a point of this space, T

By definition the classes A and B do not intersect. This signifies that in the space X there exists at least 00¢
separation function¥(x) taking on positive values at points corresponding to the class A and negative values &t the

. . an
points corresponding to the class B. The values of ¥ (x) at other points are immaterial. In the general case there €
exist many such separation functions,

During the teaching process points in the space X appear successively and information is given as [0 the CIN{'
A or B, to which these points belong. The problem consists in constructing from only this information, some oné oi
the separzation functions on the basis of a finite number of examples, Then in the test process the machine ¢an asigh
the points which appear to the classes A and B according to the sign of the separation function at these points.

The method of solution proposed below is connected with the followin
appears during teaching,a function K (x, xK), defined over the entire space
("potential funection”), is connected with the point. The
responding to the sequence of points x’. X2

k
» int X
g procedure, When a certain poinc'ter
. a
X, and depending on xKasa Pf; cor
sequence of potential functions K (x, x1), Kx. X t':: function
. . e
» +++1 @ppearing during the teaching process, is used to construct .
_— ing 0
» > o i . , . : inklng
It appears that teaching by examples plays an essential role even in the process of teaching theoretical th

N
, o . b how
a pu?on. Thus, a mathematician can demonstrate new theorems not because he has an universal algomhm
do this, but rather because, beginning from his scho

mn It
o been shov
him ol days examples of theorem demonstration have bee

TIf we inrroduce n logical variables, the space consists of the
m continuous variables, it is the n-dimensional euclidia
functional relations, functional spaces ente

vertices of the n-dimensional cube.

: 5 l
n space. Finally, in the presentation to the @
I into consideratjon,
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ing the rules to be obtained below,
us

creases during the teaching process,

A procedure for the successive construction of the separ

ation function from the functions generated by the ex-
ample points is termed in this paper the method of potential

functions,

4, Basic assumptions, The statement of the problem of teachin
are placed on the set of situations which the automaton is to classify,
operating algorithm of the automaton and the separation function gene
of points, it would alwa(ys be possible to name points not yet shown so
points during the test process. It is therefore fir.st necessary to restrict
¥(x) in a suitable manner. It might be thought that these restrictions
present work it will be evident that this is not the case, and that the p
which cause no practical difficul ties,

g automata is without sense if no limitations

In effect, in this latter case, regardless of the
rated after the appearance of a finite sequence
that the automaton would always err at these
the choice of space X and the class of functions
must be very severe. From the results of the
roblem posed can be solved under restrictions
These restrictions are formulated below.

In the entire following discussion we shall assume the existence in the

(i=1,2,..) such that for each pair of separable sets a number N is found (i
the separation function can be represented in the form

space X of a systemn of functions @i (x)
n general different for each pair) for which

N
¥ () = Dleigs (a). Q)

If in the space X there exists in some class R a complete system of functions, the ¥

(x) can be considered to be
elements of this system, and any function in R (including each separation function) may b

e represented in the form of

an infinite series The condition (') requires that the separation functions be expandable in series with

finite numbers of elements, *

In the algorithm proposed below the form of the potential function depends essentially on the
?ilx). It would appear that this signifies that in using the method of potential functions it is necessa
that system ¢1(x) in which the separation function can be expanded. This in turn would signify that to use the algo-
’?thm it is fiecessary to know the characteristics of the sets to be classified, which would practically satisfy assump-
ton (1), In this connection, although formally assumption (%) is sufficient to solve the problem, below we present ad-
ditiong) considerations permitting use of the method of potential functions with practically arbitrary choice of the
stem ¢; (x) and, hence, of the form of the potential function.

choice of system
Ty to know exactly

Let there be defined in the space X the scalar product of two functions a(x), B(x) (for example,
Jucp

5, in whigh
generality. If in a

$ .
Ystem, 1, is not

the integral

(#)dz, where the bar indicates the complex conjugate), Then the complete system ¢y (x), ¢, (x), ...,

Ny separation function may be expanded may be considered to be orthonormal, without loss of
certain space and for a certain class of functions there exists such a complete orthonorm

alized
ique, and many such systemns can be introduced,

Mainpy ; ¢
tiong ( Y 1In connectio

n with problems of mathematical physics certain special systems of orthonormalized func-
for ex
anq

ample, trigonometric functions, the functions of Laguerre, Hermite, Lagrange, ete,) have been introduced
2oy 5 ° feceived general application; they have the following three l”":‘"ﬂ““!”“}! ":“"“"‘.“"‘”““‘-i: "") the number of
o nd the umber of extrema of these functions in a finite Interval ("oscillation," “fr equency™) increase mono-

- increase in the number of terms; b) the functions usually encountered in physies are approximated suf-

r.mca“y wi
lej . ; — .
1 by a finite and in general small number of elements of the expansion in these systems of functions
’

tntly e

as . i ; R e broader assumptions that the sepa i
e Proposition demonstrated below (theorem 1) is true for th é p paration function

Ig te [e0]
Preg integral of the form Scu'pm z)duy, \
€Ntable by an infinite series Zc.-(m(t) or even by an integ ) (z) In fact this does
loy ho i=1

Cyer broaden assumption (') (for details see remark 2 after the demonstration of theorem 1),
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b,

. —_ s with a small numbe
any function in these system f of term ¢,

("contain small numbers of harmonics™); c) a1l number of terms in an expansion in any other g, b
. C

X (™ h.el
y 8 m |
approximated by a finite and,gcncrally,a relatively s

1 : operties "Ordinary. We shall term " m,
We shall term a S)’SICIH of functions havmg these three pr pe m wel "

ini latively s Xpan
any function which with sufficient precision is [?prcscgtﬂblz by :nf;:;l;:;:] :SCCIoselyYC;‘]Z::lcl::(;nbf:r Of term ofd:ble'
series expansion in any ordinary system of functions. G,?O i stemn are ordered in such nih the TOPene
of "smoothness” of a function, since the functions of an ordl_nar)’ fy di " systems it i : 'manner that the s
"smoother” functions have lower indices. Due to the p'ro.pernes of Zi fm:zionyis . sreselstpl('lactlcally u“imponam
in which of these systems a well expandable, i.e., sufficiently smooth fu presented.

i imilar situation obtains, i.e., that the concept of "ordjpgp»
It is assumed about the space X that a simila ry °°mplele
systems can be introduced in X.

The basic assumption of the present work is that for e.ach pair -of distinguishable sets A and B there
expandable” separation function, i.e., there exists a separat%on‘ function reprt?sentable by_the.expansion (%), where
01(x), 92 (X), veey @1 (%) ... is an "ordinary” system. From this it foll-ovfs that in the organization of the Potentja] fige.
tion it is immaterial which of the "ordinary” systems is used, i.e., it is not necessary to carry out in advance 3 e
tailed study of the problem.

Xi
S8 3 '\\'EI]

It is to be understood that the concepts of "ordinary system of functions” and "well expandable” functions e
not precise concepts, The basic assumption only emphasizes that the separation functions are not very "jaggedn o

"figured" in X, i.e., do not have a "large number of extrema™ in a small region, at nearby points their valuesmuany
"differ little,” etc.

Many articles have been devoted to the problem of teaching autornata to distinguish classes (mainly from the
aspect of speed and visual pattern recognition [1-6]). However, the authors of these papers limit themselves to the
description of the algorithms proposed by themselves for solution of the problem or of devices constructed for the pu-
posc, and in the best case present examples of pattern recognition teaching by these means, Certain of the proposed
algorithms can be considered to be algorithms for construction of potential functions in one or another space of poin
shown during the teaching process,* and one of them (3] is directly interpreted by the author in these terms. How
ever, none of the publications contains a sharp formulation of the restrictions placed on the concepts of "clas” o
"pattern™f (i.e., on the choice of space and the character of the sets subject to separation), which, while in practice
not restricting the problem, would permit formulation and demonstration of theorems on the convergence of the alg*

rithms in exact terms, i.e., there are no demonstrations that for a broad class of sets the teaching algomhm,afterﬂ
finite number of examples,will adequately separate the corresponding sets,

An interesting result in this direction has been obtained for the perceptron algorithm by A. Novikoff [7] who,

) s dicteact
although he did not demonstrate the convergence ofthealgorithm in the above sense, showed that for any periodicte?
Ing sequence the perceptron will not commit errors on t

. s ing, 1
he elements of the sequence after termination of teachifé:
only these elements belong to the sets which can

o of pro?
: ) In principle be distinguished by the perceptron. The method 07
of Novikoff's theorem is used here for the proof of theorem 1

9. Linearization space, Using the basic
N-dimensional space Z into which the initial

. tion an
concept and starting from () we can introduce into °°“Slderaomz
. i a
space X is mapped. Namely, to each point x €X we assign 2 7

z2&Z with coordinat . s X into e
nates zi = ¢i(x) (i=1, ..., N). By virtue of (1) the separation function ¥(x) in Z is mapped
N
linear function Z"!«Zh. Since
1
N ~0
\ g
I (r) = Eckzk{ ) G A,
1 <0, 2¢B85,
* For ex'ample. this will be shown for Perceptrons in sectj 05
TIn [6] it was proposed to use the intuitive concept of 102 4, al patter
which in the above terms cap be for bty

. visu i
mul compactness hypothesis” with respect © ction

at ; jon
ed as the assumption of "good expandability” of the separatw

directly in the receptor space,
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polnts belonging to different classes are sep
the P

arated in 7 by the hyperplane
l\.
EC;‘-Z/\- = (),

1
since functions expanded in the system e (x)(i=1,,
tion spﬂCC.

Further, in solving the problem it is frequently found convenient 1o carry out the
ace, where we sometimes consider the infinite-dimensiona] space obtain
N [

o, (x) ,¥N(x) to a complete system,

g ooy §

+++ N) are linearized in Z, we shall term this a lineariza-

analysis in the linearization
ed by completing the system of functions

9 x\lgorithm
For the potential function we shall take a function of two variables of the form

K (2, y) = S Mg (2) i (), 1

it

where ¢§(x) (1= 1,2, ...) is a linearly independent system of the functions discussed above in the formulation of the
basic assumptions, A are real numbers different from zero for { = 1,2, ..., N. Further we shall assume that theg; (x)

and the function K (x, x) are bounded for x& AUB, The variable Y will be identified below with points appearing in
the learning process,

Let there appear during the learning process the points xl, X2, : xk. ..., each of which belongs to A or B, We

asign arbitrarily to these sets the signs + and -, i.e., we name, for example, the set A positive and the set B
Negative,

. 1 .
At the appearance of the first point x! we construct the function K; (x), equal to the potential of x* taken with
the sign of the set to which x?! belongs, i.e.,
K K (z, 2"), if al'¢ 4,
G (x) = .
(@) {_1{ (x,zY), if a'€B.
We shal explain the further operation of the algorithm by induction. Let after the rth example the potential

1(x) be constructed, Let further the point xT*! appear in the following, (r+1)st step of teaching. Then four cases are
Possible, '

€4,  Ki(at) >0, ()
sHEB, K@) <0, (b)
2H 6 A, Ko (z ) <0, (c)
e B, K (zt) >0 @

i K.(x™!) coincide, i.e.,
! ; int xI*! belongs and the sign of Ky
“there (353 (a) and (b) the sign of the set to which the pointx

$
10 error,” In thege cases we take
r
Keqi(r) = Kr(2).

r (I+1
i r+l s and the sign of I\r(x ) do
b fn Cases (c) and (d i.e., the sign of the set to which x belong g
ot Cojp ) there are errors, i.e.,

. . :
ei¢e. Then the "error is corrected” i.e., in case (c) we take
]
]{r.{_l (.’L‘) = ](r(vT) + I((.T, J—‘r ),
in Case (d)

a H‘l) .
” — [\,- .1') — K (.T, & .
K1 (2) r( 2t the appearance of the (r+1)st point the
herth point separates the set, i.e., that the
ed at the (r+1)st point; if it is found valid, the

»h This

! of the orithm can be ex ined as follows:
f ot €5 baslc Step of t alg rit a plai
Unclion 1§

i . ted after t
$ 2dopted” that the sign of the pmennallcc;,mt:iﬁeﬁs is test
FX) s the required separation function; this yP
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o  for the following step, the (r+2)nd pa

. «en. i.c., "the hypothesis IS conserved” f int with the sign nec potn Otbey

potential is not altered at this step, 1.Co ¢ of the potential of the (r+1)st point > S1g essary to -.CQrrec i
jon to 1 ’ y

wise the potential is altered by addit

the function. .
. ; lowing form:
Clearly after  steps the potential can be written in the fol 8
-/ "
N e oy — > K (x, 29).
K@) =2 Ke)— 4 (2 21) o)

xS € A x1eD
: ioni ion i ied out o .
Here the lower indices on the summation signs signify that summation is Cf}“lh 1 nltlyl °VCrsthe Points showg
i i i i that o S
in r teaching steps belonging to sets A and B respectively, while the pnmesdsxgm y - nly those XS in A (xq 4, 3
i ial " rror,” 1.e., gave a si
are taken into account whose substitution in the preceding potential "caused €rror, ' B S1gN not agreeiyg iy

the sign of the set to which x* belongs.

We shall now give a convenient interpretation to the algorithm, using zf:Of this I;'HPO_Se the)?l‘ct:cess in the infipy,.
. - i = o each point x

dimensional linearization space Z, with axes zj = )‘i‘Pi(x) (i=1,2, ... I“d _t ) P €X there correspond ryg :

nonintersecting sets in the linearization space; we assign to each the same designation,

If in X there exists a separation function, representable by the expansion

¥ () = ) e (2)

i=1

(according to the basic assumption c; = 0 for i >N) such that

>0, if z¢A,

Wm{ |
<0, if z¢B,

then there exists in the linearization space a separation plane passing through the origin with normal vector ¥

(e8]
(1, 2) = E 1izi = 0,
where Y= ci/Aj is such that
0, if ze4
(Tr Z) {> )
<0, if =z2¢BA.
The imagé

L th LEtbus reflect the set p symmetrically about the origin, i.e., we substitute ~z for all vectors z€B.
set thus obtained we term B' and we consider the union S = AR (Fig. 1 heavy line)

The condition ili
of separability of sets A and B by 4 Plane with normal vector y is now written in the 0™

0 e
(1, 2) = D T3>0 for 268,
i=
L.e., the sets A and B are s i
eparated by this planc if the region § lies to one side of it, and vice versa.
Let now to the Sequence of points M .
!
in X belongi h m’xz"'-s:cra--- of
Ing to the sets A and p s
pace. correspond the sequence M * of points z! 22 2% in § = AUB' in the Jinesr!
The function K (x y) defi
' Ined accor(j i
roduct of t i 18 10 (1) ca . i o
p WO vectors z and u with coordinates z; = A.‘; lzc Interpreted in the linearization space Z a8 :
i?1(x) and y; = Mei(y), @

K (, V) = (z, u)
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2), tak into account (4) a finiti
pormula (2), taking é (4) and the definition of M*, can now be rewritten in the form

. N -|’
K (z) = L (z, z7), (5)
276 M*
where ' significs summation over those points of the sequence M* whose appearance in the teaching process led to
W s . .
»correction of an crror.” We now remove from M* all points which did not lead to "correction of an error,” and we
hose points required for "error correction,” renumbering them in order z!, 2%, ... They form a sequence M**,

cave Ul
k (5) can be written as follows:

Now expression
k.
]{r (Z) — (Z, 2 :_I ), Zl G ‘][**’ (6)

1;1

where k, is the number of "corrected errors” occurring in the course of the first r examples.

The condition for which "error correction™ must be carried out at the point z ¢S has the form

K.(z) <0.

Therefore, it follows from equality (6) that the (k+1)st "error correction™ occurs if

(z"”, szl)<0_ @)
I=1

3

We shall now describe the algorithm in a "geometric language.”

When the first point z! in M* appears the application of the algorithm signifies construction in the linearization
$pace of the plane

Ei(z) = (3, 5)
vith normal vector z! (Fig. 2).

. 1 i i
If the following point in M* lies in that halfspace to which the normal vector z- of the f:onst_ructcd plage ;S
directed, then there is no error; the position of the plane and its normal vector do not change in t.hlsncase, an ;.Lh
lext example is shown. The first time that a point falls in the opposite halfspace, "error correction Eccurs. \;1' ic :
M this geometric language means the following operation: the normal vector of the plane constructz uphto this step
| i i w
8 added 1o the vector of the point requiring the "error correction” and the resultant vector 1s'afioptfe as‘;' e rt]e o
Tormal yecror of the separation plane and, consequently, the plane itself rotates about the origin o coo; ina es;
- i ion i i ond step,
' be Perpendicular to the new normal vector. Thus, for example, if error correction Is required after the secon p
en :
€W normal vector is equal to z! = z* (Fig. 3).
k
Z‘-z’, ZlGAI¥* and inequality (7)

A . is equal to the sum
f“‘-fk error corrections the normal vector of the plane 1s €q 5

Ing int lies in the halfspace opposite
Hicaes that the following (k+1)st error correction oCCUIS only if the corresponding point lies In i .

€
notmal VeCtor,

=0

(12)=0 Fig. 2.

Fig. 1.
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The use of the algorithm to construct an automaton for leﬂming o4 {
guish classes is meant in the following sense. As points are showp ¢, the I8ty
maton in the teaching process the machine constructs for the sth step theafum.
tion K (x) according to the algorithm. After a sufficiently long g, i
process is stopped, and the function K¢ (x) is adopted as the Separatio, ‘
In the test process when a new point is presented the automaton ¢op,

and assigns the point x* to the class A or B according to the sign of

uncioy,
Puteg Ki(xo
Ky,
In the geometric language this signifies that after s examples the h
passing through the origin of coordinates in the linearization plape with HOf:u

)

Fig. 3.

kg
vector Z al, gl € MEE s adopted as the separation plane,
=1

3. Convergence of the Algorithm in a Finite Number of Steps
In this section we shall establish two closely related theorems cOncerning the algorithm described i section
a theorem on the finite number of corrected errors and a theorem on the convergence of the algorithm,

. ; 1,2 k : )
Theorem 1, Let M be an arbitrary infinite sequence of points X7, X%, .y Xy w0 101 the space X, belonging to g
sets A and B. Let further there exist a function ¥(x) rigorously separating the sets A and B, i.e.,

~ .
N (x) =& if z E A! (8)
< —e, i z€ B;
(where &> 0), representable by the expansion
N
b3 (:17) = Z CiQi (7‘) 9
i=1

Let further the function K (x, %) be bounded in AUB.

Then there exists an integer m independent of the choice of sequence M such that in using the algorithm the
number of errors corrected does not exceed m.

Before proceeding to a proof of theorem 1, let us explain it, using the geometric model introduced above. In
application to the linearization space theorem 1 states that if there exists a plane such that the entire joint sét p
S = AUB lies strictly to one side of it and is bounded, then for any sequence M the algorithrn given in section 2 tfd
construct some plane after a finite number of corrected errors such that no further examples taken from the .ennr::ur
infinite "tail” of the sequence will cause the constructed plane to rotate, i, e,, no further error correction will o€

. avion SPACE:
The proof of theorem 1 will be carried out in this "geomewic language" applied to the linearization sP3

Proof of theorem 1, Let us introduce the following symbolism:

(10
a = inf (1, 2)

268 |’l’l '

@

b = sup|z|.
265

According to (3) and (8)

e

0.
ik

a >

Since

[e3] ___;___‘..——"
1)/ o — VK@

Fig. 4. =1

b <, since K (x, x) is by hypothesis bounded.
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In the geometrical language the quantity a is equal to the minimum distance from the plane (3, #) = 0 to the
— A 1 al N ~> " N .
joint set § = A B, and b is the distance from the origin to the furthest point of this region (Fig. ).

From (10) and (11) it follows that

(v, &) >aly], (13)
[ <o (14)
Putting, further,
k
TI\. — \ :I' UG T AL (e
l=1

ie., ),k is the normal vector of the plane after k corrected errors, Then inequality (7) may be written:
(2R, yR) <0, ZRiLE v (16)

Let us examine the change in the normal vector YK of the plane constructed by the algorithm, We sum the in-
equality (13) from I to 1 over k

(v, %) =kaly]. (17)
Using the Cauchy-Bunyakovskii inequality to estimate the left side of (17),
| (v << Iy
Whence and from (17) after division by [y| we obtain
[VH| > ka. (18)
Further, according to the geometrical interpretation of the algorithm
YR = gk A i
Therefore
[VEFE2 = VR 2008, ) o+ 2R,
Using now inequalities (14) and (16) we obtain
[yl < e + 0
From this recursive relationship, taking into account that y° = 0, we find
Iy*[?<< K% (19)
We combine inequalities (18) and (19)
Ka? < V|2 < KU
Finally we obtain
k< b2/ a®=m. (20)

Estimate (20) is written "in terms of the linearization space.” It can be rewritten "in terms of the space X* if
W .
€ Tewrite in these terms formulas (10) and (11)

[+3)
. N H l‘ \l r T
Aty Bl b ver

a =

l/i-(c.“ /M) l/‘:\:jl (/M)
{=1 -

b = sup VK (v, a). (22)
ACAUMN
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Theretore

. ) "
o VR @)/

Iz agALn ' ,\_‘1 }\2
' inl [ ()| =M o

apALn

N
N (e /A converges, This series is known to converge if the basic agsym
D (e /M) b Ption (1)

and ks finire if the series
=1

satisfied, ive., if for i> N all ¢ = 0,

Theorem 1 is thereby proven.

Remark 1, Inequality (28) shows that m is smaller if for all other conditions the same,the minimum of functiop
| ¥(x)| is greater. This reflects the fact that the number of corrected crrors decreases as the points of A and p i

*further® from the separation plane ¥(x) = 0, f.e., as they are "further” from each other.

-y

2, From the proof of theorem 1 it is casily seen that the theorem remains valid when the separation function is

representable by an expansion in an infinite serfes

($8)

U () - - E ey (x) B
i1
or an expansion of the form
U (x) = \‘ e, (2) dw, (s
0

(S8}
if the series E(m’/la“) (or the integral \ (co!/ M)?dw ) converges. However, in the proof of the theorem the
i=| q

condition jnf|(x)[= 0. is used in an essential manner. At the same time the infinite series (:1) and the integré
xEAURB

(*:%), if they converge uniformly, can be substituted by a finite series of the form (!) such that the function obtaiﬂ;d(.)
differs by an arbitrarily small quantity from (i1) or (!!). From these two facts it follows that a function of the'fOI '
separation

will also separate. Therefore, in the conditions of the theorem,assumptions on the expandibility of the
"

function in (%) or (31%)jn fact do not broaden assumption (),

:qn func”
- . . - N . aration 1™
As important as it is, the proposition of theorem 1 does not yet establish the convergence to the s€P ¢ statisti®

tion of the Ky (x) constructed by the algorithm. In effect the theorem places no restrictions of any sort Oﬂf ite tesct”
of the point examples shown in the teaching process. The test result can then contain errors even if i infin tetitiOﬂ
ing sequence is correctly separated by the automaton (for example, if this sequence consists of an infinite reaP[ion
of two points, one of which belongs to A, the other 10 B), To establish the convergence of K(x) to the sepaf
function the sample statistics must be taken into account, be
ce

It is obvious that if the automaton is to separate the sets A and B it is necessary that the teaching s?q;l:nossible'
"sufficiently representative,” its points should be “sufficiently scattered” over the sets A and B. For this I;ility of &
for ecxample, to require that the points of the teaching sequence appear at random and such that the p'rob-':lf appear.
pearance of a point from any subset of nonzero measure he positive (it is understood that the probabiht)’ 0 re seP¥
ance of points lying outside A and B is equal to zero *), In effect, if this condition is satisfied, fOf mcomi
ration the probability is unity that there will eventually occur the following error correction, and sinc
_— . 0
* For example, for a space consisting of a finite number of points this signifies the existence of a pOSitht";’;e this sif
of appearance of cach of the points of the space hclonglng to A and B; for the n-dimensional euclidian SPsuremems.
nifics that the probability densities in A and B can be zero only in scl; smaller than n, the number of me?
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peorem 1 there can only be a finite number of these corrections, the separation of the sets will finally take place with
X pmhﬂb““y of unity. These considerations are confirmed by the following theorem,

Theorem 2. Let the sets in the space X be such that
——————

1) there exists a separation function

Wi {25 1 e,
N8 if a6k,
where &> 0, representable in the expansion N
N (a‘,) = 2 €, (J“);
i=:l

2) the function K(x, x) is bounded for x G AUB,

Let further

3) the sample statistics satisfy the following conditions:
a) the appearances of points of the teaching sequence
b) for any r, at the rth step of the
at this step complete separation of the se

are independent events:

algorithm there exists a strictly positive probability of correcting an error if

ts A and B by the function K (x) has not yet occurred,
Then with probability unit

y for each realization of the algorithm a finite number 1
for each realization) such that

is found (in general different

K {>0; if 264,
N0, i cen

Le., with probability unity the separation of the sets is realized in a finite number of steps.

Before proving the theorem
tion 3 is a conditjop on the sampl
Probability of appearance of poin
Proposition of theoremn 2 has the

we note that its conditions 1 and 2 ensure applicability of theorem 1, while condi-

e statistics which, for example, are guaranteed by the existence of a strictly positive
ts from any subset of nonzero measure of the sets A and B. It is easily shown that the
following equivalent formulation,
Theorem 9.

In the conditions of theorem 2 there exists for arbitrary € such an s th
fatige Tt
0g the sets A and

at the probability of sepa-
B at least one of the steps from the Oth to the sth will be greater than

l-¢.
Proof of theorem 2, Let us consider the set of all realizations of the algorithm (corrcsponding to the set of all
teaching ‘equences). In each realization there exists a last error correction (since from theorem 1 there is only a
hite numpe; of these). Let us consider the probability Pr(p >§) that after the last error correction the probability p
o. éPPearance of an error on the succeeding step be greater than §= 0*. But the cvent "after the last error correc-
P> 8" and the event "for p> § no error will occur in any succeeding examples™ are identical. The Probabili[y of
e event is equal to zero for each 8> 0, since the probability that errors will not occur in the following L steps
ulessth ' » pol and the 1 ‘ sston tend

at (1 - )L irtue . ) nce of the appearances of the points, and the last expression tends to
210 551, " 6)", by virtue of the independen pp

t ' Coﬂsequemly Pr(p>6)= 0 for any 4 >0, and from this it also follows that Pr(p > 0) = 0,
b Ondition g,

But according
Uity thy, separ

of the theorem Pr(p > 0) is just the probability that separation has not occurred. Therefore, the proba-
. ation occurs fs equal to 1 = Pr(p > 0) = 1, Q.E.D,
. COndino"s for

Accorg]
Ing to
the Setg 8 to the th

. m
Termination of the Algorith . o .
eorems of‘thc preceding section the algorithm proposed above leads to exact separation of
4nd B with Probability unity for each concrete problem and In each realization in a finite number of steps,

¢ congj after the last error correction, separation o
ind p dition p> g corresponds to the realizations for which,aft

Of i, % not Yet occurred and the probability of incidence of a point (by virtue of the sample statistics)
€ Se
Set of s A and B

f regions A
in that part
. i i ) 3 .
which are incorrectly separated, is greater than 6. The probability Pr(p >6) is the measure of this
C > '

\ " ) > N .
fu realizations and the aim of the further considerations consists in proving 1h'u fact that lr'(p 8)= 0. It is as-
rm ! the m .5' > ists, Similar assumptions are also made without explicit statemen in the
;:>nn On ang ) st;re ofPr(p26) ext;S . ms of this work, The conditions guaranteeing the existence of these
"Obap Proof of the following theore
1
®$ are not considered in the present work,
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i sets has already occurred at an . 3
ive a guarantce that separation of the - - 2NY partiey,,
FONSISL, LA IOt possiie tog ve °1 B Below two variants of the conditions for [ermmatio“ of th Slepl
» tcaching sequence. _ . h batis
regardless of the length of the teac aration of the sets, the probabiliy
rll%un are assumed f}:)r which, although they do not guarantee scp y
€ R AN [ ’

of error ; Bo-
o - in the teaching process and the (e
succeeding test is sufficiently small if the statistics of appearance

: e
i i iti S ftermi ation. th
i tlle fOllOWlIlg COIIdlIlOll 0 . ¢
i lhe algo:l[hm w1th n
V!ll'lnlll ]. l;cl us Supplcl’ncnl € te

in the L examples in sequence following ap ErroraChln Ploge,
terminates as soon as no error correction has occurred in the ithm, by virtue of theorem 1, leads 1o t c?rfECtiOH‘
Here L is an arbitrary prescribed integer. The exFended alg;)nt wh’erzk is the maximum mumbes of Ceotrmmaﬁoﬂo
the teaching process not later than after Lk tea.chmg examp ES: e agcordiﬂg to the above conditjop i;med o
estimated by theorem 1. As soon as the teachmg.process‘term-m e tolloirin thecret ' equali[y g
the succeeding test may be guaranteed by the estimate given in

Theorem 3, Let p be the probability of error in the test process carried out after termination of the lea
1COIC '

process, Then, for any > 0 and § > 0, the probability Pr(p < &) of the event (p < €) exceeds 1-§ if L sa

Ching
the inequality

tisfiey
In (6] k)

L> =" (24
In (1 —€)

Proof of theorem 3. Let us consider the event $(s) consisting in the application of the proposed algorithm apg

the termination condition of a total number of errors corrected not less than a prescribed integer s = 1, We consider

1
the function P (w|S), S P(w|S)dw=1, such that P(w|S)dw signifies the probability of the event "the probability
U

of error in the step after correction of the sth error lies between w and w + dw" on condition that S has occured,

If at each step the error probability is equal to w, the probability that in the course Ef L steps in succession an
error has not appeared, by virtue of the independence of the examples, is equal to (1 — w)”. Therefore the probability
that in the course of L examples after the stt

1 error correction there will not occur a new error and that the emor prob-
bility lies between w and w + dw, is equal to

P(w|S) (1 —w)Ldw.'
But by virtue of the termination condition this ex
algorithm leads to termination exactl

pression is equal to the probability that the proposed variant of the
between w and w + dw if the event S

: crsess 3 ; lies
y after s errors corrected, where the error probability in the following test acl
- . N €

has occurred. Therefore, the probability Py that termination occurs after
5 errors corrected and that the probability of error in the following test is greater than € is equal to

1
P, = S P w|S) (1 — w) P (S) du.

Termination of the teaching process after differ
fore the pr

Thet®”
. . venB-
€nt numbers s of errors corrected are incompatible ealto
obability of such a termination that in the succeeding test the error probability exceed ¢ is €l

k
PF» = Z P:& =
§=]

Let us find an upper bound for this expression;

Jﬁ"
me o

Pw]8) (1 —w) P (S) dw.

&

I
o

k 1
-
P< 2 W= § 2 (w|5) P (5) o
8=] €
or, considering that

1

S P(a]8) P(s) dw < 1
we obtain

p ‘gk(i-e)l&_
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But
E(1—e)t <3,
{f L satisfies inequality (24). Therefore P, < 5,
The quantity Pr(p< €) considered in the theorem is the probability of the event "p <& " on condition that termi-

pation occurred at some step (i.e., the conditional probability). The probability P is the joint probability of the
events "p > ¢ " and "termination has occurred.” However, since the lamer event always occurs (in no more than Lk

steps), then
Prip<e)=1—P.>1—05.

Q.E.D.

Thus, if from any considerations whatever the estimate can be obtained of k, the maximum possible number of
error corrections, theorem 3 permits choosing L such as to guarantee in the use of the first variant of the termination
conditions, the required quality of the teaching process. However, usually k is not known in advance; estimate (20)
cannot be used in practice, since the sets A and B are also not known in advance. In this consists the inadequacy of
the first variant of the termination condition. The second variant described below avoids this difficulty.

Variant 2. In the first variant the reliable number of examples L without error correction after which the teach-
ing process terminates,is independent of the number of errors corrected previously. In the second variant it is as-
sumed that the number L = L = Lo+ s, where Lg is a prescribed number, s is the number of previously corrected errors,
Thus, in the second variant L increases by unity after each corrected error.

For this definition, by virtue of theorem 1, termination must occur after a finite number of examples not ex-
ceeding

E(k+1)

—5 -

The problem now consists in selecting Ly so as to guarantee the required quality of the teaching process.
Theorem 4. Let p be the error probability in the test process after termination of teaching,

Then, for anye >0 and § >0, the probability Pr(p < ¢) that p <€ is greater than 1- 5, if

Ined
. 25
Ly> In (1 —¢) (25)

Let us emphasize that the choice of Ly according to (25) depends only on the values of € and § characterizing
the quality of the teaching process, and is independent of the forms of A and B and the sample statistics.

Proof of theorem 4. Repeating exactly the first part of the proof of theorem 3, we obtain
‘“‘

M =

1
P, = S P w]|s)* P (s) dw,

s=1

where Ly=Lg+ s,
Let us obtain an upper bound for P :
[o°]

PO —g)lote

s=1

~ 1
Pw|S)PSdv<s(1—e)* D) (1—ef=—(1—el <5

§=0

me

Therefore

P, <§,

ifL, *atisfies inequality (25). Taking this last into account in the proof of theorem 3, we may write Pr(p< ¢)= 1
Pe=1-4 QED.
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. in place of Ly = Lo + s any other mq .
In variant 2 of the termination conditions we may adopt in p s y notomca“ ingy
.
on
. J) L erges. The proof remaing e
ing function Lg = Ly + o(s) as long as the series }_J (1 —e)ts converg P Xactly the samg |
S=l ' U(

: ion O,
the estimate of Ly depends on the choice of the function &

5. Realization of the Method of Potential Functions. The Perceptronp,

. .

Two avenues of realization of the algorithm described in sectior? 2 ar§ op;:n usmE.the mejans availabl“

puting techniques, distinguished by the methods of storing tt?e datzi.f'flrrll\Iln%o;“ﬂ:eeu?;a;f L';eiv‘im“;g the leamjp .

and processed by virtue of the algorithm. The first avenue isspecitically ‘ rsal C?mputers,thege_c:s;

(which, of course, can also be realized on universal machines) leads “_7 the CO['lSlTUC-thn'Of Specialized apgyy, M
devices (schemes). Below it will be shown that a particular case of this type of device is the perceptrop,

n Cop.

First method. Let us consider therth step of the algorithm. Up to thi.S step the machine has Stored ip jy, Me,
ory the coordinates of all those points x', x2, ..., x* shown during the teacliunig process fOl'. wt}iCh ©ITOr correqyy w[:‘
required before this step, and the numbers oy, &, ..., &7 (¢¢j = £1) which mdlcat-e by their sign to whicy of the sets}
(A or B) these points belong. With the appearance at the (r+1)st step of a new point X * the machine caleulageg the
quantities K (x*, xi) (i=1, 2, ...,! ) and the sum

1
K, (z%) = D) o: K (z*, ).

1=1

IFKp(x*)> 0 and x* € A (or Ky (x*)< 0 and x* ¢ B) the computation results at this step and the point x* o
erased and the following example is considered, If Kp(x*) >0, and x* € B (or Ky (x*) <0 and x* ¢ A), the additions]
point xE+ = x+ is stored in the memory with the number of+; whose sign indicates to which set x* belongs, and the
other numbers calculated at this step are erased.

Thus at the end of each step (and thus at the end of the entire teaching process) only two series of number ¢,
X7 and oy, ..., a; are stored in the computer memory. Concerning the values of the potential function K (x, y) and
the functions K (x) constructed during the process, they are not required in the machine memory, and in testing they
are calculated at each step,as convenient,and then erased,

We now make several remarks on the choice of the potential funcrion K (x, y) for practical use of the algorithm.
We shall consider that a distance R(x, y) is defined in the space X between two points x and vy,

In a number of cases it is found convenient not to be concerned with the choice of the system of functions
¢1(x) and constants A;, calculating the potential from formula (1), but 1o give directly the form of the potential _
K(x,y), according to the following intuitive considerations. Firstly, the function K (x, y*), considered as a func'twﬂ
of x for fixed y = y*, should be sufficiently "smooth" and not too "oscillatory.“ since the sum of potential funcnort‘
constructed by the algorithm should approximate the separation function ¥(x) which, according to the basic assump
tion, is not "excessively jagged." Secondly, it is desirable that the function K(x, y *) take on a maximum Valf‘sn
for x = y* and decrease with distance of the point X from y* since by virtue of the "smoothness™ of the separatls N
function ¥(x), the closer a point X is to y* the greater is the "basis" for saying that x belongs to the samé Set';ili);)’
If we take into consideration further the remarks in the discussion of the basic assum-[;tion (section 1),the posa)fcl-
of varying the form of the potential function in wide limits,and the requirement of symmetry K(x,y)= }<()’- xfo;m
lowing from (1), in practical use of the method of potential functions it is possible to prescribe K(ZK- y)in the) elC.
of a fairly simple "on the average" decreasing function of the distance R(x.-y). for example e, sin (aRﬂ;e'mo:e
In the choice of parameter « it is necessary to keep in mind that the more complicated the problem (it il
the sets A and B "interpenetrate™ and, therefore, the more "oscillatory™ is the separation function), the more[emial
should the potential K(x, y *) decrease. In practical use of the algorithm the steepness parameter of e e
function is chosen experimentally (cf [8)).

K )

Second method, Let the potential K (x, y) be chosen such that the coefficients A; =0 for i>N,ien
f

N roLa N
=.E’ A:2Q; (l) P (y) At the I'th step of the algorithm the machine memory has stored the numbers i, T
1=
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having the significance of components of the normal vector of the hypersurface in the N-

) dimensional linearization
space. For the (r+1)st example, the point x*, the quantity

and the sum

are calculated,

Further, we compute the number

[ 0, if K,(2*)>0anda*¢A, o K, (2*) <Oanda2* € B,
o — 1 1, if K, (2*) < Oanda*¢ A,
—1, if K, (a*)>0anda*¢ R

and new values 71”1. Wiy 7{;1 from the formula
Vi'tt = it + i (x*).

Then the old values of yg and all the computations are erased and the machine stores in its memory only
(i=1,..,N).

I+

i
We now turn our attention to the fact that in the second method of realizing the algorithm it is not necessary

1o store the points shown in the teaching process, but in place of this it is necessary to store N values of ¥}, There-

fore, the advantage of one or the other realization depends on the relations between the dimensions of the space X and
the linearization space and on the length of the teaching sequence.

. Let us now consider the diagram of Fig. 5. The diagram contains N nonlinear converters zj = y;(x) = Ajei(x)
(i=1,..,N), a set of multipliers X, realizing instantaneous multiplication of the signals applied, a summation unit

1

—L\d

which instantaneously produces at its output the sum of the signals applied to the inputs, accumulators

ha\fing in all a single input and producing at the output the sum of signals applied to this input from the start of ope-
fation of the system,* a nonlinear output element sign ¢ with characteristic y = sign v and finally, a nonlinear ele-
ment §(h, y), forming the function.§ from the signals y and h, where h is the signal indicating the sign of the set to
which the example point belongs (h= 1 if x€A and h = =1 if x€B):

0, if y=ha,
o= {0 0
hl 1 3/=1"=h-

It is easily seen that the diagram of Fig. 5 realizes exactly the second of the above described methods of realiz-

in .
8 the algorithm, i.e., realizes the teaching process by the method of potentials,

. Let us now consider a particular case, where the space X is the space of vertices of the m-dimensional cube, and
SYstem of functions

Pi(zr) = Mipi(z) (=1, ..., N)

is :
2 functiop of the form

m
P, (z) = Sg (E wez, + By )' (2.6)
8=1
where (X ) 0. .
s +eey X)) is the set of coordinates of the vertices of the m-cube, [ is a prescribed constant, and the constants
‘InFig. 5

the circuit generating the coefficients yj is shown only for the first converter z, =¥, (x) (for ). Similar cir-

Cujtg
co s .
ﬂtalmng accumulators £, are connected after each nonlinear converter.
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m) have the values 0, 1 or =1, Then, ag

S
pi (s = Toeens Is cag)y

grasped, Fig. 5 18 cxactly the perceptron scheme of Rogepy ) s
' ) U
l—’gﬁ__’ Mark 1 (cf. [9]). The pnonlinear converters arys
i 2 )? [ sign ol o
: region z; = Pi(x)
: 42 4 | ) i']ti ' 'l . .
w(7) 74 o here the role of the associative clements of the pere
A 7z, %4 y=stgn¥ play here —
‘e (A—ulcmcnls).
£ Therefore
I [ V:Z”;Zi 1. The Mark 1 percep. 15 particular case of the abg
] » N1 [~ V(‘,
described class of schemes (Fig. 5).
9. The operation of the perceptron can be understoog
Tt be a realization of the method of potential functions and 1
- isti [ C b - "
¢(z) 7 b‘[? characteristics of the perceptron A-elements are "harmonics” of
" H the function system in which the potential is expanded,
Fig. 5.

of the teaching process for pattern recognition (theorems 1 and 9)

3. The above theorems on the convergence
he problem of convergence of the process in it.

are applicable to the Mark 1 perceptron and solve t
at all necessary that the A-clements be threshold

4. From the viewpoint of convergence of the process it is not
ation function ¥ (x) is expandable in the

elements; any functional converters ¥ (x) are suitable if only the separ
system ¥y(X), ..., iPN(x).*

Let us now consider the form of the potential which is in fact realized in the Mark 1 perceptron, i.e., in the
case where the functional converters are threshold elements.

Since the p are chosen at random in the perceptron, it is possible to consider both concrete realizations of the
perceptron (if these numbers have already been chosen) and the statistical properties of the ensemble of percepuons.
Let us begin with a concrete realization of the perceptron, We shall consider the potential function

.
Kmm=§mm%m. @
=1l

In the euclician m-dimensional space E;; we define the vertices of the m-dimensional cube, forming the space
X. Each A-element defines in Ey a plane ‘

(28)

while the set of these planes divides E, into polyhedra, The
vertices of the cube X are divided into sets corresponding 10
the polyhedron in which they occur. Let us consider (27) fOF
— fixed y = y*. The value of the function K (X, y*) does not )
“ :illiii M | change if x is identified with the vertices of the cube 1oc8‘°se-

‘ 11! m in the same polyhedron, In this sense K(x, y*)isa pi?cewrunher
7 =t constant function, given on the polyhedra. Letls COHSIdero the
the value of K(y*, y*), This number is obviously equif“ an
] / number of excited A-elements for x = y*. Letus plot? d[:;ﬂftl

Wi arbitrary straight line passing through the point X = y* ntion of
along this line from the point y*. Up to the first interseC yere®
ra T~ this line with a boundary of the polyhedron containing K(y'-)’.)'
y* the value of K (x, y*) does not change and is equal ¢

[T

5

nt
tentl®
cted 21 juring

'I“d@l‘clldcmly of us V, A, Iakubovich has dire
attent

this in an article whose manuscript came to Our
. repat: :
Fig. 6. Preparation of the present article for publication:
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At each intersection with rh‘e constructed planes (i.c., the boundaries of the polyhedra) the value of K (, y*) can only
Jecrease. In effect, at the intersection of the line with the ith plane in

) - . (28) two cases are possible: ¥;(y *) = 0 (the
ith A-element is not excited at the point y*)or wi(y* )=1 (the ith A-element is excited at the point y*). In inter-
section of the line with the ith plane the components ¢ K()PL(y*) in (27) for k = i do not change and only the com-
ponent ¢i(x)¥i(y *) can change. But in the case Yi(y*) =0 this term is equal to zero and the value of the potential
does not change. If $i(y*) =1, then¥i(x) changes from 1 1o

0 at the intersection with this plane, so that the term
. o ~ N .
P (0¥ (y) which was equal to 7 hecomes equal to 0, and the potential decreases by unity,

From the above it follows ‘U any concrete realization of the perceptron the potential K (x, y* ) represents
a function which does not increli&'in*any direction from the

"source” of potential and reaches a maximum at X=y*.
The form of the potential for m = 2 is shown in Fig, 6,

Concerning the statistical ensemble of perceptrons, for it the functions vi(x)

are random functions, and so the
potential is also a random function. It is easily shown that for

any pair of fixed points x and y the value of the poten-
tial K(x, y) averaged over the ensemble of perceptrons can be expressed by the formula -

K(r,y) = N(p(2) — p(z,1)), (29)

where p(x) is the probability that a randomly chosen A-element be excited at the point x, and p(x, y) is the proba-
bility that it be excited at the point x and not at y. Since, in general, the probability that a random plane separates
two points X and y increases with increase of the distance between them, the mean potemial K(x, y) is a function
decreasing with increase of distance from the source,
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