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THE EXTRAGRADIENT METHOD FOR FINDING 
SADDLE POINTS AND OTHER PROBLEMS* 

In this paper we study a certain modification of the gradient 
method that uses the idea of extrapolation. 

The gradient method [ 1, 2] is one of the simplest and most 
natural general methods for finding saddle points and minimiz­
ing. However, while the gradient method always converges 
for the most important classes of minimization problems, it 
conve rges for saddle point problems only under extremely 
rigid assumptions, such as strong concavity-convexity of the 
function (the results of convergence under such assumptions 
are given, for example, in [ 3]). A weaker sufficient condition 
for convergence is the property of "stability" (see [4]). Even 
it, however, does not hold for saddle point functions, which is 
what Lagrange functions for convex programming problems 
are. It can be shown that for a bilinear saddle point function 
(the Lagrange function of the linear programming problem or 
a matrix game payoff function) the gradient method never con~ 
verges for any length of step (except for certain degenerate 
cases). Therefore, the problem of using gradient methods for 
saddle point functions in general remains open. 

*Russian text© 1976 by "Nauka" Publishers. "Ekstragra­
dientnyi metod dlia otyskaniia sedlovykh tochek i drugikh 
zadach," Ekonomika i matematicheskie metody, 1976, Vol. 12, 
No.4, pp. 747-756. 
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One possible way of solving this problem is to replace the 
initial saddle point fWlction by a modified version that has the 
same saddle point but has a stability property. (!) In this paper 
we use a somewhat different solution that consists of modifying 
the gradient method itself by using extrapolation. It is pre­
cisely by sequential approximation that we make a trial step 
along a gradient, and the value of the gradient in a new "ex­
trapolated" point is used as the direction for actual movement 
for the next approximation. It turns out that, generally speak­
ing, this method (which we will call an "extragradient" method) 
converges for a convex-concave function (sufficiently smooth). 

For the case of bilinear functions, it can be shown that the 
method converges with the speed of a geometric progression. 

The extragradient method also converges for minimizatioI!, 
solutions of the operator equations, and other problems, but 
generally speaking under the same assumptions as in the gra­
dient method. 

We note that the basic idea of using extrapolated "prices" to 
give "stability" to the gradient process has already been ex­
pressed (for example, [2, chap. II]). 

1. Convergence Theorems for the Extragradient Method 

1. The extragradient method may be applied to the same 
class of problem as the gradient method. However, a more 
interesting application of the extragradient method is the prob­
lem of finding saddle points (we will treat this case in partic­
ular here). 

This problem consists of the following. Suppose that QcR\ 
ScRm are subsets of Euclidean space; ~(x, y) is a numerical 
function given on RnXRm. We must find the point [x', y'] EQXS 
(the so-called saddle point) such that 

ct(x', y)~~(x', y')~cp(x, y'), (1) 
VyES vxEQ 

We will also assume in problem (1): 
a) the sets Q and S are closed and convex; 
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b) the function cp(x, y) is convex on x, concave on y,and differ­
entiable, and its partial derivatives satisfy a Lipshitz condition 
on QXS,i.e., 

Ilcpx(x, y) -cpx(x', y') II~L (1Ix-x'11 2+lly-y'11 2
) '\ 

Ilcpll(x, y) -cPy(x', y') II~L(llx-x'112+lly_y'112) I,,; 

c) the set X'XY' of saddle points of the function (f (x, y) on 
QXS is nonempty. 

The extragradient method for finding saddle points of the 
function cP (x, y) is determined by the following recurrence re­
lations: 

::e=p Q (x"-acpx (x", yk)), 
f/=P s (yk+ acpy (X'\ y")), 

.rk+I=PQ(xk-a(tx(;f", fjk)), 
yk+I=Ps(yk+acpuCx", fjk)), 

(2) 

where a>O is a numerical parameter and PQ , P s are operators 
of the projection on the corresponding sets. 

Each iteration of the process (2) under consideration con­
sists of a "trial" gradient step at the point [x", fjk], calculation 
of the gradients and the resulting "extrapolated" point 
crx' (x\ fi"), CPu' (x\ fik), and use of these "extrapolated" gradients 
as the actual direction for movement from the point [x", yli] to 
get the next approximation [xk+\ y"+I], 

Under certain assumptions, the sequence of points {[x'\ yk]}, 
determined by the relations (2) converges to one of the saddle 
points [x, y]EX'XY', 

Theorem 1. If assumptions a)-c) hold and in addition 

d) O<a< 1/L, 

there exists a saddle point [i, ~] EX*XY* such that [x\ yll] -+ [x, fI] 
as k-+oo, 

Proof. We will first convert (1) to a slightly different form. It is 
well known (for example, [ 3 J ) that, with the assumptions of the the­
orem, the point (x', yO) E QXS is a saddle point if and only if the 
inequalities 

hold. 

(cpx(x', yO), 
(cpy(x', yO), 

x-x') ~O, 
y-y')~O, 

VxEQ, 
VyES, 



38 MATEKON 

If we denote u=[x, y], T(u) =[cpx(x, y), -cpy(x, y)], O=QXS, the 
necessary and sufficient conditions may be written as 

(T (u·), u-u·) ~O, VuE8, 

where u·= [x., y.] EV·=X·XY·, 
We further note that conditions b) mean that the operator 

T(u) is single-valued, definite, and monotonic, i.e" 

(T(u)-T(v), u-v)~O, u, vE8, 

(3) 

(4) 

and, in addition, satisfies the Lipshitz condition with constant L 

IIT(u) -T(v) II~Lllu-vll, 

The iterative problems (2) may now be written as 

uk=p a (uk-aT (Uk) ), 
Uk+1=P e (uk-aT (Uk) ) , 

(5) 

(6) 

We should note that the sequence {Uk}, defined by the relations 
(6), converges to some point ClEV·, For arbitrary u·EV· we 
estimate IIUk+1 _U·1I2, Using for this the well-known property of 
a projection on a convex set Vu 

(u-Pe (u), v-Pa (u») ~O, YvES, (7) 
\ 

from whicl: it follows that lIu-vI12~llu-Pe(u) 112+llv-Pe (u) 11
2, 

YvES, Vu, for v=u·, u=uk-aT (Uk), in accord with conditions (6), 
gives us 

II UH1_U*112~ II uk-aT (Uk) _u·112_11 uk-aT (Uk) _uk+1112 (8) 
=lIuk _u*112_lIuk _ uk+1112+2a (T (Uk), U·_Uk+1), 

We also note that from the monotonicity of operator T (u) and 
inequality (3) follows the relation 

O~(T(u)-T(u·), u-u·)=(T(u), u-u·) (9) 
-(T(u*), u-u*)~(T(u), u-u·), vuES, 

In particular, for u=/i k inequality (9) gives (T(u~), u'-u~)~O, 
whence the estimate 
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(T(iik), Uo_Uk+1)=(T(iik), U*_iik) 
+(T(uk), Uk-Uk+l)~(T(Uk), Uk-U"'+l) 

follows immediately. 
We use (10) in the basic chain of inequalities (8) 

II UH1-U*W~ II uk_u*112_11 uk-uk+111 2+2a (T (Uk), Uk_Uh+f) 
= II uk_u*112_11 Uk_ukIl 2_11 Uk_Uh+fIl2_ 
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(10) 

-2 (uk-u", Uk_Uh+1) +2a (T (Uk), Uk_Uk+1) = (11) 
= lIuk-u*112-lluk-u"'1I2-11 U"'-U"'+1 II 2+ 

+2 (uk-aT (Uk) -u\ Uh+1_Uk). 

We now estimate the scalar product in the last expression 
(11), breaking it into the sum of two other scalar products; the 
nonpositiveness of one follows from (7) for u=ull-aT (Uk) " L'=UH1 ; 
and the second we estimate using the Cauchy- Buniakovskii in­
equality 

(u"'-aT (u"') -u"', Uk+1_U"') = (uk-aT (Uk) -uR, U"'+1_Uk) 
+(aT(uk)-aT(uk), uh+1-uk)~a(T(uk)-T(uk), Uk+1_Uk) (12) 

~aIlT(uk) -T(u"') IIlIuH1-uk ll. 
In addition, 

Iluk-uk I1 2+ Ilu"'-u"'+1112;?;2I1u"'-uklllluk-uh+111. (13} 

We now continue the basic chain of equalities (11), using (12) 
and (13) and also proceeding in such a way that the operator 
T (u) satisfies the Lipshitz condition (5) 

lIu"'+1_u*1I2~ lIu"'-u*1I 2-lIuk
-ii

k Il 2-11 iil!_UH1 112 
+ 2aL II u"'- Uk 1111 Uk+1_ u"'ll ~ II u"'-u ° i 12 -II u"'- iiI! 112 

_lIuk-u"'+1112+a2L2I1uk-ukIl2+ i:U~+1-Ukl\2. 

Thus, we finally reach the estimate 

lIu"'+1-uoll~llu"'-uoI12-(1_a2L2) Ilu"'-u"'1I2. (14) 

According to the conditions of theorem 1, a 2L2>0, so that 
from (14) it follows that 

(15) 
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and the sequence Iluk-u':1 is nonincreasing and therefore {Uk} is 
bounded, The finiteness of the space examined and the closed­
ness of the quantity 8 confirm the existence of the similar sub­
sequence {U kl

} 

(16) 

We consider the function <D (u) =llu-uIl 2
• where u= 

Pe(u-ry,T(u)), We will show that, if for u=UESthe function 
<D(U)=O, then UEU', Actually, <D(U)=O, i.e., U=Pe(U--aT(U)), 
Then by the property of projections (7) for YvES, we get 
(U-aT (U) -U, v-U) ~O, whence we get (T (U), v-U) ~O, YvES. 
According to (3) this means that UEU", 

From the continuity of <D (u) and (15) and (16) it follows that 
<D (u) =0, as soon as it is shown that uEU·, 

Inequality (14) holds for an arbitrary point u·EU·; thus it 
follows that {llu"-ul!} is monotonic for U, as well. Therefore, 
not only the sequence {U"I}, but also the sequence {Uk} converges 
to U, The theorem is proved. 

Observation. To reach inequality (14) we nowhere used the 
finite dimensionality of the space. Therefore, if the initial 
problem consists of finding a saddle point in Hilbert space, it 
follows from (14) that lIu"-u"II--O as k--oo, Thus, in this case 
we can say that for the sequence {Uk} in the limit the condition 
u=u, which characterizes saddle points, holds. 

2, We now consider the application of the extragradient 
method to other problems. We note, first of all, that in the 
proof of the theorem of convergence, the necessary and suf­
ficient conditions for the saddle point in problem (1) were 
written in the form of a variational inequality [ 7J 

(h (z), v-z) ~O, (17) 

where z, vERI; h(z) is an operator carrying RI into R:. A solu­
tion of this type of inequality on the set QcR' is any point .::;*EQ 

such that (h (z'), v-z") ~O, vvEQ, Thus, in the proof of the theo­
rem, the solution of problem (1) on saddle points was reduced 
to a solution of a variational inequality (3). 

The extragradient method for solving the variational in-



SUMMER 1977 41 

equality (17) has the form 

Zk=P" (zk-ah (Zk) ), 

Zk+l=P" (zlt-ah (zit». 
(18) 

With regard to the convergence of the sequence {Zk}, defined 
by (18), in the proof of theorem 1 we nowhere used the fact that 
the operator T (u) is connected in some special way to the 
saddle point problem (1); it was recognized only that the oper­
ator T(u) is monotonic (4) and satisfies a Lipshitz condition (5), 
and that the set 8, on which the solution of the variational in­
equality (3) was being sought, was convex and closed. Thus, in 
fact we proved a more general statement. 

Theorem 2. Suppose that the variational inequality (17) on the 
set QCR1, is solved and: 

a') Q is a convex, closed set; (h(z)-h(v), z-v);:::O, vz, vEQ, 
b') h (z) is a monotonic operator satisfying a Lipshitz con­

dition: !!h(z)-h(v)II~Lllz-vll, vz, vEQ; 
c') the set of solutions Z· of inequalities (17) on Q is non­

empty; and 
d') O<~< 1/ L. Then the sequence {Zk} , defined by the recur­

rence relations (18), converges to some ::.EZ·, the solution of the 
variational inequality being considered. 

We note that the gradient process Zk+l=P" (zk-'Y.h (zit)) for in­
equality (17) converges, generally speaking, only under stronger 
assumptions, such as in [ 7], where strong monotonicity of the 
operator h (z) 

(h(z)-h(v), z-v)~mllz-vI12, m>O. 

is required. 
Certain important classes of problems - such as minimiza­

tion problems, the solution of operator equations, the search 
for equilibrium points in n-person games, and others, as well 
as the saddle point problem - converge to the solution of vari­
ational inequalities [7] and consequently for all these problems, 
given certain assumptions, the extragradient method corre­
sponding to (18) converges. Below we will also give examples 
of the use of these. 
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We consider the minimization problem 

min j(z). 

MATEKON 

( 19) 

Under the condition that QcRI is closed and convex, and fez) 
is a convex, differentiable function with a derivative satisfying 
a Lipshitz condition 11f' (z) -f' (z') II~Lllz-z'll, the necessary and 
sufficient conditions for z*EQ to be a minimum in (19) may be 
written as: (1' (z*), v-z·) ~O, VvEQ. Thus, the minimization prob­
lem reduces to solution of a variational inequality (17) in which 
the operator h (z) =1' (z). It is easy to see that, in assuming the 
existence of a solution of problem (19), all the conditions of 
theorem 2 hold, and it can be claimed that the extragradient 
process for the minimization problem 

zlt=Pg (zlt-af' (zit) ), 
ZIt+1=Pg (Zk_af' (Zk» 

for fl,<1IL converges to some solution of problem (19). How­
ever, we observe that for the same assumptions (with a<2IL) 
the usual gradient method also converges: 

Zk+1~Pg (zit-a!, (Zk». 

To solve the operator equation 

z=S (z), zERI, (20) 

with a nonexpanding operator S (z): liS (z) -8 (z') II~ IIz-z'll , the 
necessary and sufficient conditions for z· to be a solution may 
be written as (z*-S (z*), v-z*) ~O, VvERI. The problem con­
verges to solution of a variational inequality (17) with h (z) = 

z-S (z), Q=RI. In assuming the existence of a solution of this 
operator equation, tl?-e conditions in theorem 2 hold with 
O<a<t/2 and the extragradient method 

zk=zk-a (Zk-S (Zk», 
Zk+1=ZIt_a (Zk-S (Zk) ) 

converges to solution of equation (20). The method of sequen­
tial approximation Zk+l=S (Zk) for this problem generally speak-
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ing diverges, although the "gradient" method ZR+l=ZR_ a (z~-S (ZR) ) 

with O<a< 1 converges [8]. 
Thus, for the minimization problem (19) and the solution of 

the operator equations (20), the extragradient method has no 
advantages over the gradient method. The situation is differ­
ent with regard to the problem of finding equilibrium points in 
n-person games, which is just like the saddle point problem we 
have already treated - that is, in contrast to the gradient 
method, the extragradient method generally converges for an 
arbitrary game. 

2. The Extragradient Method for Linear Programming and 
the Solution of Matrix Games 

In the present section we consider in greater detail the ex­
tragradient method for finding saddle points of a bilinear fWlc­
tional. Linear programming and the solution of matrix games 
reduce to a problem of this type. If we consider the pair of 
dual linear problems 

(c, x) --min, 
ATX~b, 

x~O, 

(b, y) --max, 
Ay~c, 

y~O, 

where x, cERn; y, bERm; A is a matrix of dimension nXm, and AT 
is the transpose, the solution of these problems reduces to the 
search for the saddle points of the corresponding Lagrange 
function on the set x~o, y~O 

min max L (x, y), L(x, y) = (c, x) + (b, y) - (Ay, x). (21) 

The problem of finding optimal strategies of matrix games 
with a payoff matrix A also reduces to the search for saddle 
points of a bilinear fWlctional 

M(x, y)=(e, x)+(e, y)-(Ay, x) (22) 

on the set x~o, y~O. Here e= (1, 1, ... , 1) is the vector of 
similar dimension. (Problem (22) is a special case of (21).) 
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The extragradient method for finding saddle points of the 
bilinear functional (21) on the set x~o, y~o may be written in 
the following way: 

,i1l=[xll+a(Ayll-e) ]+, 
t?=[yll-a(ATxll-b) ]+, 
xll+1=[xk+a(A.zr-e) ]+, 

yll+l=[yk_a (A T,iIl_b) ]+, 

(23) 

where [p]+=max {a, p}for the scalar p and [p]+=([Pl]+, [P2]+, 
... , [pzl +)for the vector p= (PI, P2, ... , pz). 

We will prove the following theorem concerning the con­
vergence of the process (23). 

Theorem 3. If: a) the bilinear functional (e, x) + (b, y) - (Ay, x) 
on the set x~o, y~o has a unique saddle point [x·, y.]; and 
b) O<a<VIIA II. then {[x\ yk]} converges geometrically; 
IlxQ

+
1-x'li 2+ ilyk.l_Y· '1 c:::::;;fj (,lx k _x'11 2+lI yll_y'II"), where O<q< 1 (the 

implicit form of q is used in the proof of the theorem). 
Proof. We will denote by ai the i-th row of matrix A; by ii j 

, 

the j-th colwnn of matrix A; and by Zi, the i-th component of 
the vector Z= (:t, Zz, ... , ZI). Suppose that for the saddle point 
[x', y'] of the functional (21) which we are considering 

1*= {i : (ai, y') =eJ, 

r= {j : (ii', x') =bJ. 
(24) 

Then, as is known, it follows from the asswnption of unique­
ness of the saddle point that 

(a\ y') <c" xi·=O, iEI*, 
(a), x') >h .. y/=O, FEr, 

l' '>0. jEr, 

y*>O, jEr. 

(25) 

W~ will now choose an arbitrarily small f >0. such that for 
all [x, y] in an £-neighborhood [x', yO]: Ilx-x'W~jlly-y' c:::::;;f the 
in equal it ie s 
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hold. 

((1, Ii -0 ;;:::~>o, 
(a, y l-C~-'(, 

x-'J. (a'y-cJ ;;:::0, iE/*, 
y;-'J. (ifx-b j ) ~o, jEr, 
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(26) 

According to (24) and (25) and the continuity of the functions 
in (26), there exist such y>O and 8>0. 

It is easy to see that for method (23) all the assumptions of 
theorem 1 hold (in particular, for L we may take \\A II). There­
fore, the sequence {[x\ yk]} converges and for sufficiently 
large k>K all points {[x,\ yll]} and {[xR, ir]} will be contained 
within the e-neighborhood of [x·, yO] that we are considering, 
and the inequalities of (26) will hold for them. Therefore, for 
k>K 

X~+1 = [x/+a. «a\ f?) -Ci) ] +~ [Xjk_a.y] +, 

y/,+1 = [y/-a. «aJ, .III) -bj) ] +~ [y/-cq] +, 

-
iE/*, 

jEr, 

From this it follows that after a finite number of steps it 
turns out that 

x/=o, 
y/=O, 

'El' l , 

{Er, 

Thus, for k>K1 the method of (23) takes the form 

x/=x/+a. «a\ yk) -Ci), iE/*, 
x/=O, {E/*, 

y/=y/,"-a.«a i , xk)-bJ, jEr, 

fhll=O, fEr, 
11+1 11+ « i-II) ) Xi =Xj a. a, y -Ci, 

"+1 _ k « -j -Ii) b) Yi - Yi -a. a, x - j , 

11+1 ° ,'-E J', yj =, 

i E /*, 

j E 1', 

(27) 

(28) 
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If we denote by v'\ wk the nonzero components corresponding 
to xl< and y,\ and by B the matrix derived from A by deleting the 
rows with subscripts (Er and columns with subscripts {EJ", (28) 
may be written as 

iJk=vk+a (Bwk-c) , 
wk=wk-a (BTvk-b), 
vk+l=vk+a(Bu-k-c) , 

w"+I=w"-a (BT:i/-b) , 

(29) 

Through the assumption of uniqueness of the saddle point, 
the matrix B is square, nonsingular, and of dimension 
Z::::;;min{n, m}, and, evidently, 

1 
IIBwll~ liB-III Ilwll, 

Using the equalities 

as well as (30), we get the following estimates from (29): 

a} 
IIwk_wkIl2~ IIB- l l1 z Ilvk-v'1I2, 

(30) 

(31) 

(32) 

For our problem the basic estimate (14) derived in the proof 
of theorem 1 has the form 

II vk+
l- v·1I 2+ Ilwk+l_W'112~ IIvk-v'112+11 wk-w·112 

- (1-a21IA 112) (1Iv k-vkIl 2+ Ilwk-wkI1 2
). 

Since for the sequence under investigation the estimates (32) 
are appropriate, we get from this inequality 

II vk+ l- v'11 2+11 Wk+l_ W 'UZ 

~ (1-~ (1- a2 I1AII2)) (IIvk-v'112+llw"-w" 2
), IIB-111 2 
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(33) 

The theorem is proved. 
We will consider q and (33) as a function of a.. It is easy to 

see that m!n q (a) = 1 - 4" B '~I>" A ii' and is achieved for 

a = y 1 . Thus, if we choose a = y_1 , we can guarantee 
21IA!! 21IA[[ 

that there will be convergence at the rate of a geometric pro-

gression with ratio q = (1 - 4" B ,ill' II A II' ) . 
Observation 1. According to the proof of theorem 3, after a 

finite number of iterations of the extragradient method (23), we 
find an optimal basis (27) after which we can solve the pair of 
sy stems of linear equations (31) with quadratic nonsingular 
matrices B and BT. This enables us to combine the extragradient 
method with any finite method for solving systems of linear 
equations to get a finite method for solving the initial problem 
(21). The method of accompanied gradients of [9] - which is 
close to the extragradient method in the operations it uses, and 
in addition makes it possible to use the properties of the initial 
matrix of the system (in this case B) - is entirely appropriate 
for this purpose. We will apply the method of accompanied 
gradients to the system with a nonsingular symmetric matrix 
[ 9, chap. 6] and therefore to the pair of systems of interest to 
us as well, represented in the form 

and it has the form 

V k+1=Vk+"fkpk+1, 
Wk+l=Wk+"fkqk+1, 

IIc-Bw k Il 2+11 b-BT vk ll 2 

~k = Ilc-Bwk-11l2+llb-BTvk-1112 ' (34) 
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pk+l= (C-BWIl)+~kp\ 
qll+l= (b-BTvll) +~lIq\ 

I/C-BW II 1/2+ 1/ b-BTv1l 1/ 2 

'(II = (pl!+t, Bqk+l) + (qk+l, BTpl!+l) 

Method (34) converges after a number of steps, equal to the 
doubled order of matrix B (except for degenerate cases [9]). 

Observation 2. Suppose that we are considering a block linear 
programming problem of the form 

N 

min L, (Ci, Zj), Ci, Zj E Rn" 
1=1 

(35 ) 
N 

L,Bizi=d, dER1
, i=i,2, ... ,N, 

f ... l 

where Ai is a matrix of size miXni; Bi is a matrix of size lXn,; 
and the set Qi= {Zi : Aizi~bi}' i=1, 2, ... ,N. Then the solution 
of problem (35) reduces to the search for saddle points of a 
Lagrange fWlction 

min max L (z, y), 
ZEQ lIERl 

The extragradient method for problem (36) has the form 

z/=PQAz/-a(ci+B?yll) ], 
N 

rl = yk + a ( L, BiZ/-d) , 
i=1 

N 

yl!+l = yll + a (L,BiZ/-d), i=l, ... , iY. 
;=1 

Thus, the extragradient method is a simple convergent (for 
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an appropriate choice of ex) method for solving block linear 
programming problems. 

Note 

49 

1) For a Lagrange function such approaches are described 
in [ 4-6]. 
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