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I. InTRODUCTION

Let I' be an n—person game with strategy space S; and payoff
function H;(x,- - -,x,), x: € S, for the player “”, i=1,--+,n. Let S
- be a set of “mixed strategies’” of player “”’, and H; (my," -+, pa),
pieS’, the corresponding mathematical expectations of “s”’. A system
p*=(pf,- -+, p¥) is then, according to Nash™), an equilibrium point
of the game I'=(I,{S:}, {H;}) where I={1,2,---,n} is the set of

players, if
H!*(F';k: "':P:)>H?(Px*3 BTN = B P:)’ i=1,+,n,

for every p;e S, i=1,---,n. In other words, the choice of strategy
g for player “s” is such that no tendency to alternate his strategy
is required in order to increase his expectations so far as the other
players stick to their choices. It is a fundamental theorem of the
theory of games due to Nash™ that equilibrium points exist always
if each S§; is a finite set and S is the set of all possible mixed-
strategies. It has been generalized by Glicksberg!® that the theorem
remains true in the case that §; are all bicompact Hausdorff spaces,
that S are the sets of all regular probability measures defined over
the o—field of all Borel sets of S; and that H; are all continuous
functions over the product space §;% -« x §,=S.

In the case of Nash and Glicksberg the choice of (mixed) strate-
gies as well as their alternations is thus quite arbitrary. It seems
to be more realistic to suppose that both the choice and the alterna-
tions of strategies are restricted in some manner. The object of the
present paper is to investigate the existence of equilibrium points of
such games with restricted domains of activities of which the precise
definition will be given in VIII. As we shall show in this paper, the
equilibrium points of such games may be non-existent and moreover,

* Received May 15, 1960.

% First published in Chinese in Acta Mathematica Sinica, Vol. XI, No. 1, pp. 47-62, 1961.
t A facsimile of the translation in Scientia Sinica, Vol. X, No. 5, 1961, 387—409.
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it is rather the interrelations between the various domains of restric-
tions than the strategy spaces themselves which are responsible for
the existence of equilibrium points. Thus the existence of equilibrium
points is ensured in the case of Nash-Glicksberg just because the
domains of restrictions are extremely simple, viz., the single domain
consists of the whole strategy space for each player, though the
strategy spaces may themselves be arbitrary bicompact Hausdorff spaces.

The proof of our Main Theorem in VIII follows somewhat the usual
reasoning based on generalizations of Kakutani’s fixed point theorem.
However, much deeper topological tools should be used in our case
for which we refer to the original work of J. Leray™. For functional
analysis we shall often refer to the work of Dunford-Schwartz!?,

II. Tue SurporT OF A ProBABILITY MEASURE

Let X be a bicompact Hausdorff space and B(X) the o-field of
all Borel sets of X. For any regular probability measure g defined
over B(X) we shall denote by [g] the set of all points x e X such
that p(U)#0 for every neighbourhood U of x and call this set the
support of p.

Lemma. The support [p] of a regular probabzlzty measure p over
B(X) in X verifies the following properties:

1°. [r] is a closed set of X.

2°. [r] is the intersection of all closed sets F in X for which
r(F)=L1 '

3°. w(U)=1 for any open set U containing [p].
4°. p([eD =1 |
5% w(X-[r])=0.

6°. [ap+pv]lc[pe]lU(v] for any regular probability measures p,v
over B(X) and any real numbers a, B with a, =0, a+B=1.

Proof. For, by definition, if x&[g], x would have a neighbour-
hood U, with p(U,)=0. Then any x’ in U, is not in [g] so that
X —[r] is open or [g] is closed. This proves 1°.

Let G be the intersection of all closed sets F in X for which
p(F)=1. If xeG, then there is a closed set FcX with x&F and
p(F)=1. Hence for any neighbourhood U. of x which is disjoint
from F we would have p(U,) =0. By definition we have then x& [£].
‘Therefore [p]cG. On the other hand, if x& [p], then the open set
U, containing x exists for which p(U,)=0. Whence p(F)=1 for
the closed set F=X—-U,. As x&eF we have a fortiori xéG. Whence
[r]DG. 1t follows that [#]=G and 2° is proved.
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Let U be any open set containing [g]. For any x&U there
exists, by definition and 1° above, an open set U, containing x with
p(U,)=0 and U,N[p]=@. The system of all these sets U, forms an
open covering of X—U which is bicompact since X is bicompact. Let
U;=U,, i=1,---, n, be a finite number of them which together
covers the set X—U. Then we have p(X—-U) <X p(U;)=0. Hence
p(X-U)=0 or p(U)=1. This proves 3°. -

Suppose now that p([#])<1. Since p is regular there exists an -
open set U containing [p] for which p(U)<1. As this contradicts
3°, the assertion 4° is proved. The assertion 5° follows then from 4°. -

As 6° is evident from definition, our lemma is proved.

III. TuEe Ser ofF ProBaBILITY MEASURES WITH SUPPORT IN A GIVEN SET

Let X be a bicompact Hausdorff space and B(X) the o—field of
all Borel sets of X. For any regular countably additive bounded set
function g over B(X), let v(p, X) be the total variation of ¢ on X
defined as

”(P'a X) = sup Z l/"‘(Ex)| )

where sup is to be taken over all systems of finite number of mutually
disjoint sets Ey---,E, in B(X). Under the norm | g| =2(g, X) the
linear space of all regular countably additive bounded set functions
p over B(X) forms a Banach space which will be denoted by R(X).
Denote by C(X) the Banach space of all bounded continuous functions
f over X with the norm ||f|| =sup [f(x)|. Then by the Riesz re-

presentation theorem, R(X) is isomorphic to the conjugate space C*(X)
of C(X) under the isomorphism p&—x* such that

)= | 1 wam,

which will also be denoted by p(f) or f(g#). Let R*(X) be the

space with the same underlying set as R(X) but with C(X)-topology,
i.e., topology with the sets

N(p; 4,6) = {v/|f(p) —F)| < e, fed},

as basis, where peR(X), ACC(X) finite, and €>0. are arbitrary. It
is known that R“(X) is a locally convex, Hausdorff linear topological
space (cf. e.g. [2] V. 3).

Consider now a set F of the space X and denote by m(F) the
set of all regular probability measures g over B(X) with [g] con-
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tained in the closed set F. By the very definition, m(F) will be the

topological space with topology induced as a subspace of the topological
space R°(X).

The following assertion, though elementary in character, plays an
important role in our development. So we state it explicitly:

Any subset C of R*(X) convex with respect to the linear structure
of the Banach space R(X) is contractible over itself into a point of
which the contraction is continuous with respect to the topological
structure of R*(X).

To prove this, let C be the convex subset in R(X) and p, a fixed
point in C. For any peC and 0<z<1 let p, be the point 2+ (1—-12) p,
e C with p,=p. Define now a mapping 4 of Cx[0,1] into C by

}3(/1'; t)=f"t3 pecC, te[0, 1],

Set 4,:C—C by A (p)=~h(p,¢t) so that 4, is a contraction of C over
itself into the point g, To see that the contraction is continuous,
i.e., /4 is continuous in g and ¢ in the topology of R“(X), let us con-
sider a fixed pair (g, #) and an arbitrary neighbourhood N of p, in
R*(X) given by

N=N(p; 4,¢e) ={n/|f(») —f(p)| <e,fe 4},

Let M >0 be a number greater than the maximum of |f(g) —f(g) |
for all f in the finite set 4. Let us consider the neighbourhood U
of (p#2) in R*(X) x [0,1] given by

U=N X1J,
N’ =N(,LL;A,—Z~> = {v/lf(v) — (| <-§-, feA},

1=dele =<5, veto ),

For any (v,2)eU, we have then

Fwe) — () = £ $(0) + (1 — &) f(po) — 2#(p) — (1 — ) #(p) =
= — ) [f(p) — ()] + £ [ () — f(w)].

Consequently
If (o) —F ()| < |2 — el - [f(p) — )| +¢ - [f(0) —f (@] <
' < m+ 2=
2M 2

and v, =4A(v,¢') e N. This proves the continuity of 4 at ()u,t). and
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hence the contraction / is continuous in the topology of R“(X).

From the definition and the above assertion the following lemma
is quite evident. :

Lemma 1. (i) For any set F of X the set m(F) is convex (w.
r. t. the linear structure of R(X)) and is continuously contractible
over itself into a point (w. r. t. the topological structure of R*(X)).

(ii) For any sets Fy and F, of X we have
m(Fy 0 Fz) =m(F1) n m(Fz)

Lemma 2, m(F) is closed in m(X) if F is a closed set of X.

Proof. For any xeF let us take open sets U, V., containing x
such that

xeU, CU,CV,CX—F,

There exists by Urysohn’s lemma a continuous function over X, or
an feC(X), with f=0 on X—-V,, f=1 on U, and 0<f<1 over X.

Consider now any pem(F) Nm(X) | (the bar means closure in the
topological space R“(X)). For any >0, let N(g;f,¢) be the neigh-
bourhood of g in R®(X) given by

N(ps f, €) = {v/[f(p) — f(») | < e}.
There exists then a vem(F) N N(p;f,¢) sothat |f(#) —f(v)|<e. But

1) = () = | _fGwlax) < u(v) =0,
It follows that f(v)=0 and
P = | 16 a0 < [ Gmlan) = ) = 1) < o,

As >0 is arbitrary, we have p(U,)=0. Hence xe[p]. As xeF is
arbitrary we have [p]CF or pem(F). This proves that m(F) is
closed in m(X) and hence our lemma.

Lemma 3. m(X) is closed in R°(X).

Proof. Let pem(X), the bar meaning closure in the space R*(X).
The lemma will then be true if we prove that p is a regular pro-
bability measure over B(X), or, as it is sufficient, prove that (i)

p(E) 20 for all EeB(X), and (ii) p(X)=1.

To prove (i), let us first suppose on the contrary that p(E)<0
for some closed set EeB(X). As p is regular, there exists an open
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set UDE with

o(p, U — B) < % | (E)|

(cf. e.g. [2] III 5.11 and III 1.5). By Urysohn’s lemma there is an
feC(X) with f=1 on E, f=0 on X—U and 0<f<1 on X. Then

f(p) = L fu (dx) = L p(dx) + L_E fu(dx) < p(E) +
[, 1 oy ) < pB) + o, U = B) < = L o) <o,

Take now a neighbourhood‘ N of p in R°(X) given by
N =N(p; f, 6) = {v/[f(p) — f(¥)| < ¢},
where 0<e<|f(p)|. As pem(X) there exists avem(X)NN. Then

v(8) = [ pian) < [ polan) = 10) < ) + 6 < 0,

contrary to vem(X), v(E)=0.

It follows that w(E)>0 for all closed sets EeB(X). Suppose
that EeB(X), not necessarily closed, is such that p(E)<0. As p is
regular we have again by [2] III 5.11 an open set UDE and a closed

set WCE such that I,u(C)|<—;-|,u(E)| for any CeB(X) with Cc

U-W. In particular we have [p(E-W)|< El—lp(E)I so that p(W) =

p(E) — p(E-W)<0 which has been shown to be impossible as W is
closed. Thus (i) is proved.

To prove (ii), let us suppose on the contrary that p(X)#1. Let
us take €>0 with e<|1—p(X)|. Consider the function f=1 on X
and the neighbourhood N of p given by

N = N(p; f, 6) = {v/|#(p) — f(»)]| < e}.
There exists then a vem(X) NN with

v(X)=fM <f(p) +e=p(X)+e<1 for p(X)< 1
and v(X)=f() >f(p) —e=p(X) —e >1 for p(X) > 1,

contrary to vem(X), v(X)=1. This proves (ii).

Our lemma is thus proved.
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Let W be the closed unit sphere in the topological space R(X):
w = {p/llpll = o(p, X) < 1, pe RGO}

By a theorem of Alaoglu (cf. e.g.[2] V 4.2), W, considered as a set
in the space R*(X), is bicompact. As m(X)CW and m(X) is closed
in R°(X) by Lemma 3, it follows that m(X) is also bicompact in
R*(X). As m(F) is closed in m(X) for any closed set F of X, we
have the following

Theorem. For any closed set F of X the set m(F) is closed and
bicompact in the topological space R*(X).

IV. THE SEr oF PRrOBABILITY MEASURES WITH SUPPORT SUBORDINATE
To A COVERING

Let X be a bicompact Hausdorff space and B(X) the o-field of
all Borel sets of X as before. For any set F of X we have defined
in III m(F) as the set of all regular probability measures ¢ over B(X)
with support [#]CF, considered as subspace of the topological space
R*(X). Consider now a finite closed covering F={F,,---, F,} of X
consisting of closed sets F; 1 </<r. Define m(F) as the set of re-
gular probability measures over B(X) with support in at least one of
the closed sets F;, 1<:<r, i.e., '

T

m(F) = > m(F;)

i=1
considered again as a subspace of R°(X).

Lemma. For the finite closed covering §={Fy--+,F,) of X the
subspace m(F) of R*°(X) has the following properties:

(1) m(F) is closed in R*(X).
(ii) m(SF) is a bicompact set of R*(X).

(iii) {(m(Fy),-+-,m(F,)} is a closed convexoidal covering of
m(SF) in the sense of Leray™. ‘

[4]

(iv) m(F) is convexoidal in the sense of Leray™ if the nerve

complex K(S5) of the covering F is connected.

Proof. The properties (i) and (ii) are direct consequences of
Lemmas 2, 3 and the Theorem in III. In order to prove (iii) and

(iv), let us recall first some definitions of Leray™.

A covering of a bicompact Hausdorff space is, according to Leray,
convexoidal if it verifies the following properties:
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(a) Each set U of the covering is closed and “simple”, i.e., with
the same Céch-Alexander cohomology as that of a point.

(b) The intersection of any finite number of sets in the cover-
ing is either empty or “simple”.

A space is then, according to Leray, comvexoidal if it is bicompact
Hausdorff connected, and possesses a convexoidal covering which veri-
fies (a) and (b) as well as the further property (c) below:

(c) For any point of the space and any neighbourhood V of «,
there is a set U of the covering contained in V and containing x in
its interior.

The assertion (iii) is now immediate from the definition and .
Lemma 1 in III. To prove (iv) let us first note that m($F) is bi-
compact Hausdorff and also connected since K(S) is supposed to be
so. Consider now any pem(S). Let F,---, F;, be the totality of

sets in the covering § which contains the support [¢] of p. As each
m(F:) is closed in R“(X) there exist neighbourhoods of g in R“(X)
disjoint from all m(F:), i#14;,---,4;; among them there are convex
ones since the space R*(X) is known to be locally convex. Let U(g)
be the system of all closed convex neighbourhoods of g in R“(X)
disjoint from. all m(F;), i#1iy-++,4;. Let B(x) be the family of all
subsets of m (&) which are intersections of sets in U(p) with m(F).
Then the totality B of all sets in B(x) for all pem(F) constitutes a
closed covering of the space m(J) verifying the properties (a), (b),
(c) above necessary for m(F) to be convexoidal. For (c) follows
from the fact that each B(g) forms a neighbourhood system about p
in m(5), (a) is evident since each V of BV is closed convex and
hence simple, and (b) too since any finite intersection of closed con-
vex sets is also closed and convex, and hence simple if not empty.

V. GENERALIZATION OF THE PRECEDING NOTIONS

Let X and B(X) be as in the preceding sections. Let ¢ be any
fixed number. For any set F of X we shall denote by m.(F) the
set of all regular probability measures p over B(X) such that u(F) >c.
For ¢>1 the set m.(F) is empty. For ¢=1 the set m;(F) is simply
the set m(F) introduced in III. For ¢<0 the set m.(F) coincides
with m(X). In the general case it may be characterized as the set
of all regular probability measures g over B(X) with p([g]NF)>=c.

Lemma 1. T#e sets m.(F) have the following properties:

(i) for ¢<1l, m(X) coincides with m(X) and hence is closed
and bicompact in the topology of R*(X).

(i) m(F)cm,(F)cm,F)cm(X) for d<c<]l.



(ii1)  for ¢<1, m.(F) is convex with respect to the linear struc-
ture of R(X) and is continuously contractible over itself into a point
in the topology of R*(X).

(>iv) mcl(Fl) ﬂmca(Fz)Cmc1+c2~j(FxﬂF2), for any ciycyFy and F,.

Proof. Immediate from the definitions (cf. III).

Lemma 2. (i) Thke closure m.(F) of m.(F) with respect to the
topology of R°(X) is a bicompact subset of R*(X) contained in m(X).

(ii) m(F) is a closed and bicompact subset of the topological
space R°(X) if F is closed in X.

Proof. Asm,(F)cm(X) and m(X) is closed and bicompactin R*(X)
by Lemma 3 and the Theorem of III, we have m.(F)Cm(X) and is bi-
compact in R®(X). This proves (i). To prove (ii) let F be closed
in X and vem,(F) where 0<c<1l. Then v is a regular probability
measure by (i). If vem,(F) we have v(F)<c<1 so that [v]&F and
v([v]-=F)>1-¢>0. As v is regular there exists a closed set C con-
tained in [v]—F such that

v([v] — F—¢Cc)<v([v] —F)—1+e¢,
We have then
»(C)>1—¢ >0,

As C and F are both closed and disjoint there is a continuous func-
tion f over X with f=1 on C, f=0 on F and 0<f<1 everywhere.
Set e=v(C) —1+¢>0 and consider the following neighbourhood of v
in R*(X):

N =N @;f,e)={p/[f(p) — ()| < e},
As vem,(F) there is a pem,(F)NN. We have

w(X — F) = Lf(x) pldz) =f(p) > f(») —s = Lf(") v(dx) —e >
>Lf(x)v(dx)—e =v(C)—e=1—c,

Whence p(F)<c and pem.(F) contrary to the above choice of p.
This proves (ii) for 0<c<1. The case ¢>1 or ¢<0 is evident.

Consider now a finite closed covering §={F,---,F,} of X and
a system of numbers c={¢;,---,¢}. We shall set ‘

r

mc(g) = Z mcl.(Fr‘)3

i=1
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considered as a subspace of the space R*(X).

Theorem., Lez 0<c;<1 for each i=1,---,r. Then the subspace
m () of R*(X) has the following properties:

(i) mJ(S) is closed in R*(X).
(ii) m(F) is a bicompact set of R*(X).

(iii) CAS)={m,(F), --,m, (F)) is a closed convexoidal co-
vering of m.(S) in the sense of Leray.

(iv) m,(S) is convexoidal in the sense of Leray if the nerve
complex K.(F) of the coverings C (3) of m(S) by the sets m, (F;),
1<i<r, is connected.

(v). The nerve complex K.(F) of the covering C.() of m.(5F)
is isomorphic to the nerve complex N(SF) of the covering § of X if

ci+ e, > — 1
for cmy set of indices z,, -<,i, among 1 to r, in particular if
c,>1— — for all i. '
Proof. For (i)—(iv) the proof is analogous to that of the Lemma
in IV. To see (v) let us remark first that the correspondence
Fi«—>m,(F:), 1<i<r, makes N(F) a subcomplex of K.(F). Let us

consider now any set of indices #;,- - -, 7, for which
F;lﬂ"'ﬂFi;’:@,
F,-lﬂ-“OF,-.ﬂ"'ﬂF;,?E«@, l<i<55

in which the symbol F;, means that this set is not to be counted in
the intersection. Supposc that me (F;, )N -+ Nme (F;)#@ and p is

in this common intersection. By Lcmma 1 (1v) we havc
pemcil(Ffl) n---nN ﬁcii(F,‘i) n---nN mcit(Fi;) C
Cmd(F,-lﬂ e N F;iﬂ e N F:‘;)’
where

d=c,- +"'+€,':"“c‘,~i-—$+2,

1

Whence
pllpln Fipn v ﬂﬁiiﬂ s N Fi) Zeiy+ + +oei,—ci;, —st2,

As the sets F; N--- ﬂp,-l.ﬂ --+ NF,;, are mutually disjoint we should
have
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SOMEDNBILE AL AR ) >

s
z ciy + +c,-,—c,-l.—s+2)=
i=1 )

=G —DCn+ - te) — s —2),

Whence ¢; +--- +¢; <s—1, contrary to hypothesm This proves the
1somorph1sm of K, (3) and N(F).

VI. UnrirorMm CLOSEDNESS ofF MuLtipLE-VALUED MAPPINGS

Let T be a multiple-valued mapping of a bicompact Hausdorff
space X into a bicompact Hausdorff space Y. The subset of the pro-
duct space X XY constituted by all points (x,y) for which yeT(x)
is called the graph of T and will be denoted by G(T). T is said to
be closed if G(T) is closed in XxY. The closed mapping T will
be said to be uniformly closed if for any (x,y9) e G(T) and any
neighbourhood V of y in Y there exists a neighbourhood U of x in
X such that for any x"eU, the set T(x") NV is non-empty.

Lemma. Lez the multiple-valued mapping T of a bicompact
Hausdorff space X into a bicompact Hausdorff space Y be closed as
well as uniformly closed. Then for any continuous function f over
XxY the multiple-valued mapping T; of X into Y defined by Ty(x)=
{y/yeT (%), f(xy) = ,5up f(x,9)} is also a closed mapping.

Proof. Set Sup f(x, j)=m, xeX. Let (x9)eG(T;) and

yoe Ty(x) such that f(x,9,) =m,. As G(T) is closed, we have
(%,9) e G(T). If (x,9)c¢ G(T,), then f(x,y) <m,. Put e=m, —
f(x,y)>0 and let U, V, V, be ne1ghbourhoods of x and y, yp in X and
Y respectively such that for any x2'eU, ' eV, yoe Vo, we have

lf(x,y)—f(x,y)|<7 and |f(«’, y5) = f(2, o) | <7. As T is uni-

formly closed, there is a neighbourhood W U of x in X such that
for any 2’ eW, T(x)NV#Q and T(2)NV#P. As (x,9)eG(Ty),

there exists (%,9') e G(Ty) with ¥'eW, §y'eV. For this ¥ we have
also a §,eVyNT(%). Then we have

f(’?la 5’-,) = mzy = f(f;':/; %).
On the other hand we have
&, 50 =, 5 + (f(x, ) —#(F, 7)) + ((x, 30) — $(x, 9)) +

r -7

+ (J&Zs 70) — (x5 90)) > 15,5 — § +e— % = (7,7
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which leads to a contradiction. Hence (x,y)eG(T;) or G(Ty) is
closed in XxY, ie., T; is closed.

VII. Some ToroLocicAL THEOREMs ABOUT MULTIPLE-VALUED MAPPINGS

For a bicompact Hausdorff space X we shall denote by H(X) the
Céch-Alexander cohomology ring based on rational coefficients. Such
a space will be said to be simple (more exactly, simple with respect
to rational coefficients), if it has the same cohomology ring as that of
a point. The two following general theorems will be required in
what follows.

Lemma 1. (Leray Theorem)™. [f the bicompact Hausdorff
space X has a finite closed convexoidal covering § in the sense of
Leray, then X has the same cohomology ring as that of nerve complex
N of §: H(X)=H(N). In particular, we have X(X)=X(N).

Lemma 2, (Vietoris-Begle Theorem)'™. [f f is a continuous
mapping of a bicompact Hausdorff space X into a bicompact Hausdorff
space Y such that f~'(y) is simple for each yeY, then H(Y)=H(X)
under the isomorphism f* induced by the mapping f. '

Let @, ¢ be two continuous mappings of a bicompact Hausdorff
- space X into a convexoidal space Y for which @7'(y) is simple for
any point ¥ of Y. As Y is convexoidal, the cohomology ring H(Y)
has a finite basis, say Z7, in dimension p, 0<Sp<N, 1<i<e, By the
theorem of Vietoris-Begle, we know that H(X) of X has also a finite
basis constituted by ¢*(Z?), where @*: H(Y)—>H(X) is the isomor-
phism induced by ¢. It follows that

$*(28) = 3 o o*(ZD).

The number > (—1)? 8, B’ where S, B’ denotes the trace of the

14
matrix B?= (&%) is independent of the choice of the basis {Z?} and
will be denoted by A(g, ¢).

Theorem A. Let @, ¢ be two continuous mappings of a bicom-
pact Hausdorff space X into a convexoidal space Y for which ¢7*(y)
is simple for any point y of Y. If A(@,¢)#0, then @, ¢ have a co-
incidence point, i.c., some point xeX for which @(x)=4¢(x).

The proof of the above theorem, which is analogous to that of
- Leray concerning fixed points of a map (see [4] Th. 17), will be
omitted. The next theorem follows directly from the definition.

Theorem B. Ler ¢ be a continuous mapping of a bicompact
Hausdorff space X into a convexoidal space Y for which @ *(y) is
simple for any point y of Y. Then A(@,@) =2(Y), where X(Y) denotes
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the Euler-Poincaré characteristic of Y.

Now let T be a multiple-valued mapping of a convexoidal space
Y into itself such that

(i) T is closed and

(ii) T(y) is simple for each yeY.

Denote the graph G(T) of T by X and define the two maps ¢
and ¢ of X into Y by the projections of Y XY onto Y, viz.,

P(y, y) =
‘l’(}’: )’) '_3’ 5

By (i), the graph X=G(T) of T is closed in Y * Y and hence it is
bicompact Hausdorff.

s *(y) is homeomorphic to T(y) under ¢ and is simple by
(ii) for each yeY, we see that the number A(@, ¢) is well defined.
We define now:

(y'eT() or (y,y)eX).

ACT) = ACp, ).

Theorem C. Let T be a multiple-valued closed mapping of a
convexoidal space Y into itself such that T(y) is simple for each yeY.
If A(T)#0, then T has a fixed point, i.e., some point yeY such that

yeT(y).

Proof. Define X=G(T) and @,¢: X—Y as before. As A(@, ¢)~=
A(T) #0, the pair @,¢ has by Theorem A some coincidence point
x=(y,y') e X such that @(x)=¢(x), ie, y=y eT(y), q.e.d.

Theorem D. Let T be the identical mapping of a convexoidal
space Y onto itself. Then A(T)=X(Y).

Proof. This follows directly from Theorem B.

Theorem E. Let Ty, T, be multiple-valued closed mappings of a
convexoidal space Y into itself such that

(1) There exists a multiple-valued closed mapping T of Y=Yx
[0,1] into ¥ with T(y,k)=Ti(y), where k=0,1, yeY, and T(Y x
(2))cYx(2),2te[0,1].

(ii) Set Te: Y=Y by (T(y),2)=T(y,12), te[O,l], then T.(y)
is simple for each yeY and te[0,1].

Then A(T,) =A(T,).

Proof. Let X=G(T), X,= G(T,), X,=G(T,) be the graphs of T,

T, and T; respectively. Define the pl‘O]CCthHS ?, g X-Y, [ % sbo
XY, =Y x (0), and @, ¢y: X;—Y,=Y x (1) by ‘P(y,y ) =5, ‘l’(%y )= y ’
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(¥ ¥4) =9 D(yi ye) =71 where (5, ) eX, (3 yi) e X k=0, L.
Denote the natural injection of Y into Y;=Y x (%) of y by A, where
A(y)= (y,/(), yeY, k=0,1; similarly denote the natural 1n]ect10n of

X, into X by 6, where k=0,1. Take a basis (72} of H(Y), then
(522} is a basis of H(Y) for each £=0 or 1. Now we have

ACT) = A(@, §) = D (—1)75,(8%),
?
AhdBl, =2, Qi $0,=4, ¥y, we get by applying 07 to the last equation,

2R 7, F B §2).

It follows that
ACTE) = Ay, gr) = D) (— 1)78,(55).
. 4

Therefore A(T,) =A(T,)=A(T) and the theorem is proved.

Remark. For simplicity we shall say that the two mappings
verifying the conditions in our theorem are “homotopic in a simple
manner”’.

VIII. Derinmmion oF THE GAME AND THE MAIN THEOREM

Let us consider an »—person game with strategy space S; and payoff
function H;(xy,---,x,), x;€8;, i=1,---,n, for the player “’. We
shall suppose that §; are all bicompact Hausdorff spaces and H,- are
all continuous over S=8;% -+ x S,. For each S; let &;={F¥,-- F,(,f)‘.}

be a given finite closed covering and B; the o-field of all Borel sets
of S: and {c;i}={ci,"* ", Cim,} a set of number >0 and < 1. As de-

fined in V, let S} =m,(S;) be the set of all regular probability mea-

sures p;  over B; with p(F)>c; for at least one of the indices 7,
1 <j<c;, this set having a topology as induced by that of thc topological
space R“(S:)=R;.

Consider now for each i=1,---,», a multiple-valued mapping 7;
of S into itself verifying the followmg conditions:

(i) meti(m), meSS,
(ii) 7; is closed and uniformly closed,
(iii) for each eSS, the set 7;(g;) is convex with respect to the



linear structure of the Banach space R;=R(S:).

Definition. The system I'={I, {S:}, (H:}, {$:}, {c:}, {7:}) in
which I={1,---, n} is the set of players will be called a game with
restricted domains of activities. The closed sets F\” of the covering
&; will be called the domain of activities, t©: the domain of alterna-
tions and c;; the factors of concentration of the player “4”’ in the game
I'. The game I'*= {7, {8/}, {H}, {v:}) with the same set of players
I, strategy spaces S;° =mci(§;) =3 mcii(F,gi)) CR“(S:), and payoff func-

. 1

tions® H (g1, ) #a) =LH,~(x1,- -+, x,) p(dx) where p is the product

measure over the product space §=8;% ---x S, of the regular pro-
bability measures p;e S, will be called the natural extension of the
game I'. We call (gf, -, pr) eSS x -+ x 8 an equilibrium point of
I' or I'* if '

Hi*(ﬂ;:,"'?ﬂfy ,I-"n) Hf(."fa”')”x‘y' 9!"/1)
for any
#,Er(p,), i=1,-,m,

Denote the nerve complex of the covering {m,, (F;)} of m,i(g) by
K;=K.(SJ:) and its Euler-Pomcare characteristic by X. Then the
number X(T) =2X,--+,X, will be called the characteristic of the
game I. ,

Main Theorem. The game with restricted domains of activities
=<1, {8}, (H:, {3, {e}, {v:}) has equilibrium points if all the nerve
complexes K; are connected and X(I') # 0.

Proof. For any p= (py---,p)eS" =8I - S* let @9 (p)
be the set of all fe:(p) ©SF such that Hf‘(p,, T
sup H (I‘n e, Y "';,u'n) -and let Q([L)=(D(l)(/l.)x . x(D(“)(‘u)cS*'

v;ET R
As 7; is closed, (D(p) is non-empty. As T7; is also uniformly closed,
@ is closed by the Lemmas of VI. As 7;() is convex, @(g) is also
convex with respect to the linear structure of the Banach space
R=R(S;) x -++ xR(S,). Moreover, @ is “homotopic in a simple
manner” to the identical mapping ] of §* into S§* since T:(g;) is
convex and contains g;. It follows from Theorems E, D of VII that

AD) =AY = 2(s™) = TT 2(GsD).

i=1 \
Again by Lemma 1 of VII as well as Lemma 3 of V we have
S X(SH) = X(Ky) =2,

1) Sometimes H¥(ft1, +++, ps) will also be written simply Hi(uiy **+5 Ma).
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Hence
A@) = X;-- X, = X(T) F 0,

By Theorem C of VII, there exists a point p*eS* with p*e®(p*).
This point p* is then an equilibrium point of our game and the
theorem is proved.

Corollary 1. If ¢+ +c;;,>s—1 for each i and each set of
indices 7,, -y Js among 1,- - -,my, then the game of restricted domains
of activities T =(I,{S:}, (H:}, {S5:}, {c:}, (z:}) has always equilibrium
points if none of the Euler-Poincaré characteristic X(N;) is 0, i=1,--+,n,
where N; is the nerve complex of the covering S, supposed to be
connected.

Proof. ‘This follows from X(N;) =X; ——X(K,'(S)) by (v) of
the Theorem of V.

Corollary 2. If each F; consists of a single set, namely S; itself,
then the game with restricted domains of activities T'=I,{S:}, (H.},
(S, (e, (7)) which may be simply written I = (I, {S:}, (H:}, {%:})
has always equilibrium points.

Proof. For in that case K, (S:) is simply a pomt so that X;=1+#0.
Corollary 3. (Nash-Glicksberg)®>'. The game I'=(1,{S:},{H:})

in which S; are all bicompact Hausdorff spaces and H; are all con-
tinuous over S=8;%X -+ X8, has always equilibrium points.

Proof. For the game I' may be considered as a game with re-
stricted domains of activities for which &; consists of a single set,
namely S; itself, ;=1 and 7;(g;) =S for any p;eS;, 1<i<n.

Conclusions. For a finite closed covering ;= (F{”},1 <j<m;
of a space S; with nerve complex N; the Euler-Poincaré characteristic
X;=X(N;) is equal to

m;—1

Z (= 1) a(S),

where 2,(3;) denotes the number of (s + 1)—tuples of closed sets among
F?® which have non-empty intersections. Thus X; is a number deter-
mined by the mutual interrelations between the various closed sets
of the covering &;. The Corollary 1 of our theorem assures therefore
the existence of equilibrium points whenever the choice of strategies
is to be sufficiently concentrated and the mutual interrelations of the
restricted domains of activities are such that X(I') #0. The Corollary
2 of our theorem shows that if the choice of strategies is entirely
unrestricted, then equilibrium points exist always irrespective of the
structure of the strategy spaces and the domains of alternations. This
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becomes the theorem of Nash-Glicksberg if the alternations of strategies
are further unrestricted (Corollary 3 of our theorem). On the other
hand, simple examples (see the Example in IX) show that if X(I') =0,
then equilibrium points may not exist even in the case of simple

strategy spaces consisting of finite number of points only. Thus, our
theorem shows that:

The main factors which determine the existence of equilibrium
points of a game with restricted domains of activities are rather the

mutual interrelations of the domains of activities than the strategy spaces
themselves.

IX. An ExaMPLE

Let us define a 2-person game with restricted domains of activities

Ir={<{I1,{S:}, {H:}, {§:}, {c:}, {r:}) as follows.

Let Player I possess 4 (pure) strategies a;, 1< <4, and Player

II possess 4 (pure) strategies 4;, 1 <j<4. The payoff functions H,
and H, are given in the following tables:

H, a1 az as as H ay ay ag aq
b1 v B a é b B v é a
;n B a 8 ks b2 T g a B
by a 6 7 B bs é a B T
ba é 7 B a b a B | T [

The numbers «, B, y, 8 in the tables will be chosen to satisfy the
inequalities

3<a<B<y, ¢))
a < 28, 2)
v +8< 2a, 3)
and a+ vy <28, | €D

The covering &, i =1,2, will each consist of 4 closed sets F}",
1 <j<4, where

F; = {aj; ain},

F;' = {bi’ bi+l}5

(with the convention as=ga,, b5=25,).
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The numbers {c;;}, =1, 2, will be taken to be all equal to ¢>0 and

<1 which is sufficiently near to 1. The spaces §¥, i=1,2, may then

be considered as spaces of points Z x;a; and Z y;b; with x,y satis-
i=1

fying the following sets of 1nequa11t1es respectively.

For x: x; =0, 1<7 <4,

and % + 2,2 ¢, 0r Hy+ a3 2, of X3+ x,=c o x f x> c
>

0, 1<j<4,

Z::=

qu y: Vi

and y; + 3y, 2¢, 0r y,+ 32, 0f Y3ty Scor y + S0
<

Let a, a;, 6,5, 1 <j <4, be respectively the points defined by

a; =ca; + (1 — ¢)as,

ay =(2¢c — Da, + (1 —¢)ag + (1 — ¢)as,

a3y =cas; + (1 — ¢)ay,

ar = 2c—1Dag+ (1 —c)ay + 1 — ¢)ag,

& = (2c — Day + (1 — ) + (1 — ayy

ay =ca; + (1 — ¢)ay,

ai = Q2¢c —Das + 1 —)a; + (1 — ¢)ay,

a = cas + (1 — ¢)a,,
Similarly for &4, and 4, defined by equations as above with all &
replaced by &;. The spaces of all mixed strategies of players I and
II will be considered as tetrahedrons T, and T, with vertices a;

1<7<4, and b, 1 <j<4, respectively. Then S is part of T,
surrounding the 4 edges a,a, a,a; aja, a,ay. The boundary of this

1o rorr o117 rorr 7

part consists of 4 parallelograms aia; a,a;, axds Gsdsy Gsds Geds y @sds A1y
as well as other 8 trapezoids with two lying on each the four faces of
the tetrahedron T,. We shall denote by C;, 1 <j < 4, the four corners
of ST about g; for which C, is given by

¥, +x, 2 ¢, x; + x4 2c,
%20, x,20, 320, x,=>0,
x1+x2+_x3+x4=l,
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Similarly for the other corners C, j= 2,3, 4. We shall also denote
by C;;+; the prisms defined by

X + Xit1 2 Cy, Xji— +x,—< Cy Xj+1 -+ x,'+2< C,

2120, 20, 2320, %, 20,

x1+x2+x3+x4=l, .
‘where 1 <7<4 and by convention x4y, = 2z C,5 = C,;. It is now
easy to define the domains of alternations 7,(z), peS;y, such that 7,

should, besides being convex, closed and uniformly closed and con-
taining p themselves, also satisfy the following conditions:

(i) r7,(p)=Cj, for p on the segment aja;, 1 <j<4.

(ii) 7,(p)DCj for peC; 1<j<4

(iii) T () CCii+1UC;UC)yy, for peCijny 1<7< 4.

(iv) pelntt,(p) if p is not on the segments aa;, 1 <j<4.
Similarly for 7,.

For numbers (#, #', ') and (#, ¢', v"’) with =0, 20, 4" =0
’ 7 ’ I’ 4 ¢ ’ 4 " ) ! !
u+d +u’'=1, v=20, v'20, v"20, and v+ +2"'=1, let
y

- r 7 7.
aj =wuaj +ua +ua,

b, = vb; + v'b; + '8},

The values of H,(a;, ;) and H,(a, 5;) will be tabulated as follows:

A<;i<.,

H, 21 a2 a3 24 H, a1 a3 as a1

b Th| Bh | T | oL by | By | T4 | 6% | @i

Ba | B | @ | 85 | Th | | % | @ | B

58 &is S%s 753 E}s . 58 Sgs &zs Bga 733

Be | 3% | 7h | Bh | @k o | @ | Bu | 7| B
i i

Now for ¢—1 it is evident that H,(a; ;) — H,(a;, b;), H,(a, b;) —
H,(ai, b;) for the arbitrary systems (#,#',#"’) and (7,7',2") chosen
above. It follows that we can choose such a ¢ > 0 sufficiently near to
1 so that values & B, 7,8 have the same relative magnitudes as exhi-
bited in the inequalities (1)—(4), e. g.,

8in < @iy < Bhiy < Thi Y]
23§1|f1 < a?g-ia’ (i)
etc.,
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for any £ =1,2 and any 7,7,=12,3,4 Now let P, and P, be the
closed polygons @,d,3:3,4, and 5,5,b:5,6, respectively. The space P, % P,
is topologically a torus which we shall represent as a square with
opposite sides identified. Suppose that equilibrium point exists, say
(pf, 1), lying on P, x P,. ~ We shall prove the impossibility by distin-
guishing the following cases according to the values of #, #’, etc.

Case I. #>0, v>0.

Owing to our choice of the domains of alternations it is evident
~in that case that

Hy(p's p2) 2 Hi(s p3) (5)
for any g, in a certain neighbourhood about g{ on P; and
Hy(pf' p3) 2 Hp' s m) (6)

for any p, in a certain neighbourhood about gy on P,. As a conse-
quence of inequalities (1)—(4) we see that (pf, p¥) should lie on
the dark lines in the following diagrams in order to satisfy (5) and
(6) respectively.

¥ B & 5 T . :(____ B J_ @ B
E a g Y 5 _____ 5_2__—__ Vil d |4 8 ¥
i . . a Bl 7 -
& R s 3 3 3
Fig. 1 ® bs ~ - ® Fig. 2
3 iz a .S S a— B Y} 3 =
4 Bl — L «
5 ! R = ¥ 3| & -
TR @ s % & 1P
' | | ! ! t | )

! | ! ] | L t |
g, % & @ & a a, a, a, 3,

(The numbers & ---,8 indicate the corresponding values H,(&;, &;)
or H,(a; b;) and are abbreviations for & etc.) As these dark lines
are disjoint, it follows that no such equilibrium points can exist.

Case II. #>0, v=0.

In that case (5) should still be satisfied for p, in certain neigh-
bourhood about g on P, as before. As for (6), it should still be
satisfied for p, in certain neighbourhood about g on P, if p) # by, b,, b5
or b,. It follows that an equilibrium point on P; X P,, if such one
exists, should lie on the one hand on the dark lines in Fig. 1, and
- on the other hand should lie on the dark lines or on the horizontal
lines in Fig. 2. The only possible equilibrium points are thus

(519 1—71) 9‘ (‘_12, 1—74)3 (533 1—73) or (545 Zz).
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However, we have

Hy(ay, &) — Hy(ay, 8) = (1 — c)(B—8) >0,
Hy(a1, ) — Hy(a, ) = (1 — c)(2B —y —a) >0,
Hy(azs ) — Hyay, 8) = (1 — )(y —a),

Hy(az, b)) — Hy(ay, 57) = (1 — c)(2y — B — 8),
H,(as, &) — Hy(a3, 8) = (1 — ¢)(6 — B),

H,(asy 8) — Hy(a3, 6) =(1 —¢c)(26 —a—17),
Hy(as, &) — Hy(ay, &) = (L — ) (a — 1),

Hy(a4, b)) — Hy(ay, 8y) = (1 — ¢)(Q2a — B — 9).

1
1—c¢
y —a)>0 as ¢c— 1. Hence

It follows that

H,(a,, &) > H,(ai, Z1)

[Hy(a, b)) — Hy(ay 5)]—0'(B—8) + 0" (2B -

inasmuch as ¢ is sufficiently near to 1. As b,e7(;), the above
inequality shows that (a,,5,) cannot be an equilibrium point. Similarly
for (@, b,), etc.. Hence there exist no equilibrium points in the

present case.
Case IIl. #=0, v>0.

In this case an equilibrium point (g, #) lying on P, % P, should
lie on the dark lines in Fig. 2 and also on the dark lines or the
vertical lines in Fig. 1. The only possibilities are then

(51, ZZ); (523 Zl)’ (‘;3 >Z4> or (549 Za).

As in Case II, all these are impossible.
Case IV. #u=0, v =0.

As before, the only possibilities are the 16 points

(E,‘, Zi)a i,j=1,2,3,4,

Now the points
(315 77-1.), (‘;2, Z‘i), (‘;39 ZS)) (‘;4, ZZ)
are impossible as in Case II, and the points

(‘_il’ Z.2); (Ez: Z1):’ (‘;3, Z-l), (‘;4: 33)
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are also impossible as in Case III. The only points remaining to be
tested are then

(‘715 Zs)s (aZ: 1—72): (533 Z1)3 (543 34)9
(‘—113 54), (‘;Zs 773)3 (‘—13: 1—72)9 (‘—145 Zl).

For the point (&, 4;) let us put
b5 = cbs + (1 — )by,

Then

H,(ay, 83) — Hy(ay, £5) = (1 — c)(y — B) >0,

H,(ay, 6F) — Hy(ay, &) = (1 — ¢)(26 —a) >0, etc. .
It follows that

Hy(ay, 5) — H,(ay, 8) > 0
inasmuch as ¢ is sufficiently near to 1. = As
by e1,(b3)

we see that (@, ;) cannot be an equilibrium point. Similarly for
the points (&, b;), (@ 5,) and (a, 5,).

For the point (&, 5,) let us put
a = ca; + (1 — ¢)ay.

Then

Hi(a, &) — Hi(ay, 6) = (1 — e)(y — B) >0,

Hi(af, b)) —Hy(a, &) = (1 —c)(26 —a) >0, etc. .
It follows that

H,(af, 5,) — Hy(a,, 5y) >0

inasmuch as ¢ is sufficiently near to 1. As affe7,(3) we see that

(@y b,) cannot be an equilibrium point. Similarly for the points (@,

Zs)y (‘-13) 1;2) and (‘—’4) 1;1)

From the above we see that no equilibrium points can exist for
our game with restricted domains of activities, inasmuch as ¢ is suf-
ficiently near to 1, though each player possesses only a finite number
of pure strategies.
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