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MATHEMATICS

A REMARK ON THE FUNDAMENTAL THEOREM IN
THE THEORY OF GAMES*

Wou Wen-rsiin®# (%ifé‘{)

(lustitute of Mathematics, Academia Sinica)

§1. The fundamental minimax theorem of von Neumann in the
theory of gamest™™® has been generalized in various manners, all of
which require strong algebraic hypothesis on the strategy spaces or
the payoff functions or both, namely, linearity or convexity in certain
sense (cf. e. g. [13-14]). The present note furnishes another generaliza-
tion which is, however, purely topological in character, in contrast
to all the known generalizations, especially to that of H. Weyl,
which is purely algebraic in character. In our proof of the theorem,
only elementary facts about point sets, neither fixed point theorems
or the like nor theorems about convex sets, are used.

§2. Let R be a closed interval which, as is well known, may be
characterized topologically as a continuum with all but two non-
cut points, which are the end points of R. On R an order relation
may then be established in just two manners so that for any subset
E of R, the g. L. b. inf E and the I u. b. sup £ may be well-defined
with respect to a chosen order relation < and > on R. For any
point A€ R, we shall denote by Rf, R}, Ry and R; the subsets of R
consisting of points ¢ for which 2224, 2> 4, =<4 and =<4 respec-
tively with regard to the above chosen order which will be fixed
henceforth. For any spaces X, Y and any mapping f, continuous or
not, of XxY in R, we shall write f(x,y)=/,(y) =/,(x), x€ X, y&Y.
We shall say that the mapping [ is strongly connected in X, il it
possesses the following two properties:

(P)) For any @, b€ X, there exists a continuous mapping /4 of
the closed interval [ with end points 4, 5 in X such that /4(a) =a,
h(b)=b, and for any y€Y and any A€ R, 27 {7 (R}) is a connected
set, if not empty. (This implies that X should be arcwise connec-
ted )
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(P,) For any finite number of points x, »+ -, 2, € X and any A€ R,
the set foU(Ry) N---n J71(Ry) is connected, if not empty.

The generalized von Newmann’s theorem in question is then the
following

Theorem. Let Y be a compact separable space while X is arcwise
connected. 1t £: XxY—R is strongly connected in X and t,, £, arc all
continnous for any x€ X, yeY, then

Inf {Sup £,(X)/y€Y)} = Sup {Inf f.(¥)/x € X}. (D
§3. The proof of the theorem depends on the following lemmas:

Lemma 1. Let X be a closed interval with end points a, 4, and
Y be a separable space. Iet A be a fixed point of R and [ be a
mapping of XxY in R such that for any x€X and y€Y, [7YR})
and f7'(R7) are connected if not empty, [/, are all continuous,
and /7H(R}) contains either ¢ or 4. Then there exists a point &€ X
such that f.(Y)cR}.

Proof. Let yy, ya, * ¢, ya -+ be a countable dense set in Y. Put
1=, YRY), then I; contains either # or 4 and is connected so that
it is an interval containing, or a point 1educ1ng to, a or 4. Take
n fixed and mppoac that 7, N---N [, is empty. Then for some
integers @, B of the set {1, 2, ---, #n}, we should have I, NIz = ¢ so
that ¥, € X exists with fya(,x,,) ER“ /yﬁ(x,,) €R;. Hence [=[1(R])
contains both ya and yg, and is by hypothesis convected. Say a€ /..
Then aé],q, €lg, b¢l, and [.=] N [7'(R}) contains y. while J5=
= [N f7'(R}) contains ys. By hypothesis ], [p are closed in [ and
J. U Jg=]. It follows that J. N Jp# ¢. Take 7€J. N Jpc J. Then
[ =fY(R}) contains both @ and 4. As I is connected, it coincides
with X. Whence x,€7=f7"(R}), or p€f;}(R}), contrary to 7€/ =
=[1(Ry). Therefore [;N --- NI, #¢, and we may take &§€L,N -+ N1,
so that f,(&,) €RS, i=1,2, <=+, n. Let & be a limiting point of
gn,n=1,2, <+, then we should have f, (&) =/:(y;) €R{, for all 7. As
Lhc set {y;} is dense in Y we have f;(y) €R} for all y€Y, q.e.d

Lemma 2,. let Y be a separable space, while X is arcwise
connected. Let A be a fixed point of R and f: X®xY —R be a mapping
strongly connected in X. If /[, are continuous for all x€ X, y€Y
and if there exist » points a, = -+, a,€ X such that f;‘(Rf) Joo-
Uf ' (Rf) =Y, then there exists a point &€ X with f.(Y) CR}.

Proof. We shall use induction on ». The lemma is trivial for
n=1. Suppose the lemma is true for n—1, n=>2. Put Y'::/;:(Rf).
Then the hypotheses in Lemma 2,_; for the pair of spaces X, Y’
the point A€ R, the mapping [/XxY’, and the set of points a;, ---,
a,.1€ X arc verified and hence there exists a point & €X with




f (YY) CRf. By (P;) of the strong connectedness of the mapping
f, there exists a continuous mapping /% of the closed interval 7 with
end points @, 4 in X such that 4(a) =a,, 4(b) =¢ and (f,h) (R}
is a connected set for any y €Y, if not empty. It follows that the
hypotheses of Lemma 1 are verified for the pair of spaces (I, Y),
the point A€ R, and the mapping f: I x Y— R defined by f(x, y) =
=f,h(x), €1, y€Y. Hence there exists a point &€ [ with /(Y) CRj}.
For &=/A(E), we have then f,(Y) C Rf, as required.

§4.  Our theorem follows now easily by usual arguments. Suppose
in fact that (1) is not true so that

Inf {Sup f,(X)/y€Y} > Sup {Inf £.LY)/x & X},
Then A¢ R exists with
Inf {Sup FAX)/y €Y > &> Sup (Inff(Y)/x € X}, (25

For any y¢€Y there exists then a point x,€ X with f(x,, y) €R}. As
each set U, ={f-'(R{) CY is open, the compactness of ¥ implies the
existence of a finite number of points y,, -+, y,€Y with @=x, such
that U, = -1 (RY), a fortiori {}(RY), i=1,2, <+, un, cover Y. 'The
“hypotheses of Lemma 2, are then satisfied with respect to the pair
of spaces X, Y, the point A€ R, the mapping f, and the system of
points @y, = -+, 4, € X. Hence there exists a point &€ X with f(Y) CR}.
It would follow that Sup {Inf f.(Y)/x€ X} =2 in contradiction to
(2). Hence (1) must be true and our theorem is proved.

§5. Examples and Remarks.

(A) Let X', Y be spaces and f: X'xY'—R be a mapping verify-
ing the conditions of our theorem. Let X, Y be any spaces homeo-
morphic to X', Y". under the homeomorphisms ¢ and ¢ respectively
and 4 any order-preserving topological transformation of R. Define
f: XxY=R by f(x, y) =hf (9(x), #(y)), x€X, y&Y. Then (X,Y,f)
verify also the conditions of our theorem. This shows the pure
topological character of the above generalized von Neumann’s
theorem.

(B) If X,Y are convex subsets of linear topological spaces and
f a real-valued function on XxY which is quasi-concave in X and
quasi-convex in Y in the sense of Nikaido'® then f is strongly
connected in X. Hence our theorem contains the generalizations of
von Neumann’s theorem by Nikaidd on the further hypothesis about
separability of the space Y and also those of Ville, Wald, Kneser,
etc. On the other hand, it is independent of all other known
generalizations, since no algebraic hypotheses are assumed in our
theorem while all others do make them.



(C) Almost all generalizations suppose that the strategy spaces
X and Y are convex so that they ave topologically contractible 1o 4
point.  The following is an example which is not so but rcets the
requirements of our theorem. Let X and Y be circles and let ug
imbed the torus XxY in an ordinary manner in the 3-space with
rectangular coordinates (x,y, z) such that the axis of the imbedded
torus is the x-axis and the parallel circles correspond to the sets
X% (y), y€Y. The z-coordinate then defines a real-valued function
f on XxY which satisfies the conditions of our theorem. The unique
optimal strategy may be seen to correspond to one of the two saddle
points of the function f. If we define the function by means of the
x~coordinate, then the set of optimal strategies is seen to correspond
to a circle on the torus.

(D) That certain connectivity hypotheses about the spaces X,V
and the function f should be assumed in order to ensure the equality
(1) without imposing any algebraic conditions, is quite natural.
However, the following example shows that our conditions on connec-
tivity are rather too strong. Let X, Y be circles as before and let
us represent the torus XxY as a square ABCD with its opposite
sides identified. Take a real-valued continuous function f on X XV
such that f =0 on the four sides as well as its diagonal AC of the
square ABCD, and [>0 respectively f< 0 in the interior of the
triangle ABC respectively ACD, with a single maximum respectively
a single minimum in their interior, the level lines f=c¢ being
triangles with sides parallel to those of ABC or ACD, according as
¢>0 or ¢<0. Then the condition (P,) of the strong connectedness
is satisfied but (P;) is not. However, the equality (1) still holds
with the set of optimal strategies reduced to a single point corres-
ponding to the four vertices of the square and the value of the
game is equal to zero. The same is true, if in the first example of
(¢) the roles of X and Y are interchanged.
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