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within the class of all functions u(x) which are continuous in the sphere K. We can easily see also
that, if P(GOI‘ , °0n) =0, lheil (¢ (aox), v) = 0 for functions of the class vg, whatever be the
continuous function ¢(a x), x € K. From this, and because of the relatively suitable function f(ax)
assumed, it follows that (f (ax), v) = 0 if v(x) € vg. Since the function f(f) is arbitrary, we choose

it such that, in the interval inf (ax) <t < sup (ax), it possesses a continuous arbitrary f(™) (¢),

x €K x€K
where f(m) (¢) # 0 in this interval. Integrating by parts, we obtain
F.9) = (= D" @) P(ay ..., a¢)0xdx=0,
D

from which, by virtue of the arbitrariness of the function v(x) € vg, it follows that

f (ax) P (@y, ..., @) =0, x €K,
i.e. P(al, “ee, an) =0 and the point a = (al, cee, an) is algebraically related to the set M.
Proof of the sufficiency. Since any continuous function in the interval (1) can be uniformly ap-

proximated by a polynomial on the compact subsets of this interval, it is enough for the proof of our

statement to show, for any natural number m, the possibility of the representation

k
(ax)m = Z?»; (ax)", a;eM, (3)

where k is some natural number and Al' -+, A; are real numbers.

It is obvious that the number A; should satisfy the system of equations

altays. . . apn = Za,la,g. .. affn),,

4
m,}O,m1+m2+...+mn_=m. @

We choose k = C; "ll -, and consider the determinant obtained from the system (4)

A(ay, ...,a) =|agay. .. aln|

for the totality of points belonging to the set M. If for a given m, there is no polynomial of degree m
containing the set M, other than the identically vanishing one, then it is easily seen that the totality
of poiats of the set M a},i=1,---, k, for which A(a’;, cee, a,:) # 0 are chosen and the possibility of
the representation (3) for this m is proved. If, however, some nontrivial polynomial does exist, then
A(a cen, ak) = 0, whatever be the totality of points (a-, i=1,+++, k), from the set M. In this case
the chonce is made from among the minors of the determinant A(a .. ak) if only one minor
A(a‘ e, ai‘) s <k and only one system of points a‘ RS a; , exist such that A(a;l, ceey, n;‘)pé 0,
whxle all the minors of the determinant A(al, ceey, ak) which are of higher order will be equal to
zero at all the points of M.

If among the rows of the minor A(ﬂ; y e, a‘ ), there is 'no row of the form a; ?amo awIg ,

m? + mg +oeet mo =m, ? > 0, then we augmcnt the minor A(a‘ R "i ) by the clcments of that

row and the elements of any column of the original determinant, taken at the arbitrary point a; € M.
We obtain some minor A(a] v B, » #;). We fix the points a‘ ' Ty a“ and let the point a; run
8

through all the points of the set M, thus tracing each time Ala] o n‘ » #;) = 0. Expanding this

minor about the elements of the added column, we find that on the set M there is a linear relationship
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found above for the point a, € M, exists between the power a

sponding to the rows gf the minor A(n; P n:') taken at the point a, Since the chosen row of the
0 m
form a""ll “:;2 ven n‘n" does not enter in the composition of the rows of the determinant A(n; eee a®)
) U P

which is aebitrary, the solvability of the system (4) in terms of A; follows from the proof and thus the
possibility of the representation (3).

The mentioned theorem allows the notion of the algebraic relationship of a point to the set M to be
formulated as follows:

The point a €11, _, is nlgebraically related to the set M, if it exists in the domain D in such a
manner that the arbitrary function f(ax), x € D (f(¢) continuous in the interval (1)), can be uniformly

approximated on the compact subsets of ) by a summadion of the fom (2).
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