APPROXIMATION OF A PLANE WAVE BY SUPERPOSITIONS
OF PLANE WAVES OF GIVEN DIRECTIONS

B. A. VOSTRECOV AND M. A. KREINES

Let \(x = (x_1, \cdots, x_n) \) be a point of the Euclidean space \(\mathbb{R}^n \), and let \(D \) be a certain domain in this space. Further, let \(a = (a_1, \cdots, a_n) \) be a point of the \((n - 1)\)-dimensional real projective space \(\Pi_{n-1} \), with given homogeneous coordinates \(a_1, \cdots, a_n \). In the space \(\Pi_{n-1} \), we choose a set of points \(M \) and any point \(a \). Let \(f(t) \) be an arbitrary function which is continuous in the interval

\[\inf_{x \in D} (ax) < t < \sup_{x \in D} (ax), \quad ax = a_1x_1 + \cdots + a_nx_n. \]

We will derive a necessary and sufficient condition that every function \(f(ax), x \in D \), can be approximated uniformly on the compact subsets of the domain \(D \) by a summation of the form

\[\sum_{i=1}^{N} \phi_i(a_i, x), \]

where \(N \) is an arbitrary natural number, \(a_i \) is a point of the set \(M \) and \(\phi_i(t) \) is a function continuous in the interval

\[\inf_{x \in D} (a_i x) < t_i < \sup_{x \in D} (a_i x), \quad a_i x = a_1 x_1 + \cdots + a_n x_n. \]

Toward that end, we will consider an arbitrary homogeneous polynomial \(P(y) = P(y_1, \cdots, y_n) \) in the variables \(y_1, \cdots, y_n \) with real coefficients, and we will introduce the following definition.

Definition. We will say that the point \(a, a \in \Pi_{n-1} \) is algebraically related to the set \(M \), if every polynomial containing the set \(M \) (i.e., vanishing at each of the points of \(M \)), contains also the point \(a \).

Theorem. In order that an arbitrary continuous function \(f(ax), x \in D \), can be uniformly approximated on the compact subsets of the domain \(D \), by a summation of the form (2), it is necessary and sufficient that the point \(a = (a_1, \cdots, a_n) \) be algebraically related to the set \(M \).

Proof of the necessity. We assume that the arbitrary continuous function \(f(ax) \) can be uniformly approximated on the compact subsets of the domain \(D \) by a summation of the form (2). Let \(P(y_1, \cdots, y_n) \) be an arbitrary polynomial of degree \(m \) containing the set \(M \). We choose any closed sphere \(K \) lying together with its boundary in the domain \(D \). We denote by \(v_K \) the class of all functions \(v(x) \) which are \(m \) times continuously differentiable in the sphere \(K \), and which vanish together with their partial derivatives up to the \((m - 1)\) st order inclusively, on the boundary of the sphere \(K \). For the class of functions \(v_K \), we define the functional

\[(u, v) = \int_{K} u(x) P \left(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n} \right) v(x) dx, \]

where \(u(x) \) is an arbitrary function which is continuous in the sphere \(K \). The functional \((u, v) \) is additive in \(u \) and \(v \) and, for a fixed function \(v(x) \), is continuous in the sense of uniform convergence.
within the class of all functions \(u(x) \) which are continuous in the sphere \(\bar{K} \). We can easily see also that, if \(P(a_0, \ldots, a_n) = 0 \), then \((\phi(a_0 x), v) = 0 \) for functions of the class \(v_K \), whatever be the continuous function \(\phi(a_0 x), x \in \bar{K} \). From this, and because of the relatively suitable function \(f(ax) \) assumed, it follows that \((f(ax), v) = 0 \) if \(v(x) \in v_K \). Since the function \(f(t) \) is arbitrary, we choose it such that, in the interval \(\inf (ax) \leq t \leq \sup (ax) \), it possesses a continuous arbitrary \(f^{(m)}(t) \), where \(f^{(m)}(t) \neq 0 \) in this interval. Integrating by parts, we obtain

\[
(f, v) = (-1)^m \int_P f^{(m)}(ax) \, P(a_1, \ldots, a_n) \, v(x) \, dx = 0,
\]

from which, by virtue of the arbitrariness of the function \(v(x) \in v_K \), it follows that

\[
f^{(m)}(ax) \, P(a_1, \ldots, a_n) = 0, \quad x \in \bar{K},
\]

i.e. \(P(a_1, \ldots, a_n) = 0 \) and the point \(a = (a_1, \ldots, a_n) \) is algebraically related to the set \(M \).

Proof of the sufficiency. Since any continuous function in the interval \((1) \) can be uniformly approximated by a polynomial on the compact subsets of this interval, it is enough for the proof of our statement to show, for any natural number \(m \), the possibility of the representation

\[
(ax)^m = \sum_{i=1}^k \lambda_i (a_i x)^m, \quad a_i \in M,
\]

where \(k \) is some natural number and \(\lambda_1, \ldots, \lambda_k \) are real numbers.

It is obvious that the number \(\lambda_i \) should satisfy the system of equations

\[
a_1^{m_1} a_2^{m_2} \cdots a_n^{m_n} = \sum_{i=1}^k a_1^{m_1} a_2^{m_2} \cdots a_n^{m_n} \lambda_i,
\]

\[
m_1 \geq 0, \quad m_1 + m_2 + \ldots + m_n = m.
\]

We choose \(k = \binom{n}{m+n-1} \) and consider the determinant obtained from the system (4)

\[
\Delta(a_1, \ldots, a_k) = |a_1^{m_1} a_2^{m_2} \cdots a_n^{m_n}|
\]

for the totality of points belonging to the set \(M \). If for a given \(m \), there is no polynomial of degree \(m \) containing the set \(M \), other than the identically vanishing one, then it is easily seen that the totality of points of the set \(M a_i^*, i = 1, \ldots, k \), for which \(\Delta(a_1^*, \ldots, a_k^*) \neq 0 \) are chosen and the possibility of the representation (3) for this \(m \) is proved. If, however, some nontrivial polynomial does exist, then \(\Delta(a_1, \ldots, a_k) = 0 \), whatever be the totality of points \((a_i, i = 1, \ldots, k) \), from the set \(M \). In this case the choice is made from among the minors of the determinant \(\Delta(a_1, \ldots, a_k) \) if only one minor \(\Delta(a_1^*, \ldots, a_s^*) \neq 0 \), while all the minors of the determinant \(\Delta(a_1, \ldots, a_k) \) which are of higher order will be equal to zero at all the points of \(M \).

If among the rows of the minor \(\Delta(a_1^*, \ldots, a_k^*) \), there is no row of the form \(a_1^{m_1} a_2^{m_2} \cdots a_n^{m_n} \), \(m_1 + m_2 + \ldots + m_n = m \), \(m_j \geq 0 \), then we augment the minor \(\Delta(a_1^*, \ldots, a_k^*) \) by the elements of that row and the elements of any column of the original determinant, taken at the arbitrary point \(a_i \in M \). We obtain some minor \(\Delta(a_1^{*1}, \ldots, a_s^{*s}, a_i) \). We fix the points \(a_1^{*1}, \ldots, a_s^{*s} \) and let the point \(a_i \) run through all the points of the set \(M \), thus tracing each time \(\Delta(a_1^{*1}, \ldots, a_s^{*s}, a_i) = 0 \). Expanding this minor about the elements of the added column, we find that on the set \(M \) there is a linear relationship
between the powers \(a_{i1}^0 a_{i2}^0 \cdots a_{in}^0 \) and the powers corresponding to the rows of the minor \(\Lambda(a_{i1}^*, \ldots, a_{is}^*) \), the power \(a_{i1}^0 a_{i2}^0 \cdots a_{in}^0 \) being linearly expressed in terms of the rest of the mentioned powers. We put the obtained linear combination into the corresponding homogeneous polynomial \(P(y_1, \ldots, y_n) \), replacing, in the determinant \(\Lambda(a_{i1}^*, \ldots, a_{is}^*, a_{i}) \), the components \(a_{i1}, a_{i2}, \ldots, a_{in} \) of the point \(a_i \) by the corresponding variables \(y_1, y_2, \ldots, y_n \). Since the polynomial \(P(y) \) contains the set \(M \), it will necessarily contain the point \(a \) also, by the statement of the theorem. Hence it follows that the function \(u = (ax)^m \) satisfies the equation in the partial derivatives
\[
P \left(\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n} \right) u = 0.
\]

Substituting the power \((ax)^m \) in this equation, we find that exactly the same relationship that was found above for the point \(a_i \in M \), exists between the power \(a_{i1}^0 a_{i2}^0 \cdots a_{in}^0 \) and the powers corresponding to the rows of the minor \(\Lambda(a_{i1}^*, \ldots, a_{is}^*) \) taken at the point \(a \). Since the chosen row of the form \(a_{i1}^0 a_{i2}^0 \cdots a_{in}^0 \) does not enter in the composition of the rows of the determinant \(\Lambda(a_{i1}^*, \ldots, a_{is}^*) \), which is arbitrary, the solvability of the system (4) in terms of \(\lambda_i \) follows from the proof and thus the possibility of the representation (3).

The mentioned theorem allows the notion of the algebraic relationship of a point to the set \(M \) to be formulated as follows:

The point \(a \in \Pi_{n-1} \) is algebraically related to the set \(M \), if it exists in the domain \(D \) in such a manner that the arbitrary function \(f(ax), x \in D \) (\(f(t) \) continuous in the interval (1)), can be uniformly approximated on the compact subsets of \(D \) by a summation of the form (2).

Received 20/JAN/62

Translated by:
Adnan Ifram